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Abstract. Although there exist several decidable fragments of Halpern
and Shoham’s interval temporal logic HS, the computational complexity
of their satisfiability problem tend to be generally high. Recently, the
fragment HS3 of HS, based on coarser-than-Allen’s relations, has been
introduced, and it has been proven to be not only decidable, but also
relatively efficient. In this paper we describe an implementation of a
tableau-based satisfiability checker for HS3 interpreted in the class of all
finite linear orders.

1 Introduction

Interval Temporal Logics (ITLs) consider time intervals as the primitive onto-
logical entities. This represents an advantage when dealing with some relevant
application domains, such as planning and synthesis of controllers, which are
characterized by advanced features that are neglected or dealt with in an un-
satisfactory way by point-based formalisms. ITLs have been applied in several
fields, such as hardware and real-time system verification, language processing,
constraint satisfaction and planning, among others [2, 15, 25, 27]. Moreover, due
to the fact that temporal logics are considered as the natural basis for temporal
extensions of Description Logics [5], several attempts have been made to design
interval-based extensions of such formalisms, as in [3, 4, 7, 28]. ITLs can be also
considered as the temporal counterpart of TSQL, that is, the temporal exten-
sion to the language SQL for databases, included in the standard SQL:2011 [32].
Halpern and Shoham’s Modal Logic of Allen’s Relations (HS), introduced in [20],
is the most prominent representative interval temporal logic, but its satisfiabil-
ity problem is undecidable when interpreted in almost every interesting class of
linearly ordered sets. Various strategies have been considered in the literature to
define fragments or variants of HS with a better computational behaviour, in-
cluding constraining the underlying temporal structure [24], restricting the set of
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modal operators [1,13], softening the semantics to a reflexive one [23], restricting
the nesting of modal operators [10], and restricting the propositional power of
the languages [12,14]. The underlying idea in [26] is substituting Allen’s Interval
Algebra (IA) [2] as the backbone of HS (modal operators in the HS repository
can be mapped one-by-one over Allen’s interval relations) with a set of jointly
exhaustive, mutually exclusive, but coarser, interval relations, originally pro-
posed in Golumbic and Shamir’s work [17]. In particular, the coarser algebra
IA3 involves three relations: the original before and after, plus a relation (in-
tersects) that can be viewed as the disjunction of all the remaining ones (and
therefore is the inverse of itself and includes equality). We call the corresponding
modal logic HS3: in [26] its finite satisfiability problem has been shown to be
PSpace-complete by providing a suitable small model theorem.

In this paper we describe the implementation of a satisfiability checker for
HS3 interpreted in finite linear orders. The finite satisfiability problem is usually
emblematic for the entire range of (discrete) satisfiability problems in interval
temporal logics, and so is our tableau-based procedure. On the other hand, check-
ing the (finite) satisfiability of an interval temporal logic formula is essentially
different from the same problem for a point-based temporal formula due to the
absence of the Until operator and the fact that ITLs are not generally susceptible
of being treated via fixed-point techniques. This means that most of the work
done for (variants of) LTL, including [18, 29, 31] cannot be simply reused, nor
compared with this one. Tableau-based procedures for interval temporal logics
are not common in the literature. Among the few exceptions, a procedure for
the fragment A of HS has been implemented in [9, 22]; the former is an experi-
mental implementation not devoted to computational efficiency, and the latter is
an attempt to use an automatic tableaux generator introduced in [30]. The only
previous attempt to apply a generic theorem prover to an interval temporal logic
can be found in [11], where a tableau-based decision procedure for the fragment
D, interpreted over dense linear orders, was developed in LoTREC [16]. Finally,
in [8] the authors designed an implementation for a tableau-based procedure for
a ITL with the chop operator, which is interval-based but employs a semantic
strategy, called locality, that reduces the truth of a propositional letter over an
interval to that of the initial point of that interval.

2 The logic HS and its fragment HS3

Let D = 〈D,<〉 be a strict (i.e., irreflexive) linearly ordered set. A strict interval
(resp., non-strict interval) over D is an ordered pair [x, y], where x, y ∈ D and
x < y (resp., x ≤ y). In the recent literature, the strict semantics, where only
strict intervals are considered, is usually adopted. This conforms to the definition
of interval adopted by Allen in [2], but differs from the one given by Halpern
and Shoham in [20]. If we exclude the identity relation, there are 12 different re-
lations between two intervals in a linear order, often called Allen’s relations [2]:
the six relations RA (adjacent to), RL (later than), RB (begins), RE (ends),
RD (during), and RO (overlaps), depicted in Fig. 1, and their inverses, that is,
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Fig. 1. Allen’s interval relations, HS modalities, and HS3/HS7 modalities.

RX = (RX)−1, for each X ∈ {A,L,B,E,D,O}. We interpret interval structures
as Kripke structures, with Allen’s relations playing the role of the accessibil-
ity relations. Thus, we associate a universal modality [X] and an existential
modality 〈X〉 with each Allen relation RX . For each X ∈ {A,L,B,E,D,O},
the transposes of the modalities [X] and 〈X〉 are the modalities [X] and 〈X〉,
corresponding to the inverse relation RX of RX . Halpern and Shoham’s logic
HS [20] is a multi-modal logic with formulas built from a finite, non-empty set
AP of atomic propositions (also referred to as proposition letters), the classical
propositional connectives, and a pair of modalities for each Allen relation:

ϕ ::= ⊥ | p | ¬ψ | ψ ∨ ξ | ψ ∧ ξ | 〈X〉ψ | 〈X〉ψ, (1)

where p ∈ AP and X ∈ {A,L,B,E,D,O}. The other propositional connectives
and constants (e.g., →, and >), as well as the dual modalities (e.g., [A]ϕ ≡
¬〈A〉¬ϕ), can be derived in the standard way. In general, given any subset
S ⊆ {Y, Y | Y ∈ {A,L,B,E,D,O}}, one can define the relation:

RS =
∨
X∈S

RX .

The corresponding modal operator can be denoted by simply juxtaposing the
original symbols to obtain a string, so that, for example, the modal operator
that is the disjunction of Allen’s relations overlaps and during would be denoted
by 〈OD〉. In some cases, such as the relation intersect, we introduce a shorthand



for the sake of readability, so that I = AABBEEOODD3. Well-formed HS3
formulae can be obtained from (1) when X ∈ {L, I}; for the sake of completeness,
a finer version of HS3 can be defined, called HS7, under the restriction that X ∈
{L,AO,DBE}, but in [26] it has been proved that its computational behaviour
is the same as the entire HS.

The semantics of HS and HS3 is given in terms of interval models M =
〈I(D), V 〉, where D is a linear order, I(D) is the set of all (strict) intervals over
D, and V is a valuation function V : AP 7→ 2I(D), which assigns to each atomic
proposition p ∈ AP the set of intervals V (p) on which p holds. The truth of a
formula ϕ on a given interval [x, y] in an interval model M is defined by structural
induction on formulae, as follows:

– M, [x, y]  p if [x, y] ∈ V (p), for p ∈ AP;
– M, [x, y]  ¬ψ if M, [x, y] 6 ψ;
– M, [x, y]  ψ ∨ ξ if M, [x, y]  ψ or M, [x, y]  ξ;
– M, [x, y]  ψ ∧ ξ if M, [x, y]  ψ and M, [x, y]  ξ;
– M, [x, y]  〈X〉ψ if there exists [z, t] such that [x, y]RX [z, t] and M, [z, t]  ψ;
– M, [x, y]  〈X〉ψ if there exists [z, t] such that [x, y]RX [z, t] and M, [z, t]  ψ.

Fig. 1 describes the semantics of HS3 operators in terms of that of HS operators.
Notice that a distinguishing characteristic of HS, inherited by the fragments
considered in this paper, is the fact that the truth of a propositional letter over
a given interval has no influence on the truth of the same propositional letter on
the intervals contained in it, nor its points. Alternative choices include the locality
principle, that implies assigning the same truth value to a propositional letter
over an interval as over its starting point (see [25] for the introduction of locality
in ITLs, and more recent work, such as [21], for an example of a renewed interest
in constraining principles). This and other, similar, model-theoretic constraints
have been shown useful in several applications and help reduce the complexity
of problems such as satisfiability or model-checking, but, here, we follow the
most general approach, in which undecidability is the rule and decidability the
exception. It is worth observing that HS3 retains sufficient expressive power to
define, for example, the global operator, and this depends essentially from its
modalities being jointly exhaustive:

[U ]ϕ = ϕ ∧
∧

X∈{L,I}

([X]ϕ ∧ [X]ϕ).

Formulas of HS, and therefore of HS3, can be interpreted over several dif-
ferent classes of interval models. Their frame properties sometimes influence the
computational complexity of the satisfiability problem, as witnessed by the re-
cent series of results [1, 13]. Notable classes of linear orders include the class of
all linear orders, the class of all finite linear orders, containing all and only those

3 This notation should not be confused with the standard notation for fragments of
HS, indicated by the set of its modal operators, e.g., ABBA, which includes four
modal operators, namely, 〈A〉, 〈A〉, 〈B〉, and 〈B〉.



linear orders with finitely many points, and the classes of interval models that
can be built over notable sets such as N,Z,Q, and R. Beside notable exceptions
(such as the fragment ABBA), fragments of HS tend to behave in a similar way
in all finite/discrete cases. Not only is solving in an efficient way the finite satis-
fiability problem a necessary step towards tackling the satisfiability problem for
other, sometimes more interesting, classes of linearly ordered sets, but it is also
an important problem on its own. For example, temporal databases use inter-
vals to describe time, and the interval logic HS is their ideal logical counterpart,
especially when interpreted in finite domains. Temporal queries, as well as tem-
poral constraints, can be easily expressed in HS, and the problem of establishing
whether a query or a constraint is semantically correct is, essentially, a finite
satisfiability problem. The latter is undecidable in HS; although HS3 is less ex-
pressive than HS, some interesting queries and constraints can be expressed in
the former [26], and, thus, checked.

3 A tableau-based satisfiability checker for HS3

In [26], a small model theorem for HS3 interpreted in the class of all finite linear
orders has been proved, that is, that a formula ϕ is finitely satisfiable if and only
if it has a model with less than

2|ϕ|·(log(4·|ϕ|+1)+log(|ϕ|)+|ϕ|)

distinct points; let us call this number L(ϕ). Building on it, it has been possible
to prove that the finite satisfiability problem for HS3 is PSpace-complete. This
result, in particular, is obtained by showing the correctness and completeness
of a PSpace (non-deterministic) algorithm based on the maximal dimension
of a satisfying model for a given formula ϕ. Such an algorithm is inefficient in
nature (although theoretically optimal); in this section, we describe an efficient
(but not theoretically optimal) imperative, deterministic implementation of a
tableau-based procedure for checking the finite satisfiability of formulas of HS3;
the flow diagram of the entire procedure is depicted in Fig. 2. We have chosen
to develop a semantic tableau-based satisfiability checker for HS3. Algebraically
speaking, both the tableau and the formula to be checked are represented as
rooted decorated trees. A rooted directed tree is a graph G = (V,E, r), where V
is nonempty, E ⊆ V ×V , |E| = |V |−1, and r ∈ V is its root; every element of V is
called a node. A rooted decorated tree [19] is a rooted directed tree such that there
exists a function that associates every node with its decoration, which can be
thought of as the information carried by that node; when we represent formulae,
a decoration is a propositional letter or an operator, and when we represent
semantic tableaux, a decoration is the collection of all information needed to
expand the tableau or to close it. In any (rooted decorated) tree, nodes without
successors are called leaves, and every finite path from the root to a leaf is called
a branch.

Representation. Formulas and tableaux are represented as rooted decorated
trees. Focusing on formulas, which correspond to binary trees, each node of
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Fig. 2. Flow diagram of the tableau

the tree contains a code that identifies the operator (Boolean or modal, distin-
guishing between universal and existential), of which a propositional letter is a
special case; nodes with a single child have a left child only. A formula is read and
contextually transformed by a tree; a simple recursive procedure eliminates all
implications and pushes all negations in front of propositional letters, obtaining
an equivalent formula in negated normal form. Moreover, since finite satisfia-
bility can be reduced to finite initial satisfiability, that is, satisfiability over the
initial interval [0, 1], before checking its satisfiability our procedure transforms a
formula ϕ into the formula

ϕ ∨ 〈L〉ϕ ∨ 〈I〉ϕ,

whose initial satisfiability is checked. Indeed, if ϕ is satisfied on a model M at
some interval [x, y] 6= [0, 1], then either y > 1 and therefore 〈L〉ϕ is satisfied at
[0, 1], or y ≤ 1, and therefore 〈I〉ϕ is satisfied at [0, 1].

A tableau is represented as a k-ary tree in form of left-child right-sibling.
Each node of this tree contains a pointer to the node in the formula tree that
represents the sub-formula under analysis, the interval over which it holds, an
active/inactive flag, a leaf/internal flag, and the pointers to the left child, the
right sibling, and the parent. Domains are represented as totally ordered sets of
floating point numbers, so that an interval is a pair of floating point numbers.
This has a very specific purpose: whenever a new point must be added in be-
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Fig. 3. Interaction between the tableau (lhs) and the tree formula (rhs).

tween a pair of already existing ones, it can be created by simply computing
their arithmetic average; nevertheless, a model is always finite by construction.
Some tableau nodes are leaves during the construction of the tableau; they (tem-
porally) represent their branch, so that they also store domain information, plus
other data that help us choosing the next branch depending on the expansion
policy. In addition to the two trees (a formula tree and a tableau tree - the
former is fixed during the satisfiability checking process of a given formula, the
latter evolves), there are additional data structures used within the tableau ex-
pansion. In particular, the collection of all current leaves is stored in a linked
list. Each element of such a list points to the tableau node that represents that
leaf (and therefore a branch) which may be chosen in the next expansion step.
A non-trivial adaptation of a generic tree visit algorithm has been implemented
in order to correctly identify, given a tableau node, the set of all and only leaves
that belong to the sub-tree rooted at it (see Fig. 3). Finally, a dynamic data
structure is built (and destroyed) before each expansion step that allows us to
examine the branch on which the to-be-expanded tableau node lies in order to
establish if the branch is closed (because it is contradictory), or it represents a
model (in which case the procedure stops and returns that the given formula is
satisfiable). Such a structure may be thought of as a hash (unordered) set with
an efficient (constant time) lookup method, that contains the intervals and the
formulas that are (currently) true on them.

Initial tableau and main procedure. The initial tableau for a formula ϕ
whose initial satisfiability must be checked is a tableau tree composed by a single



ϕ1 ∨ ϕ2, [x, y],D
(OR)

ϕ1, [x, y],D | ϕ2, [x, y],D

ϕ1 ∧ ϕ2, [x, y],D
(AND)

ϕ1, [x, y],D
ϕ2, [x, y],D

〈X〉ϕ, [x, y],D
(EXIST)

ϕ, µe,X1,I ([x, y],D), µe,X1,D([x, y],D) | . . . | ϕ, µe,X
µe,X ([x,y],D),I([x, y],D), µe,X

µe,X ([x,y],D),D([x, y],D)

[X]ϕ, [x, y],D
(UNIV)

ϕ, µu,X1 ([x, y],D),D

ϕ, µu,X2 ([x, y],D),D
· · ·

ϕ, µu,X
µu,X ([x,y],D)([x, y],D),D

Table 1. Expansion rules.

tableau node with the following decoration: its formula node pointer points to
the root of the formula tree that represents ϕ, its interval is [0, 1], its active flag
and its leaf flag are both to 1, its domain is {0 < 1}, and all other pointers
are null. Given a leaf of the current tableau (that is, the branch represented by
it), the following two operations are performed: (i) branch closing checking and
branch model checking, and (ii) choosing the next to-be-expanded tableau node.
Assuming that the current branch B is not closed and is not a model, the next
to-be-expanded tableau node is chosen according to the following policy: it is
the active node on B that is closest to the root.

Branch checking. Given a branch B, we check, at the same time, whether
it is closed or it is a model, and, during this operation, a structure (H,S, n) is
produced; both H (i.e., the current labeled interval structure) and S (i.e., the set
of all formulas that should appear somewhere due to some universal modality)
are unordered heaps of pairs (node, interval), while n is a node on the branch B.
By means of this structure we are able to check if: (i) it presents a contradiction,
or (ii) it is a model. The branch B is closed if one of the following two conditions
holds: a propositional contradiction is found on it, that is, there exist two nodes
in B such that their decorations show (p, [x, y]) and (¬p, [x, y]), respectively, or
the domain in the decoration of its leaf is greater than L(ϕ). Notice that when B
is contradictory, it may be the case that it presents more than one contradiction.
Let (m1,m

′
1), (m2,m

′
2), . . . be the set of all pairs of contradictory nodes in B in

increasing order of distance (i.e., number of edges) from the root; the structure
(H,S, n) is built in such a way that n points precisely to m′1. In this way, we
can eliminate from the list of leaves all those that identify a branch B′ that
share the contradiction (m1,m

′
1) with B (there may be more than one such

branch). If all leaves are eliminated, the formula is found unsatisfiable. If B is
not contradictory, we check whether all active universal modalities on B have
already been expanded in all possible intervals: if that is the case, and if, in B,
the only active nodes are universal modalities, then we can conclude that B is a
model. If B is not a model but it is not contradictory, then n points to the node
that is closest to the root and active.



Branch expansion. Expansion rules are described in Tab. 1. Boolean rules are
standard, while the rules for modal operators are designed as follows. Let D be
the set of all finite domains, and let I be the set of all intervals in any domain
in D. For a given existential operator 〈X〉, we define a function:

µe,X : I×D→ N

that for a given pair ([x, y],D) returns the number of different intervals in the
relation RX with [x, y] plus the number of new intervals that should be cre-
ated in the relation RX in order to explore all qualitatively distinct possi-
bilities (see [19] for a similar approach for a simpler interval temporal logic);
for example, µe,L([0, 1], {0 < 1 < 2}) is 5: indeed, if 〈L〉ψ holds on [0, 1]
and the current domain is {0 < 1 < 2}, then ψ may hold on some interval
[1.25, 1.75], [1.5, 2], [2, 2.5], [3, 4], or [1.5, 2.5]; notice that, for example, [1.25, 1.75]
is a necessary possibility as it represents a new interval completely between ex-
isting points; the same holds for [3, 4]. In this way, given 〈X〉ψ holding on [x, y]
in the finite domain D, the parametric function(s):

µe,X
i,I : I×D→ I , µe,X

i,D : I×D→ D

return, respectively, the i-th interval on which ψ holds and the corresponding i-
th domain (not necessarily different from D) in no particular order; following up

with the above example, µe,L
1,I ([0, 1], {0 < 1 < 2}) = [1.25, 1.75], µe,L

1,D([0, 1], {0 <
1 < 2}) = {0 < 1 < 1.25 < 1.75 < 2}. Because we are restricting ourselves
to initial satisfiability, these functions never return new points between 0 and
1, nor smaller than 0. In this way for each existential operator 〈X〉ψ we have
an existential disjunctive rule that creates enough branches to search for every
possible location for ψ. Dually, for universal operators, we have functions µu,X

and µu,X
i to return all intervals seen from [x, y] via RX ; in this case, domains do

not change.

Given the node in B to be expanded, the correct rule is chosen for its ex-
pansion, and the result of such a step is applied to all leaves in the sub-tree
rooted at the chosen node. Potentially, each application of the expansion rules
gives rise to new nodes to be attached to such leaves; they are placed all the
same level as new leaves in disjunctive rules (i.e., ∨, 〈X〉), or in sequence (with
no particular order) in conjunctive rules (i.e., ∧, [X]). While the application of
Boolean rules is completely standard, non-Boolean ones are subject to the fol-
lowing conditions:(i) if the 〈X〉 rule is applied to the node n with the decoration
(〈X〉ψ, [x, y]), and B already contains a pair (ψ, [z, t]) where [x, y]RX [z, t], then
n is deactivated without any expansion; (ii) similarly, if the [X] rule is applied
to the node n with the decoration ([X]ψ, [x, y]), then, for each pair (ψ, [z, t])
where [x, y]RX [z, t] is already present in B, this pair is not added to the set of
nodes that is the result of the expansion. The protocol for active/inactive nodes
is designed in such a way that nodes are deactivated after being expanded; in
case of universal nodes, they are copied at the end of the branch with the active
flag at 1.



Soundness, completeness. We want to argue that our tableau-based proce-
dure is sound and complete; calculating its complexity in the worst-case scenario
is not really informative (it is, in fact, doubly exponential in time) considering
that the interest in tableau-based methods roots in their efficiency in the average
case, as well as their several possible optimizations.

In order to argue that the presented method is complete we need to introduce
the following notion. Consider a node n on a tableau for a formula ϕ, and let S(n)
be the set of all decorations on nodes between n and the root; we say that S(n)
is satisfied on an extension of D(n), where D(n) is the domain in the decoration
of n, if there exists a model M based on some extension of D(n) such that, for
each (ψ, [x, y]) ∈ S(n) it is the case that M, [x, y]  ψ. We now show that for
every finitely satisfiable formula of HS3 the presented method terminates and
returns ‘Satisfiable’, that is, contra-positively, whenever the procedure closes
all branches, the starting formula ϕ is not finitely satisfiable, by proving, by
induction, a stronger claim: for any node n at height h on a tableau for ϕ, if every
branch that contains n is closed, then S(n) is not satisfied on any extension D′
of D(n) such that |D′| ≤ L(ϕ); notice that, when n is the root, this is to say that
ϕ is not finitely satisfiable. Now, if h = 0, the only branch that contains n also
contains two nodes with decorations (p, [x, y]) and (¬p, [x, y]), and therefore S(n)
is simply not satisfiable, or the number of points ever named in the decorations
of its nodes is more than L(ϕ), for which S(n) can never be satisfied on any
extension of D(n). If h > 0, then n has been expanded by some rule, some nodes
n1, n2, . . . exist that are descendants of n, and the inductive hypothesis applies
to all of them. If the rule that has been applied is Boolean, than the claim follows
immediately. If it is the universal rule, then suppose that ([X]ψ, [x, y]) is in the
decoration of n. Every branch that contains n also contains all nodes that are
the result of its expansion, and, in particular, some node n′ with decoration
(ψ, [z, t]) for some interval [z, t] such that [x, y]RX [z, t]; if S(n) were satisfiable
on some extension of D(n), then, in particular, S(n)∪{(ψ, [z, t])} = S(n′) would
be too, but this is in contradiction with the inductive hypothesis. Finally, if it
is the existential rule, then suppose that (〈X〉ψ, [x, y]) is in the decoration of n.
If S(n) were satisfiable on some extension of D(n), then there would be a model
whose domain extends D(n) such that it satisfies 〈X〉ψ on [x, y] and ψ on some
[z, t] such that [x, y]RX [z, t]. By construction, there must be some successor n′

of n that contains the decoration (ψ, [z, t]), independently of z, t being already
in D(n). This means that S(n′) would be satisfiable on some extension of D(n′),
which is in contradiction with the inductive hypothesis.

To conclude, we must argue that our method is also sound, that is, for every
formula ϕ of HS3 for which it returns ‘Satisfiable’, there exists a model M such
that M, [0, 1]  ϕ. Consider a branch B such that it is not contradictory, all its
active nodes are universal, and every node with universal decoration has been
already expanded on every possible interval of the domain D of the branch. Now,
let M be a model based on D, and whose valuation function is defined as follows:
for each interval [x, y] and each propositional letter p, [x, y] ∈ V (p) if and only if
(p, [x, y]) decorates some node on B. We want to prove, by structural induction,



that, for each node n in B with decoration (ψ, [x, y]), M, [x, y]  ψ. If ψ is a
propositional letter or its negation, we have the result immediately. If ψ is a
composite formula, two cases arise: either it is a universal formula, or it is not.
In the latter case, the fact that B is not closed implies that n has been expanded,
and such expansion has been applied to all branches that contain n: if ψ is a
conjunction, then both conjuncts have been included as decorations in nodes of
B, if it is a disjunction then at least one disjunct has been included as decoration
in some node of B, and, if it is ψ = 〈X〉ξ, then at least one node in B must be
decorated with (ξ, [z, t]), for some [z, t] such that [x, y]RX [z, t]; in all cases, the
inductive hypothesis applies, so that M must satisfy ψ on [x, y]. In the former
case, if ψ = [X]ξ, since B cannot be further extended, it must be the case that
a node n′ with decoration (ξ, [z, t]) occurs in B for each [z, t] such that z, t ∈ D
and that [x, y]RX [z, t], and again, the inductive hypothesis applies.

Theorem 1. A formula ϕ of HS3 is finitely satisfiable if and only if the tableau-
based method described in Fig. 2, with the rules in Tab. 1, returns ‘Satisfiable’.

Policies. Our procedure is programmed fully object-oriented in C++ standard
language with threads capabilities. Threads are run in (virtual) parallel, and
carry a specific policy for choosing the next leaf to be examined. Each policy is
fair, that is every branch is eventually examined; the advantage of using different
policies is the improved execution time, especially for satisfiable formulae. We
have taken into account two key aspects: domain cardinality and branch sparse-
ness. The sparseness degree allows us to estimate how many intervals already
existing in the domain are actually used; to compute such an estimation, we
calculate the average of positive propositional letters assigned to some interval,
and defined the sparseness of the branch as the variance of the (ideal) binomial
probabilistic variable associated to assigning positive propositions to intervals.
We implemented the following policies: (i) branches with smaller domain and
less sparse first (SBF); (ii) branches with longer domain and more sparse first
(LBF); (iii) branches taken in First-In-First-Out order (FIFO) - that is, the
tableau tree is explored depth-first. In our experiments (see next section) we
used all such policies; establishing which one of them, if any, is clearly better
than the others is an open problem.

4 Experimental results

Because tableau-based (and, in general, decision and semi-decision) procedures
for interval temporal logics are not common in the literature, there are no avail-
able benchmarks. We have designed a scalable experiment to generate a sequence
of (arbitrary) finitely satisfiable formulae, shown in Tab. 2, which are system-
atically generated for k = 1, 3, 5, . . ., so that their length can be put in relation
with the time that our method takes to establish its satisfiability; formulae are
generated inductively, and to generate ϕk, we use ϕk−2[+2], that is, ϕk−2 where
each propositional letter pi has been replaced by pi+2. We have followed the gen-
eral guidelines for generating a systematic benchmark for modal logics [6] taking



Finitely satisfiable formulas

k formula

ϕ1 p0 ∧ [I]¬p2 ∧ [L]¬p2 ∧ 〈L〉p1 ∧ [L](p1 → ([I]¬p3 ∧ [L]¬p3 ∧ 〈L〉p2))

ϕ3 p0 ∧ [I]¬p2 ∧ [L]¬p2 ∧ 〈L〉p1 ∧ [L](p1 → ([I]¬p3 ∧ [L]¬p3 ∧ 〈L〉ϕ1[+2]))

ϕ5 p0 ∧ [I]¬p2 ∧ [L]¬p2 ∧ 〈L〉p1 ∧ [L](p1 → ([I]¬p3 ∧ [L]¬p3 ∧ 〈L〉ϕ3[+2]))
. . . . . .

Table 2. A benchmark for (finitely) satisfiable formulae of HS3.
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Fig. 4. Elapsed time for satisfiable formulae (by length and by modal depth).

into account, in particular: (i) length of the formulas, in terms of the number of
symbols, and (ii) modal depth of the formulas. The results of this experiment
(carried out on an Intel(R) Core(TM) i7-6700HQ, with a clock of 2.60Ghz, four
cores, and 16GB RAM), are shown in Fig. 4; as it can be observed, satisfiable
formulae have been successfully checked up to 3167 symbols (and modal depth
of 63) in less than 17 minutes.

In order to generate a similar benchmark for unsatisfiable formulae, we used
a rather straightforward method: we considered an arbitrary set of propositional
and modal tautologies (of HS3), and we systematically applied universal substi-
tution to generate longer and longer tautologies; we then tested their negation
for satisfiability. It turns out that the elapsed time for testing a satisfiable for-
mula grows proportionally to the length and the modal depth of formulae, while
for unsatisfiable ones they differ; therefore there is a single plot in the first case,
and two different plots in the second one. The apparent erratic behaviour for
unsatisfiable formulas is probably due to the absence of specific optimization
policies for this case: therefore, the time needed to establish that a formula is
not satisfiable depends too much on the depth at which a contradiction is found.

5 Conclusions

In this paper we have described an efficient implementation of a tableau-based
reasoner for the interval temporal logic HS3, whose finite satisfiability problem
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had been shown to be PSpace-complete in [26]. The experiments showed that
we are able to check the satisfiability of relatively long formulas with a rela-
tively high modal depth. There are several considerations that can be drawn
from our experiments. Tableau-based satisfiability checkers are notoriously not
very efficient with formulas with a very relevant propositional component. In the
case of unsatisfiable formulas, branch pruning is the main strategy to improve
the performance of the reasoner. Our implementation allows for experimenting
with rules for branch pruning thanks to the efficient representation of the branch
information; since the underlying problem is PSpace, we expect our implemen-
tation to be very susceptible to optimizations. On the other hand, for satisfiable
formulas, the main problem relies in branch selection: being able to choose the
most promising branch is one of the most important optimizations tools for a
tableau-based procedure. As far as branch selection is concerned, our policies
can be seen as a first step in this direction, but, as future work, we plan to ex-
periment in innovative and much more aggressive strategies for branch selection.
In particular, we are looking into describing this problem as a machine learn-
ing problem, and designing an intelligent system that is able to quickly select



the most promising branch based on previous experience on the same problem,
improving in this way the performance on satisfiable formulas.
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26. E. Muñoz-Velasco, M. Pelegŕın-Garćıa, P. Sala, and G. Sciavicco. On coarser inter-
val temporal logics and their satisfiability problem. In Proc. of the 16th Conference
of the Spanish Association for Artificial Intelligence (CAEPIA 2015), volume 9422
of LNAI, pages 1–11, 2015.

27. I. Pratt-Hartmann. Temporal prepositions and their logic. Artificial Intelligence,
166(1–2):1–36, 2005.

28. A. Schmiedel. Temporal terminological logic. In Proc. of the 8th National Confer-
ence on Artificial Intelligence (AAAI), pages 640–645. AAAI Press, 1990.

29. S. Schwendimann. A new one-pass tableau calculus for PLTL. In Proc. of the
4th International Conference on Automated Reasoning with Analytic Tableaux and
Related Methods, pages 277–291. Springer, 1998.

30. D. Tishkovsky, R.A. Schmidt, and M. Khodadadi. The tableau prover genera-
tor MetTeL2. In Proc. of the 13th European Conference on Logics in Artificial
Intelligence (JELIA), pages 492–495, 2012.

31. M.Y. Vardi and P. Wolper. Automata theoretic techniques for modal logics of
programs (extended abstract). In Proc. of the 16th Annual ACM Symposium on
Theory of Computing (STOC 1984), pages 446–456, 1984.

32. F. Zemke. What’s new in SQL:2011. SIGMOD Record, 41(1):67–73, 2012.


