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Abstract A labeling scheme is a method to retrieve some global prop-
erty of a graph by exploiting (in a distributed fashion) the information
stored, in the form of (short) labels, at its vertices. A classic question
in the area is that of labeling the vertices in order to infer the distance
between any pair of them, or alternatively to retrieve a corresponding
shortest path. On such purpose, among the various solutions, a 2-hop
cover distance/path-reporting labeling scheme is based on the idea of
representing the shortest paths in a graph as the concatenation at an
intermediate so-called hub vertex of the two shortest paths emanating
from the corresponding end vertices. The difficult point here is to find
a small-size set of hub vertices covering a shortest path for each pair of
vertices in the graph, since in this way the corresponding labeling will
be compact, but practical efficient solutions are known in the literature.
In this paper, we present a simple and efficient way of enriching this
successful scheme in order to make it resilient to the failure of a subset
of at most k ≥ 1 edges in the graph, by exploiting the notion of so-called
edge-independent spanning trees. Depending on k, we provide different
strategies and analyze the corresponding performances. In addition, to
assess the practical effectiveness of our method, we provide an exper-
imental evaluation, conducted for the case k = 1. Our data confirms
the new method to be really competitive when compared with the per-
formance of the benchmark non-fault-tolerant scheme, equipped with a
point-of-failure rerouting policy.

1 Introduction

A shortest-path query asks the shortest path between two vertices in a graph.
Without doubt, answering to this kind of queries is one of the most fundamen-
tal operations on graphs, as it has a wide range of applications, e.g. social net-
works analysis [20], route planning in road networks [12, 13], intelligent transport
systems [5], routing in communication networks [9, 11]. Baseline methods, e.g.
Breadth First Search or Dijkstra’s algorithm, yield unsustainable query times to
answer such requests in graphs arising from the mentioned applications, which
tend to be huge.



To overcome this limit, tens of smarter approaches have been proposed in
the last decade [2, 12] which adopt the common strategy of preprocessing the
graph in advance to speed-up the query phase. Among them, the 2-hop cover
distance/path-reporting labeling scheme (2–HCL from now on) is based on the
idea of representing the shortest paths of a graph as the concatenation at an
intermediate so-called hub vertex of the two shortest paths emanating from the
corresponding end vertices. Roughly speaking, the label at each vertex will con-
tain the length and the next-hop vertex of a shortest path towards each hub
vertex, and to retrieve a shortest path between two vertices it will suffice to
join their labels and find the common hub that minimizes the sum of the two
distances. The difficult point here is to find a small set of hub vertices covering
a shortest path for each pair of vertices in the graph, since in this way the cor-
responding labeling will be compact. Indeed, finding a minimum-size set of hub
vertices is known to be NP-hard [6].

Nevertheless, in the practice, 2–HCL is currently considered the best scheme
since: i) it is general (it can be applied on all kinds of graphs, including directed
weighted ones [10, 13]); ii) even in networks with tens of billions of vertices, it
combines extremely low query times with affordable space overhead and reason-
able preprocessing effort [1]; iii) it is suited to be used in distributed settings [21];
iv) several practical approximation algorithms are known [6] - among them, the
recent pruned landmark labeling (pll) [1] achieves considerably better scalability
than other methods.

A further level of complexity, when dealing with this kind of approaches,
is represented by the fact that, in general, real-world networks are prone to
failures. In this case, in fact, if a failing edge is on a queried shortest path, then
a distance query will return an underestimated values w.r.t. a true shortest path
in the damaged graph, while a path-reporting query would actually return an
unfeasible path!

In general, reprocessing the graph from scratch after each failure is not a
reasonable recovery strategy, since it will unavoidably require a non-negligible
amount of computational time [10]. Therefore, a desirable objective becomes
that of devising a so-called fault-tolerant scheme, i.e. an approach that allows
to answer to queries even in presence of a number of (transient) graph failure
operations (e.g., edge or vertex removals). This is usually achieved by suitably
enriching the underlying data structure and by accordingly modify the query
strategy to consider such enrichment. However, if the paths to be reported are
constrained to be shortest also in presence of failures, then this might result
in storing an unpractical amount of additional information [17]. Hence, in this
case, a reasonable compromise is that of relaxing the optimality constraint and
devise more compact schemes that return approximate distances (shortest paths,
resp.), i.e. distances (paths, resp.) that are guaranteed to be longer than the
corresponding true distances (shortest paths, resp.) by at most a given stretch
factor, for any possible kind of failure that has to be handled. Examples of this
strategy in the literature are various [3, 8], where many structures have been



studied in the fault-tolerant approximate setting. However, to the best of our
knowledge, no previous work has ever investigated 2–HCL in such a setting.

Our Contribution. In this paper, we move forward in this direction and present
a simple and efficient way of enriching a 2–HCL in order to make it resilient to
the failure of a subset of any k edges. In more details, given an n-vertex and
m-edge graph G, we show that such an enrichment can be done by exploiting
the notion of so-called edge-independent spanning trees. More precisely:

– for k = 1, 2, 3 and G at least (k + 1)-edge connected, the enrichment takes
O(m + n), O(n2) and O(n3) additional time, respectively, and O(n) addi-
tional space;

– for k > 3 and G at least (2k + 2)-edge connected, the enrichment takes
O(k2n2) additional time and O(kn) additional space.

Even though the above solutions have in principle replacement paths which
can be linearly (in n and k) stretched (as compared to new shortest paths in
the surviving graph), in practice the situation is much better. To assess that,
we provide an experimental evaluation, conducted for the case k = 1, showing
the quality of our approach in terms of stretch, space requirements and prepro-
cessing/query time. Our data shows the new method to be really effective and
competitive when compared with the performance of the benchmark non-fault-
tolerant scheme, equipped with a point-of-failure rerouting policy. Notice that
our results can be extended to weighted graphs as well, and that our solutions
are able to answer to the most general path-reporting queries.

2 Background

In what follows, we provide the notation and the basic definitions that are used
throughout the paper. Given an unweighted undirected graph G = (V,E) with
|V | = n vertices and |E| = m edges, we denote by e = (u, v) an edge e ∈ E
connecting two vertices u, v ∈ V . Given an edge e ∈ E of G, we denote by
G− e (G−F , resp.) the graph obtained from G by removing an edge e (a set of
edges F ⊆ E, resp.). Moreover, we call πGxy a shortest path between two vertices
x, y ∈ V and dGxy (or |πGxy|) its length (a.k.a. the distance between x and y in G).

In addition, given a shortest path πGxy we denote by p(x, πGxy) (p(y, πGxy), resp.)
the predecessor of x (y, resp.) within πGxy, i.e. the vertex v such that (x, v) ∈ πGxy
((v, y) ∈ πGxy, resp.). Given two simple paths a and b, we denote by p = a ⊕ b
the path p obtained by concatenating them.

Furthermore, we say that a graph G = (V,E) is k edge connected if |E| > k
and there does not exist a set of edges, of cardinality at most k−1, whose removal
disconnects the graph. Given a graph G = (V,E) and a distinguished root vertex
r ∈ V , then IT = {T1, T2, . . . , Tq} is a collection of q edge-independent spanning
trees of G if and only if, for each vertex v ∈ V , and for each i 6= j, πTi

rv and πTj
rv

are pairwise edge-disjoint paths, i.e. they do not share any edge [15]. In what



follows, we give a slightly modified definition of 2–HCL, suited for answering to
path-reporting queries, inspired by that of [6] for distance queries.

Definition 1 (2–HCL). Let G = (V,E) be an undirected graph. Let the path
label P (v) of a vertex v ∈ V be a set of tuples of the form 〈u, dGuv, p(v, πGuv))〉 and
let P (G) = {P (v)}v∈V (denoted as P when the graph is clear from the context)
be a collection of such labels. Let a path query operation on P (G) from a vertex
s to a vertex t be defined as:

pQuery(s, t, P ) =

{
〈h, dG

hs, p(s, πG
hs)〉 | h = argmin

v∈P (s)∩P (t)
{dG

vs + dG
vt} if P (s) ∩ P (t) 6= ∅

∅ otherwise

where, for the sake of brevity, we denote by P (s) ∩ P (t) the set of vertices
{v|〈v, dGvs, p(v, πGvs)〉 ∈ P (s) ∧ 〈v, dGvt, p(v, πGvt)〉 ∈ P (t)}. Then, P (G) is a 2–
HCL of G if and only if, for any pair of vertices s and t of G it satisfies the
cover property [6], i.e., if s and t are connected in G and h is the first argument
returned by pQuery(s, t, P ), then dGst = dGhs + dGht and h is called a hub that
covers s and t, otherwise pQuery(s, t, P ) = ∅.

Given the above, it is clear that a 2–HCL P (G) of a graph G can be used
also to retrieve an entire shortest path πGst (i.e. the corresponding set of ver-
tices/edges) for any given pair of vertices s, t of G by the procedure shown in
Algorithm 1. The routine essentially builds incrementally two shortest paths,
one from s toward a hub h and the other from t toward the same hub h, and
eventually combines them into a path from s to t which is exactly the shortest
between s and t, by the cover property. The two paths are computed by the
repeated application of the above path query, i.e. by concatenating edges con-
necting vertices to the corresponding predecessors. For the sake of clarity, we
represent the shortest path as a doubly linked list of edges.

Algorithm 1: Computation of a shortest path via P (G).
Input : P (G), a pair of vertices x and y of G.
Output: A shortest path p = πG

xy between x and y.

1 p← ∅; px ← ∅; py ← ∅; c1 ← x; c2 ← y;
2 if c1 = c2 then return p;
3 l1 ← pQuery(c1, c2, P );
4 l2 ← pQuery(c2, c1, P );
5 h← l1.first /* h equals l2.first by construction */
6 while c1 6= l1.first ∨ c2 6= l2.first do
7 if c1 6= l1.first then
8 px.pushFront((c1, l1.third));
9 c1 ← l1.third;

10 l1 ← pQuery(c1, h, P );
11 if c2 6= v then
12 py.pushBack((c2, l2.third));
13 c2 ← l2.third;
14 l2 ←← pQuery(c2, h, P );
15 p = px ⊕ py ;
16 return p



Problem Statement Let G = (V,E) be an unweighted and undirected graph.
We aim at computing what we call a k-edge-fault-tolerant path-reporting labeling
scheme (k-EFTPL, in short), i.e. a labeling P (G, k) that, for any pair of vertices
s, t of G, can be used to retrieve: i) a shortest path πGst between s and t in G;
ii) a backup path γG−Fst between s and t, i.e. a simple path (if any) connecting s
and t in G− F for any F ⊆ E such that |F | ≤ k.

The stretch factor of a k-EFTPL P (G, k) is defined as the maximum ratio, for
any pair of vertices s, t and for any F ⊆ E such that |F | ≤ k, between the length
of a backup path and that of the corresponding shortest path in G − F , i.e.:
α(P (G, k)) = max

s,t∈V,∀F⊆E:|F |≤k

|γG−F
st |
|πG−F

st | . Note that, whenever πG−Fst does not exist

(i.e. s and t are disconnected in G−F ), we assume |γ
G−F
st |
|πG−F

st | to be 1. A k-EFTPL
P (G, k) such that α(P (G, k)) = 1 is called exact while is called approximate
otherwise.

3 A linear-stretch approximate k-EFTPL

In this section, we show how to build an approximate k-EFTPL P (G, k) for a
given input graph G. Our approach essentially consists in a suitable enrichment
of a 2–HCL P (G), based on the use of edge-independent trees, as follows. Given
G, we start by computing P (G) via a standard method, e.g. pll [1] and, to be
able to “resist” to the failure of k edges, we compute k+1 edge-independent trees
T1, T2, . . . Tk+1 of G and root them all at a same distinguished vertex, say r ∈ V .
Note that, such trees guarantess that, should any k edges e1, e2, . . . , ek of the
graph fail, for any vertex v ∈ V there will exist (at least) one value i ∈ [1, k+ 1]
such that v and r are connected, in Ti, by a simple path not containing any of the
e1, e2, . . . , ek edges. This can be trivially proved by contradiction, by elaborating
on the well-known results from graph theory, summarized in the following.

Theorem 1 ([16]). Let IT be a graph obtained by merging a collection of q+ 1
edge-independent spanning trees {Ti}i=1,2,...,q+1 of a graph G. Then, IT is (q+1)-
edge connected.

Hence, we use such rooted trees to build a set of what we call tree labels that
are assigned to the vertices in order to allow the retrieval of a backup path in
presence of k edge failures. Intuitively, such labels store the predecessor of a
vertex within a shortest path toward the root r, for each considered tree.

Depending on the value of k, we make use of different approaches to build the
k + 1 edge-independent trees. Clearly, a necessary condition to guarantee that
any pair of vertices remains connected even in presence of k edge failures is that
G is at least (k+ 1)-edge connected. Then, if k ∈ {1, 2, 3} and G is (k+ 1)-edge
connected, we can compute k + 1 edge-independent trees in polynomial time,
with a time complexity of O(m+ n), O(n2) and O(n3), respectively [4, 7, 15].

On the other hand, if k > 3 and G is h-edge connected, with k + 1 ≤ h ≤
2k + 1, then to the best of our knowledge it is not possible to build k + 1 edge-
independent trees in polynomial time. However, if G is at least (2k + 2)-edge



connected, then we can build k+ 1 edge-disjoint spanning trees of G, which are
clearly also edge-independent, by using the approach proposed in [18], running
in O(k2n2) time.

From now on, we will suppose to have at our disposal k+1 edge-independent
trees of G, built as aforementioned. Hence, for each vertex, there will always be a
tree label containing a viable predecessor to be used to reach r, even in presence
of k arbitrary edge failures in G. More in details, given a vertex v ∈ V and an
independent tree Ti of G (rooted at a vertex r ∈ V ), we define a tree label entry
to be a pair 〈r, p(v, πTi

vr)〉. Such pair essentially encodes for v a path to follow
toward the root r of the i-th tree in the form of a predecessor within the tree.
Tree label entries are stored within what we call a tree label T (v, k),4 for any
v ∈ V . Hence, any vertex is assigned two labels, namely P (v) and T (v, k), to
be used in combination in order to be tolerant to the failure of k edges. We call
the set {T (v, k)}v∈V a k-tree labeling of G (denoted as T (G, k) or T when clear
from the context) while we define P (G, k) to be the union of P (G) and T (G, k).
Moreover, we call the chosen r the root of P (G, k).

The routine for building the k-tree labeling of a graph G, and therefore
P (G, k), is summarized in Algorithm 2. We represent T (v, k) again as a doubly
linked list, since it will be convenient for defining a suited query algorithm. Now,
we can easily bound the computational complexity of Algorithm 2 as follows.
Algorithm 2: Building a k-EFTPL P (G, k) of a graph G = (V,E)

Input : Graph G = (V,E), parameter k ≥ 1, a 2–HCL P (G) of G
Output: A k-EFTPL P (G, k) of G

1 Compute k + 1 edge-independent trees T1, T2, . . . Tk+1;
2 Choose a distinguished vertex r ∈ V , root all k trees in r;
3 T (G, k)← ∅;
4 foreach v ∈ V do
5 foreach i = 1, 2, . . . , k + 1 do T (v, k).push_back(〈r, p(v, πTi

vr )〉);
6 T (G, k)← T (v, k);
7 P (G, k) = P (G) ∪ T (G, k);
8 return P (G, k)

Lemma 1. Algorithm 2 takes O(∆+k|V |) time, where ∆ is the worst-case time
for computing k + 1 edge-independent trees.

Proof. Clearly, performing line 1 takes O(∆) while the execution of lines 2-3
takes constant time. Moreover, the outer loop of line 4 is executed exactly |V |
times while the inner loop of line 5 is performed exactly k + 1 times. Since the
operation of line 5 can be done in O(1) time,5 the claim follows. ut

Lemma 2. Algorithm 2 builds a k-EFTPL P (G, k) whose overall size, in terms
of label entries, is O(|P (G)|+ k|V |).

Proof. To prove the statement, it is enough to bound the size of T (G, k), since
the size of P (G, k) is trivially upper bounded by the sum of the sizes of P (G)
and T (G, k). At line 3, T (G, k) is empty, and exactly one entry per value of i
is added to the tree label T (v, k) of each vertex v ∈ V at line 5. Since i ranges
from 1 to k, the claim follows. ut
4 The k parameter stands for the ability of resisting to k edge failures by k + 1 trees.
5 By storing each Ti as an array of predecessors.



Given the construction of Algorithm 2, we now provide a query algorithm
that can be used for either retrieving a true shortest path, when the graph is
not subject to failures, or a backup path otherwise. The procedure, summarized
in Algorithm 3, roughly works as follows. Given P (G, k) and a pair of vertices s
and t, the routine starts by trying to retrieve the true shortest path, by relying
on P (G) and on the corresponding pQuery strategy. As in the previous case,
the shortest path is built incrementally and by combining two separate parts. If
no failures are currently present in the network, then the algorithm essentially
coincides with Algorithm 1 and returns the shortest path. Otherwise, if a number
k′ < k + 1 of failures are occurring on G, then two cases can occur: either
the shortest path from s to t includes at least one of such failures or not. To
determine that, the algorithm needs essentially to check, at every step of the
construction, whether the edge leading to the predecessor on the original shortest
path has failed or not. In the negative case, clearly, the algorithm proceeds as
nothing happened, i.e. as Algorithm 1, by repeating the application of pQuery.
In the affirmative case, instead, the algorithm starts looking for backup paths
by using available tree label entries, which essentially encode edges connecting
to predecessors in the independent trees (see Lines 4-9 of Algorithm 4). Since
a number of failures can affect different trees, tree label entries are scanned
sequentially until one non-failed edge if found. Again two sub-paths are built
and then, eventually, combined.

Algorithm 3: Query algorithm for a k-EFTPL P (G, k).
Input : P (G, k), two vertices x and y.
Output: A simple path p between x and y.

1 p← ∅; px ← ∅; py ← ∅; c1 ← x; c2 ← y;
2 l0 ← the 0-th tree label of T (z, k); /* Any tree label entry, first field is always r */
3 r ← l0.first;
4 if x = y then return p;
5 l1 ← pQuery(c1, c2, P );
6 h← l1.first /* h equals l2.first by construction */
7 px ← NavigateFrom(x, h, r); py ← NavigateFrom(y, h, r);
8 if px.tail() 6= py.tail() then
9 if px.tail() 6= h then ForceToRoot(px, r);

10 else ForceToRoot(py, r);
11 else p← px ⊕ reverse(py);
12 for e ∈ p do
13 if |e| > 1 then p← p \ e /* Removes any duplicates */ ;
14 return p;

Note that, in this case, the two sub-paths might be not connected since one
of the two searches might end up in the original hub, while the other in the root,
and viceversa. This happens when one of the two sub-paths reaches the original
hub while the other does not. In this case, Algorithm 5 takes care of finding the
missing part. In general, we are able to prove the following.

Lemma 3. Algorithm 3 always computes a backup path connecting x to y, for
any pair x, y ∈ V .

Due to space contraints, we postpone the proof of Lemma to a full version of
the paper.

Theorem 2. Algorithm 3 builds a k-EFTPL P (G, k) with α(P (G, k)) ∈ O(kn).



Algorithm 4: Procedure NavigateFrom(z, h, r)
Input : P (G, k), a vertex z, its hub h, the root of the trees r.
Output: A simple path pz connecting z to either h or r.

1 pz ← ∅; failed← false; i← 0; /* i-th edge-independent tree in use */
2 lz ← pQuery(z, h, P );
3 while z 6= h ∧ z 6= r do
4 if failed = true then /* failure previously encountered, keep going toward r */
5 Let li be the i-th tree label of T (z, k);
6 if (z, li.second) ∈ E then
7 pz.pushFront((z, li.second));
8 z ← li.second;
9 else i← i + 1; /* change tree */

10 else
11 if (z, lz.third) 6∈ E then failed← true; /* failure encountered */
12 else /* keep navigating toward h */
13 pz.pushFront((z, lz.third));
14 z ← lz.third;
15 lz ← pQuery(z, h, P );
16 return pz ;

Proof. The length of any path found by Algorithm 3 from any node v to the
root r is always upper bounded by diammax = maxi=1,...,k+1 2 ·diam(Ti), where
diam(Ti) is the diameter of the i-th edge-independent tree Ti. Since we could find
a failed edge up to k times (one for each tree Ti), we could have to pay diam(Ti)
each time. Therefore we could have k · diam(Ti), hence, the claim follows. ut

Algorithm 5: Procedure ForceToRoot(p, r).
Input : P (G, k), a path p, a vertex r.

1 i← 0; z ← p.tail();
2 while z 6= r do
3 Let li be the i-th tree label of T (z, k);
4 if (z, li.second) ∈ E then
5 p.pushFront((z, li.second));
6 z ← li.second;
7 else i← i + 1; /* change tree */

4 Experimental evaluation

In this section we provide an experimental evaluation of our approach. In par-
ticular, we implemented, in C++: i) the pll approach of [1] for building 2–HCL;
ii) Algorithm 2 for building an approximate k-EFTPL, for k = 1. Note that,
details on how to build a 1-EFTPL will be given in an extended version of the
paper due to space constraints. We embedded all our code within NetworKit6,
a well-known open-source framework for large-scale network analysis. Then, to
assess the performance of our method, we established the following experimental
process.

First, inspired by other papers on the subject (e.g. [10, 17]), we selected a
meaningful set of real-world networks of various types (including road graphs,
6 see networkit.iti.kit.edu



peer to peer networks, and AS communication networks7) and treated them as
undirected, unweighted graphs. Details about inputs are reported in Table 1
where we show, for each network, the corresponding type, and the number of
vertices and edges of the largest 2-edge connected component (second, third and
fourth columns, resp.). Then, for each network, we ran both pll and Algorithm 2

Network Type |V | |E| time (seconds)
space per

vertex (bytes)
pll khl P (G) T (G, 1)

Barabasi (BAR) Synthetic 365 488 734 347 68 500 6.41 5 198 18
Brightkite (BRI) Social 33 187 188 577 5 680 1.75 2 326 18
CA-GrQc (CAG) Collaboration 2 651 10 480 499 0.03 1 271 18
CA-HepTh (CAH) Collaboration 5 898 20 983 1 130 0.03 2 085 18
Caida (CAI) Autonomous Sys. 6 855 13 341 1 650 0.02 1 412 18
com-youtube (CYT) Social 452 060 2 295 072 66 200 5 090 4 136 18
Denmark (DNK) Road 252 416 320 914 147 000 0.75 13 152 18
flickredges (FED) Social 105 512 2 316 450 2 180 165 12 415 18
ForestFire (FF2) Synthetic 1 178 888 13 849 776 212 000 16 100 17 983 18
flickrlinks (FLI) Social 704 985 14 501 930 125 000 17 700 12 525 18
oregon (ORE) Autonomous Sys. 7 218 19 448 638 2.54 286 18
skitter (SKI) Autonomous Sys. 1 443 769 10 830 987 197 000 11 100 10 666 18
WikiVote (WIK) Hyperlinks 4 786 98 456 751 1.12 1 890 18
WikiTalk (WIT) Collaboration 622 315 2 889 703 47 700 38 700 2 951 18

Table 1: Input details and performance of pll and khl w.r.t. time and space, resp.

(denoted by khl in the following) and measured the computational time spent, in
seconds, to build P (G) and a 1-EFTPL P (G, 1), resp., which is shown in Table 1
(4th and 5th column, resp.). For the sake of completeness, we also measured the
average size of P (G) and the overhead required for storing T (G, 1), in bytes, per
vertex. Such values are reported in Table 1 as well (6th and 7th column, resp.).
Finally, we selected 10 000 pairs of vertices of the graph and, for each pair s, t,
we executed the following steps:8 i) we randomly removed an edge e of the graph
which, with probability p = 5/100 is chosen to be on the shortest path between s
and t in G;9 ii) we ran, on G−e, a modified version of Algorithm 1 that includes
a point-of-failure (POI) rerouting procedure, with s and t as input, and measured
both the time taken and the length of the output backup path; notice that, a
POI rerouting procedure is a common backup method to deal with failures, that
essentially retrieve a feasible solution starting from the point where a failure
was encountered [19]; in our case, when one of the two sub-paths computed by
Algorithm 1 happens to encounter a failed edge, say for instance the path from
s fails at edge e = (x, y), then we build a BFS in G − e rooted at x and we
stop as soon as t is reached; iii) we ran Algorithm 3 on G − e with s and t as
input, and measured both the time taken and the length of the output backup
path; iv) we compute the shortest-path between s and t on G− e (e.g. by means
of a BFS) and measure the length of the true shortest path between s and t in
G − e. We accordingly compute, for pair s, t, the stretch of the path computed
by ii) and that of the path computed by iii). For all the considered performance

7 see http://snap.stanford.edu
8 All our software has been compiled with GNU g++ v.5 (O4 opt. level) under Linux
and executed on an Intel Xeon c© CPU

9 the choice of p is inspired by previous works on failures in networks [14]



metrics, we computed average values over the 10 000 executions. The results
concerning the query time (in seconds) are reported in Fig. 1b while those related
to the average stretch are shown in Fig. 1a. We have omitted the stretch of the
point-of-failure strategy, since it was always negligible, close to 1. Regarding
the root vertex r of the P (G, 1), note that, from a worst-case point of view,
the stretch provided by the approach is independent from the specific chosen
vertex, hence it could be selected at random. However, it is clear that the best
choice of the root from a practical viewpoint should be based on some centrality
measure, since this would tend to induce short backup paths [13]. Unfortunately,
computing fine-grained centrality measures, such as, e.g. betweenness centrality,
can be rather computationally expensive and therefore can (heavily) impact on
the preprocessing time of our approach. Thus, when needed, we choose r to be
the vertex of highest degree, since vertex degree has been shown to be a quite
robust centrality measure that can be computed in linear time [10]. For the
sake of completeness, we also considered an approximation of the betweenness
centrality based on sampling, which however always produced worse results in
terms of stretch, and thus we omitted them.

1.16
1.25 1.23 1.2

1.1

1.24

1.04

1.231.24 1.26
1.33

1.221.2

1.37
1.45

0.0

0.5

1.0

1.5

BA
R

BR
I

C
AG

C
AH C
AI

C
YT

D
N

K

FE
D

FF
2

FL
I

G
N

U

O
R

E

SK
I

W
IK

W
IT

(a)

1e+01

1e+03

1e+05

BA
R

BR
I

C
AG

C
AH C
AI

C
YT

D
N

K
FE

D

FF
2

FL
I

G
N

U
O

R
E

SK
I

W
IK

W
IT

(b)
Figure 1: (a) Estimation of α(P (G, 1)) based on 10 000 measures; (b) Query time of
Algorithm 3 (lighter gray) versus query time of Algorithm 1 with POI rerouting.

Analysis. The main outcome of our experimental evaluation concerns both aver-
age stretch, provided by the new structure P (G, 1), and query time. Regarding
the former, despite the O(kn) worst case upper bound of Lemma 2, the P (G, 1)
data structure shows a very good behavior in practice, as the measured average
stretch is always pretty close to one, and only slightly larger than the stretch
exhibited by the rerouting method, which can be considered a benchmark strat-
egy w.r.t. quality of reported shortest paths. Regarding the latter, Algorithm 3
results in being extremely (orders of magnitude) faster (see Fig. 1b) w.r.t. the
rerouting-based strategy, which require to perform BFSs every time a failed edge
is met. This suggests the method to be a viable option in practice whenever tran-
sient failures need to managed. This comes at the price of: i) a negligible time
overhead for enriching the P (G) data structure (i.e. for performing khl), which
can be hundreds of times smaller than the time for executing pll; ii) a constant
amount of extra space (few bytes per vertex) for storing T (G, 1), which can be
considered negligible w.r.t. the space per vertex required for storing P (G).



5 Conclusion and future work

In this paper, we have studied 2-hop cover distance/path-reporting labeling schemes
in the fault-tolerant approximate setting. In particular, we have presented a sim-
ple and efficient way of enriching this successful scheme in order to make it re-
silient to the failure of a subset of k edges in the graph, by exploiting the notion
of so-called edge-independent spanning trees. Depending on k, we have provided
different strategies and analyzed the corresponding performance. In addition,
to assess the practical effectiveness of our method, we have provided an exper-
imental evaluation, conducted for the case k = 1, whose results show the new
method to be really competitive when compared with the performance of the
benchmark non-fault-tolerant scheme, equipped with a point-of-failure rerouting
policy. There are several research directions which might deserve further inves-
tigation in this area. For instance, it could be interesting to study whether it is
possible to design a scheme with a better guarantee on the stretch w.r.t. the one
proposed in this paper. Another interesting direction could be that of extending
the experimental evaluation of our new method to higher values of k.
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