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Abstract. We study the problem of identifying an initially unknown
m-bit number by using yes-no questions when up to a fixed number e of
the answers can be erroneous. In the variant we consider here questions
are restricted to be the union of up to a fixed number of intervals.
For any e ≥ 1 let ke be the minimum k such that for all sufficiently
large m, there exists a strategy matching the information theoretic lower
bound and only using k-interval questions. It is known that ke = O(e2).
However, it has been conjectured that the ke = Θ(e). This linearity
conjecture is supported by the known results for small values of e. For
e ≤ 2 we have ke = e. We extend these results to the case e = 3. We
show k3 ≤ 4 improving upon the previously known bound k3 ≤ 10.

1 Introduction

In the Ulam-Rényi game with multi-interval questions, two players, called
Questioner and Responder—for reasons which will become immediately clear—
fix three integer parameters: m ≥ 0, e ≥ 0 and k ≥ 1. Then, Responder chooses a
number x from the set U = {0, 1, . . . , 2m−1}, and keeps it secreto to Questioner.
The task of Questioner is to identify the secret number x chosen by Responder
asking k-interval queries. These are yes-no membership questions of the type
“Does x belong to Q?” where Q is any subset of the search space which can be
expressed as the union of ≤ k intervals. We identify a question with the subset
Q. Therefore, the set of allowed questions is given by the family of sets:

T =

{
k⋃
i=1

{ai, ai + 1, . . . , bi} | 0 ≤ a1 ≤ b1 ≤ a2 ≤ b2 ≤ · · · ≤ ak ≤ bk < 2m

}
.

Responder tries to make Questioner’s search as long as possible. To this aim,
Responder can adversarially lie up to e times during game i.e., by answering yes
to a question whose correct answer is no or vice versa.

For any m and e let Nmin(2m, e) = min{q | 2q−m ≥
∑e
i=0

(
q
i

)
}. It is known

that in a game over a search space of cardinality n = 2m and e lies allowed
to Responder, Nmin(2m, e) is a lower bound on the number of questions that
Questioner has to ask in order to be sure to identify Responder’s secret number
(see, e.g., [3]). This lower bound holds in the version of the game in which



Questioner’s questions can refer to any subset, without the restriction to k-
interval queries. A fortiori, the lower bound holds for the multi-interval game
for any value of k. Strategies of size Nmin(2m, e), i.e., matching the information
theoretic lower bound, are called perfect.

It is known that for any e ≥ 0 and up to finitely many exceptional values of m,
Questioner can infallibly discover Responder’s secret number asking Nmin(2m, e)
questions. However, in general such perfect strategies rely on the availability of
arbitrary subset questions, i.e., any subset of the search space [20].

When the cardinality of the search space is 2m the description of an arbi-
trary subset query requires 2m bits. Moreover, in order to implement the known
strategies using Nmin(2m, e) queries, Θ(e2m) bits are necessary to record the in-
termediate states of the game (see the next section for the details). In contrast,
a k-interval-query can be expressed by simply providing the boundaries of the
k-intervals defining the question, hence reducing the space requirements of the
strategy to only 2k ·m bits.

On the basis of these considerations, we will focus on the following problem:

Main question. For given e ≥ 0, denote by ke the smallest integer k such that
for all sufficiently large m Questioner has a perfect strategy in the multi-interval
game over the set of m-bit numbers only using k-interval queries. What is the
value of ke for e = 1, 2, . . . ?

In [14] it was proved that for e = 2 for any m ≥ 0 (up to finitely many
exceptions) there exists a searching strategy for Questioner of size Nmin(m, e)
(hence perfect) only using 2-interval questions, and, conversely, perfect strategies
which only use 1-interval questions cannot generally exist. The case e = 1 is
analysed in [6] where it is shown that perfect strategies exists for e = 1 even
when only using 1-interval questions. However, comparison questions—of the
type “Is x ≤ q?”—are not powerful enough to provide perfect strategies for the
case e = 1 [19, 2].

These results show that for e ≤ 2, the answer to our main question is ke = e.
In [6] one of the authors proved that for any e ≥ 1 there exists k = O(e2)

such that for all sufficiently large m Questioner can identify an m-bit number
by using exactly N(2m, e) k-interval questions when Responder can lie at most
e times. In [6] also conjectured that ke = O(e) interval might suffice for any e
and all sufficiently large m. We will refer to this as the linearity conjecture.
Our result. We focus on the case e = 3. We show that for any sufficiently large
m, there exists a strategy to identify an initially unknown m-bit number when
up to 3 answers are lies, which matches the information theoretic lower bound
and only uses 4-interval queries. With respect to the main question above, we are
showing here that k3 ≤ 4. This way we significantly improve the best previously
known bound of [6] yielding k3 ≤ 10. We note that the main tool we employ
in the analysis (Lemma 2) naturally lends itself to a generalization to any fixed
e. Ongoing research is about a stronger form of Theorem 1 that together with
such a generalized version of Lemma 2 might lead to the proof of the linearity
conjecture mentioned above, i.e., ke = O(e). Because of space constraints some
proofs are omitted. The complete version can be found at arXiv:1708.08738 [math.CO]



Related work. The Ulam-Rényi game [21, 18] has been extensively studied
in various contexts including error correction codes [1, 3, 10, 7], learning [4, 9,
16], many-valued logics [8, 10], wireless networks [13], psychophysics [12], and,
principally, sorting and searching in the presence of errors (for the large literature
on this topic, and the several variants studied, we refer the reader to the survey
papers [8, 17] and the book [5]).

2 Basic facts

From now on we concentrate on the case e = 3 and the 4-interval questions.
Let Q be the subset defining the question asked by Questioner. Let Q be the
complement of Q, i.e., Q = {0, 1, . . . , 2m − 1} \Q.

If Responder answers yes to question Q, then we say that any number y ∈ Q
satisfies the answer and any y ∈ Q falsifies the answer. If Responder answers no
to question Q, then we say that any number y ∈ Q satisfies the answer and any
y ∈ Q falsifies the answer.

For each y ∈ U , we define σ(y) as the number of answers falsified by y,
truncated at 4. For each i = 0, 1, . . . , 3, we will also write σ−1(i) to denote the
set of numbers falsifying exactly i of Responder’s answers. And define σ−1(4) =
σ−1(> 3) to denote the set of numbers that as a result of the answers received
cannot be Responder’s secret number.
States and supports. A state is a map σ : U → {0, 1, 2, 3, 4}. The type of σ is
the quadruple τ(σ) = (t0, t1, t2, t3) where ti = |σ−1(i)| for each i = 0, 1, 2, 3. The
support Σ of σ is the set of all y ∈ U such that σ(y) < 4. A state is final iff its
support has cardinality at most one. The initial state α is the function mapping
each element of U to 0. We formalise the dynamics of states as follows:
Answers and resulting states. Let σ be the current state with support Σ
and Q be the new question asked by Questioner. Let b ∈ {yes, no} be the answer
of Responder. Define the answer function b : Σ → {0, 1} associated to question
Q by stipulating that b(y) = 0 if and only if y satisfies answer b to question Q.
Then, the resulting state σb is given by σb(y) = max{σ(y) + b(y), 4}.

More generally, starting from state σ after questions Q1, . . . , Qt with answers

b1, . . . , bt the resulting state is σb1 b2 ··· bt = max{σ(y) +
t∑

j=1

bj(y), 4}.

In particular, for σ being the initial state we have that the resulting state
after t questions is the truncated sum of the corresponding answer functions
associated to Responder’s answers.
Strategies. A strategy of size q is a complete binary tree of depth q where each
internal node ν maps to a question Qν . The left and right branch stemming out
of ν map to the function answers yes and no associated to question Qν . Each
leaf ` is associated to the state σ` resulting from the sequence of questions and
answers associated to the nodes and branches on unique path from the roof to
`. In particular, if b1, . . . , bq are the answers/branches leading to ` then we have
σ` = αb1 ··· bq as defined above.

The strategy is winning iff for all leaves ` we have that σ` is a final state.



We can also extend the above definition to an arbitrary starting state. Given
a state σ, we say that a strategy S of size q is winning for σ if for any root to
leaf path in S with associated answers b1, . . . , bq the state σb1 ··· bq is final .

We define the character of a state σ as ch(σ) = min{q | wq(σ) ≤ 2q}, where

wq(σ) =
∑3
j=0 |σ−1(j)|

∑3−j
`=0

(
q
`

)
is referred to as the qth volume of σ.

We have that the lower bound Nmin(2m, e), mentioned in the introduction,
coincides with the character of the initial state α, such that α−1(0) = U and
α−1(i) = ∅ for i = 1, 2, 3, 4 (see Proposition 1 below). Notice also that a state
has character 0 if and only if it is a final state.

For a state σ and a question Q let σyes and σno be the resulting states
according to whether Responder answers, respectively, yes or no, to question Q
in state σ. Then, from the definition of the qth volume of a state, it follows that
for each q ≥ 1, we have wq(σ) = wq−1(σyes) + wq−1(σno). A simple induction
argument gives the following lower bound [3].

Proposition 1. Let σ be the state of the game. For any integers 0 ≤ q < ch(σ)
and k ≥ 1, starting from state σ, Questioner cannot determine Responder’s secret
number asking only q many k-interval-queries.

In order to finish the search within Nmin(2m, e) queries, Questioner has to
guarantee that each question asked induces a strict decrease of the character of
the state of the game. The following lemma provides a sufficient condition for
obtaining such a strict decrease of the character.

Lemma 1. Let σ be the current state, with q = ch(σ). Let D be Questioner’s
question and σyes and σno be the resulting states according to whether Responder
answers, respectively, yes or no, to question D.

If |wq−1(σyes)− wq−1(σno)| ≤ 1 then ch(σyes) ≤ q − 1 and ch(σno) ≤ q − 1.

A question which satisfies the hypothesis of Lemma 1 will be called balanced. A
special case of balanced question is obtained when for a state σ the question D
satisfies |D ∩ σ−1(i)| = |σ−1(i)|/2 for each i = 0, . . . , e. In this case, we also call
the question an even splitting.
Intervals and 4-interval-question. An interval in U is either the empty set
∅ or a set of consecutive elements [a, b] = {x ∈ U|a ≤ x ≤ b}. The elements a, b
are called the boundaries of the interval.

A 4-interval question (or simply a question) is any subset Q of U such that
Q = I1 ∪ I2 ∪ I3 ∪ I4 where for j = 1, 2, 3, 4, Ij is an interval in U .

The type of Q, denoted by |Q|, is the quadruple |Q| = [aQ0 , a
Q
1 , a

Q
2 , a

Q
3 ] where

for each i = 0, 1, 2, 3 , aQi = |Q ∩ σ−1(i)|.
Following [14] we visualize the search space as a necklace and restrict it to

the set of number which are candidate to be the secret number, i.e., we identify
U with its support Σ = U ∩

⋃3
i=0 σ

−1(i).

For any non-final state, i.e., |
⋃3
i=0 σ

−1(i)| > 1, for each x ∈
⋃3
i=0 σ

−1(i)
we define the successor of x to be the number x + r mod 2m for the smallest
0 < r < 2m such that x+ r mod 2m ∈

⋃3
i=0 σ

−1(i). In particular, for the initial
state 0 is the successor of 2m − 1.



For a, b ∈
⋃3
i=0 σ

−1(i) we say that there is an arc from a to b and denote it
by 〈a, b〉 if the following two conditions hold: (i) σ(x) = σ(a) for each element
x encountered when moving from a to b in U passing from one element to its
successor; (ii) σ(c) 6= σ(a) and σ(d) 6= σ(b) where a is the successor of c and d
is the successor of b. We say that arc 〈a, b〉 is on level σ(a) and call a and b the
left and right boundary of the arc.

In words, an arc is a maximal sequence of consecutive elements lying on the
same level of the state σ.

For the sake of definiteness, we allow an arc to be empty. Therefore, we can
associate to a state σ a smallest sequence Lσ of (possibly empty) arcs a0, . . . , ar−1
such that for each i the levels of arcs ai and ai+1 differ exactly by 1. Note that, by
requiring that the length r be minimum the sequence Lσ is uniquely determined
up to circular permutation.

For each i = 0, 1, . . . , r, we say that arcs ai and a(i+1) mod r are adjacent (or
neighbours). We say that ai is a saddle if both adjacent arcs are on a lower level,
i.e., a(i−1) mod r, a(i+1) mod r ∈ σ−1(k − 1) and ai ∈ σ−1(k) for some k

We say that ai is a mode if both adjacent arcs are on a higher level, i.e.,
a(i−1) mod r, a(i+1) mod r ∈ σ−1(k + 1) and ai ∈ σ−1(k) for some k

We say that ai is a step if for some k ai ∈ σ−1(k) and either a(i−1) mod r ∈
σ−1(k − 1), a(i+1) mod r ∈ σ−1(k + 1) or a(i−1) mod r ∈ σ−1(k + 1), a(i+1) mod r ∈
σ−1(k − 1).

Based on the above notions, we now define a well-shaped state for e lies.

Definition 1. Let σ be a state and Lσ be its associated list of arcs. Then, σ is
well shaped iff the following conditions hold:

– for i = 0, . . . , e− 1, in Lσ there are exactly (2i+ 1) arcs lying on level i.
– in Lσ there are exactly e arcs lying on level e.

It is not hard to see that for the case e = 3 under investigation, the only
two feasible well-shaped states are described as follow: σ−1(0) is an arc S in
Σ; σ−1(1) is the disjoint union of three arcs H,N and O in Σ with N and O
adjacent to S; σ−1(2) is the disjoint union of five arcs A,B,C, L and M in Σ
with B and C adjacent to H, L adjacent to N ; σ−1(3) is the disjoint union of
three arcs P,Q,R in Σ with R and P adjacent to A.

Starting with S and scanning U with positive orientation, we can list the
twelve arcs (restricted to Σ) in one of the following two possibilities:

σ1 = L2N1S0O1M2Q3B2H1C2R3A2P 3 (1)

σ2 = L2N1S0O1B2H1C2Q3M2R3A2P 3 (2)

where for an arc X the notation Xi denotes that X ⊆ σ−1(i).
Typical well-shaped states of type (1) and (2) are shown in Figures 1 and 2

respectively.
Let σ be a state and 〈a, b〉 be a non-empty arc of σ.
We say that a question Q splits the arc 〈a, b〉 if there exists an interval I in

Q that intersects 〈a, b〉 and contains exactly one of its boundaries a, b. In words,



there is an interval in the question such that some non-empty part of the arc
satisfies a yes answer and some non-empty part of the arc satisfies a no answer.

If a question Q splits exactly one arc on level i of σ according to whether such
an arc is a mode, a saddle, or a step, we say that at level i the question Q (or,
equivalently, an interval of Q) is mode-splitting, saddle-splitting, step-splitting,
respectively.

Let Q be a step-splitting question at level i. Let 〈a, b〉 be the arc at level i
which is split by an interval I of Q. Then, by definition I contains exactly one
of the boundaries of the arc. If I contains the boundary of the arc that flanks an
arc at level i+ 1 we say that Q (or, equivalently, an interval of Q) is downward
step-splitting; if I contains the boundary of the arc that flanks an arc at level
i− 1 we say that Q (or, equivalently, an interval of Q) is upward step-splitting.

We say that a question Q covers entirely the arc 〈a, b〉 if [a, b] is contained in
one of the intervals defining Q.

If a question Q covers entirely an arc on level i of σ according to whether such
an arc is a mode, a saddle, a step, we say that at level i the the question Q (or,
equivalently, an interval of Q) is mode-covering, saddle-covering, step covering,
respectively.

Refer to Figure 3 for a pictorial representation of the interval types and
questions effect on states.

We will be interested in having questions that guarantee that both the two
possible states resulting from the answer yes and no are well-shaped. We will
define conditions on the intersection between the intervals defining the question
and the arcs of a (well-shaped) state σ such that the both σyes and σno are well
shaped. It turns out that this condition can be defined locally, level by level and
arc by arc.

Lemma 2. Given a well-shaped state σ and a question Q, if the following con-
ditions are satisfied then both σyes and σno are well-shaped. For each i = 0, 1, 2

(a) At most one arc is splitted on level i
(b) Exactly one of the following holds

(i) at level i the question Q is mode-splitting;
(ii) at level i the question Q is upward step-splitting and mode-covering.

(iii) at level i the question Q is downward step-splitting and a mode is com-
pletely uncovered—equivalently the complementary question Q is mode-
covering at level i.

(iv) at level i the question Q is saddle-splitting and mode-covering and there
is also a mode completely uncovered—equivalently the complementary
question Q is mode-covering at level i.

(c) If besides the condition in (b) the question Q is also saddle-covering then Q
also covers a mode different from the one possibly used to satisfy (b).

3 A key result on the existence of 4-interval questions

The strategy we propose is based on the approach of Spencer [20]. We are going
to recall the strategy presented in [20] and prove how to implement questions



in that strategy by means of 4-interval questions. The main technical tool will
be to show that we can define 4-interval balanced questions and also guarantee
that each intermediate state is well-shaped.

In this section, we will characterise questions in terms of the ratio between
the components of the question and the components of the state they are applied.
We will show conditions for the existence of questions that can be implemented
using only 4-intervals and such that the resulting states are well-shaped whenever
the state they are applied to is well shaped.

For each of them, we show how to select the exact amount of elements in the
query among the arcs representing the state. Then, we prove that no other cases
are allowed and finally we show that the well shapeness property of the state is
preserved in both states resulting from the answer to the query.

Theorem 1. Let σ be a well-shaped state of type τ(σ) = (a0, b0, c0, d0). Let
a, b, c, d be integers such that:

0 ≤ a ≤ a0 0 ≤ b ≤ d1
2
b0e 0 ≤ c ≤ d1

2
c0e 0 ≤ d ≤ d2

3
d0e

Then there exists a 4-interval question Q of type |Q| = [a, b, c, d] that we
can ask in state σ and such that both the resulting ”yes” and ”no” states are
well-shaped.

Proof. We first show how to select the intervals of the question Q in order to
satisfy the desired type. We proceed level by level. For each i = 0, 1, 2, 3, we show
how to select up to 4 intervals that cover the required number of elements in
the first i levels. For each level i = 0, 1, 2, 3 we record in a set E(i) the extremes
of the intervals selected so far that have a neighbour on the next level. We refer
to the elements in E(i) as the boundaries at level i. When processing the next
level, we try to select arc neighbouring the elements in E(i) since this means we
can cover elements at the new level without using additional intervals. Arguing
with respect to such boundaries, we show that the (sub)intervals selected at all
level can be merged into at most 4 intervals. Hence the resulting question Q is a
4-interval question. Finally, we will show that asking Q in σ both the resulting
states are well-shaped states.

Recall the arc notation used in (1)-(2). In our construction, a special role
will be played by the arcs S,H,A, which are the greatest mode respectively of
level 0, 1 and 2, and the larger between their two neighbouring arcs at the level
immediately below. Therefore, let us denote by A(1) the larger arc between N
and O; we denote by A(2) be the larger arc between B and C; and finally, we
denote by A(3) the larger arc between R and P .

Moreover, we denote by s+ the boundary between S and A(1) and with s−

the other boundary of S.
Analogously, we denote by h+ the boundary between H and A(2) and with

h− the other boundary of H.
We denote by a+ the boundary between A and A(3) and with a− the other

boundary of A.



Level 0 For any 0 < a ≤ a0 there exists s∗ ∈ S such that denoting by S∗ the sub-arc
of S between s∗ and s+ we have that |S∗| = a and the boundary of S∗

includes s+. Then we have E(0) ⊇ {s+}.
Therefore, with one interval I(0) = S∗ we can accommodate the a elements
on level 0 and guarantee that this interval has an extreme at s+.
Moreover, the interval I(0) on arc S is a mode-splitting interval.

Level 1 By the assumption b ≤ d 12b0e, and the definition of A(1) it follows that

b ≤ |A(1)|+ |H|. We now argue by cases
(a) b ≤ |H|. Then there exists h∗ in H such that the sub-arc H∗ ⊆ H

between h∗ and h+ satisfies |H∗| = b and we can cover it with one
interval I(1) with a boundary at h+.

(b) |H| < b ≤ |H| + |A(1)|. Then, there exists x∗1 ∈ A(1) such that letting
X(1) be the sub-arc of A(1) between x∗1 and s+, we have |X(1)|+ |H| = b
and we can cover these b elements extending the previously defined I(0)

so that it covers X(1) too and having I(1) = H. In this case we have that
the boundaries of I(1) are both h+ and h−.

Summarising, we can cover the a elements on level 0 and the b elements on
level 1 with at most two intervals and guarantee that the boundaries of these
intervals include h+.
Moreover either the interval I(1) on arc H is a mode-splitting interval or the
interval I(1) covers entirely the mode H and the interval I(0) on arc A(1) is
a step-splitting interval.
Therefore the choice of the intervals so far satisfies conditions in Lemma 2.

Level 2 Again we argue by cases
(a) c ≤ |A|. Then, there exists a∗ in A such that letting A∗ be the sub-arc

of A between a∗ and a+ we have |A∗| = c and we can cover it with one
interval I(2) = A∗ with one boundary in a+.

(b) |A| < c ≤ |A|+ |A(2)| Then, there exists x∗ ∈ A(2) such that letting X(2)

be the sub-arc of A(2) between x∗ and h+, we have |X(2)|+ |A| = c and
we can cover these c elements extending the previously defined I(1) so
that it covers X(2) too and having I(2) = A. In this case we have that
the boundaries of I(2) are both a+ and a−.

(c) c > |A|+ |A(2)|. Let E denote the largest arc on level 2 not in {A(2), A}.
Then, by the definition of A(2) we have that |A|+ |A(2)|+ |E| ≥ |Y |+ |Z|
where Y and Z denote the arcs on level 2 not in {A,A(2), E}. This is
true because, at least one of the arcs Y,Z is not larger than A(2) and the
other one is not larger than E.
Then, by the assumption c ≤ d c02 e it follows that |A|+ |A(2)|+ |E| ≥ c.
Let z be the boundary of A(2) on the opposite side with respect to H.
Let e+ be the boundary between E and a neighbouring arc at level 3 or
at level 1 according to whether z is flanking an arc at level 1 or an arc
at level 3—with reference to Figures 1, 2, is an easy direct inspection
shows that such a choice is always possible.
Therefore, there exists e∗ ∈ E such that letting E∗ be the sub-arc of E
between e∗ and e+ we have |A|+ |A(2)|+ |E∗| = c and we can cover the
corresponding set of elements by: (i) extending I(1) from h+ and have it



include the whole A(2); (ii) defining I(2) = A; defining a fourth interval
I(3) = E∗. Therefore, we have that the boundaries of I(2) are both a+

and a− and, in the case of a σ of type in Fig. 2, the boundary of I(3)

includes e+, and the boundary of I(1) is the boundary z of the arc A(2)

where this joins its adjacent arc at level 3.
Summarising, we can cover the a elements on level 0 and the b elements
on level 1 and the c elements of level 2 with at most four intervals. More
precisely, if, proceeding as above we only use three intervals, I(0), I(1), I(2),
(and set I(3) = ∅), we also guarantee that the boundaries of these intervals
include a+. On the other hand, if we use four intervals, (in particular, I(3) 6=
∅) we have that the boundaries of these intervals include a+, a− and exactly
one between e+, z. Therefore {a+, a−} ⊂ E(2) ⊂ {a+, a−, z, e+}. Notice that,
since there are only three arcs at level 3; in the case where I(3) 6= ∅ either
there is an arc on level 3 with both ends neighbouring the boundaries in
E(2), or each arc on level 3 has one end neighbouring a boundary in E(2).
Moreover exactly one of the following cases holds (i) the interval I(2) on
arc A is a mode-splitting interval; (ii) the interval I(2) covers entirely the
mode H and the interval I(1) on arc A(2) is a step-splitting interval; (iii)
the interval I(2) covers the mode H, no interval intersects mode M and the
interval I(1) on arc A(2) is saddle-splitting; (iv) the interval I(2) covers the
mode H and the interval I(1) covers the arc A(2) and the interval I(3) on arc
E is downward step-splitting; (v) the interval I(2) covers the mode H, the
interval I(1) covers the arc A(2), hence it is saddle-covering, and the interval
I(3) on arc E is upward step-splitting. .
In all the above five cases, the (partial) question built so far, with the inter-
vals defined for levels 0, 1, 2, satisfy the conditions of Lemma 2.

Level 3 Let us denote by W,U the two arcs at level 3 which are different from
A(3), with |W | ≥ |U |. Then, by definition we also have |A(3)| ≥ |U |, hence
|A(3)|+ |W | ≥ 2

3d0 ≥ d. We now argue by cases:

(a) d < |A(3)|. Then, there exists x∗3 in A(3) such that the sub-arc X(3)

between a+ and x∗3 has cardinality |X(3)| = d and can be covered by
extending I(2) (which have a boundary at a+).

(b) |A(3)| < d ≤ |A(3)|+ |W |.
We have two sub-cases:
– I(3) = ∅. I.e., for accommodating the question’s type on Levels 0,1,2,

we have only used three intervals. By assumption, there exists a sub-
arc W ∗ of W such that |W ∗|+ |A(3)| = d. Then, defining I(3) = W ∗,
and extending I(2) (as in the previous case) so that it includes the
whole of A(3) guarantees that the four intervals I(0), . . . I(3) define a
question of the desired type.

– I(3) 6= ∅. Then, by the observations above, as a result of the con-
struction on level 2, either there is an arc on level 3 with both ends
at a boundary in E(2) or each arc on level 3 has a boundary in E(2).
In the latter case, we can clearly extend the intervals I(2) and I(3) in
order to cover d elements on level 3. In the former case, let Z denote
the arc with both ends at boundaries in E(2). If |Z| ≥ d, we can



simply extend I(2) and I(3) towards the internal part of Z until they
include d elements of Z. If |Z| < d then we can extend I(2) so that
it includes Z and I(3).

Since the way intervals are extended on level 3 do not affect the arc covering
and splitting on the previous level, we have that in all cases the resulting 4-
interval question satisfies the conditions of Lemma 2, which guarantees that
both resulting states are well-shaped. The proof is complete. �

Refer to Figures 1 and 2 for a pictorial representation of the 4-intervals question
construction in the proof of Theorem 1.

4 The structure of perfect 4-interval strategies for 3 lies

We now show how to employ the result of the previous section to obtain a perfect
strategy for the Ulam-Rényi game with 3 lies, only using 4-interval questions. We
show that, for e = 3, by only relying on 4-interval questions, we can implement
the strategy of [20], that can be summarised as follows:

1. As long as the state satisfies
∑2
i=0 |σ−1(i)| > 1 ask a question Q of type

[aQ0 , a
Q
1 , a

Q
2 , a

Q
3 ] where, for i = 0, 1, 2, aQi ∈

{
b |σ

−1(i)|
2 c, d |σ

−1(i)|
2 e

}
with the

choice of whether to choose floor or ceiling alternating among those levels
where |σ−1(i)| is odd. The value of aQ3 is computed based on the choices of

aQ0 , a
Q
1 , a

Q
2 , in order to guarantee that the resulting question is balanced, i.e.,

aQ3 = b 12
∑2
j=0(|σ−1(j)| − 2aQj )

(
q
j

)
c, where q + 1 is the character of σ;

2. when the state satisfies
∑2
i=0 |σ−1(i)| ≤ 1, ask a balanced question Q of type

[0, 0, 0, aQ3 ].

The condition in 2. can be easily guaranteed. In fact, the following proposi-
tion shows that questions in point 2. are implementable by 4-interval questions,
preserving the well-shape of the state.

Proposition 2. Let σ be a well-shaped state with σ−1(3) > 0 and
∑2
i=0 |σ−1(i)| ≤

1. Let ch(σ) = q. Then, starting in state σ the Questioner can discover the Re-
spounder’s secret number asking exactly q many 1-interval-queries.

The main point in the argument of [20] is that, up to finitely many exceptions,

for all m = log |U|, the value aQ3 defined in 1. is feasible, in the sense that using

the above rules yields 0 ≤ aQ3 ≤ |σ(−1)(3)|.
We can now employ Theorem 1 to show that the above strategy can be im-

plemented by a 4-intervals-question. Let Q be the question defined in 1. Let Q be

the complementary question, and [aQ0 , a
Q
1 , a

Q
2 , a

Q
3 ] denote its type. For i = 0, 1, 2,

we have aQi , a
Q
i ≤ d

|σ−1(i)|
2 e. Moreover, we have min{aQ3 , a

Q
3 } ≤ d 23 |σ

−1(3)|e.
Therefore, asking Q or Q according to whether aQ3 ≤ aQ3 guarantees that the
question satisfies the hypothesis of Theorem 1 and then it can be implemented
as 4-interval question which also preserves the well-shape of the state.

We can summarise our discussion in the following theorem.



Theorem 2. For all sufficiently large m in the game played over the search
space {0, . . . , 2m − 1} with 3 lies, there exists a perfect 4-intervals strategy. In
particular, the strategy uses at most Nmin(2m, 3) questions and all the states
of the game are well shaped, hence representable by exactly 12 logm bits (12
numbers from U).
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Fig. 1: A well-shaped state of type (1)
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Fig. 2: A well-shaped state of type (2)
The figures provide a pictorial representation of (a) the well-shaped states of type
(1) and (2), and of (b) the 4-intervals question construction in the proof of Theorem
1. In Figure 1, arcs S,H,A are modes at level 0, 1, 2, respectively. Arcs Q,R, P are
saddles at level 3. The remaining arcs are steps. On the other hand, in Figure 2, arc B
is a saddle at level 2 and arc M is a mode at level 2. We assume the following relative
order on the arcs’ sizes. On level 1 we assume N ≥ O and on level 2 we assume B ≥ C,
L ≥M and A ≥M . The questions are depicted for both the feasible well-shaped states
for a 3 lies game. Then on level 0 the arc S is split (the light blue question), on level
1 either H is split (the dark green question) or N is split (the dark green and the
light green question) and H is covered entirely. On level 2 one of the following holds,
either A is split (the red question) or B is split (the orange and red question) and the
mode A is covered entirely, or L is split (the yellow, orange and red question) and the
mode A is covered entirely. In order to guarantee the well-shapeness preservation, note
that in the questions depicted in figure 2 on level 2 the mode M is entirely uncovered,
moreover the interval splitting arc L is upward step-splitting in the case of Figure 1
and downward step-splitting in Figure 2.
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Fig. 3: The figure depicts an example of state dynamics. The question Q is represented
by the intervals I(0), I(1), I(2) and I(3) . The interval I0 is mode-splitting at level 0 and
downward step-splitting at level 1; I(1) is mode-covering at level 1 and saddle-splitting
at level 2; I(2) is mode-covering at level 2 and saddle-covering at level 3; I(3) is saddle-
splitting at level 3. In the resulting states the filled volumes indicate the arcs of the
state remained unchanged. The σyes, σno states are represented on the support of the
original state σ to show how the elements belonging the lowest level disappear (the
blank gaps on the shapes) from the support when they are in contradiction with more
than 3 answers.


