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Abstract. Model checking is the process of establishing whether a cer-
tain formula is satisfied by a given structure, and it is usually associated
with point-based temporal logics. Recently, the question of how to cor-
rectly define and study the model checking problem for interval-based
temporal logics has been raised. In this paper, we focus on a very natural
finite version of the model checking problem for Halpern and Shoham’s
modal logic of time intervals, a.k.a. HS, for which an algorithm that be-
haves in a very efficient way (under certain conditions) can be designed.
We present an implementation of such an algorithm and analyse its per-
formance through a systematic series of tests.

1 Introduction

Model checking is the problem of verifying whether a given logical formula is
satisfied by a certain structure. It has been extensively studied in the area of
formal methods and automated verification as a technique to establish the cor-
rectness of (hardware and software) reactive systems with respect to certain
properties of interest. In most cases, the property to be verified is expressed in
some point-based temporal logic, such as LTL [24], CTL [9], and CTL∗ [12]. The
main reason is that the behavior of a (reactive) system is usually captured by
specifying how its states can possibly evolve during an execution, and thus it
is naturally represented as a labeled directed graph, where vertices represent
the states of the system, edges encode its transitions, and paths describe exe-
cutions. Interesting properties predicate about points (states) along a timeline
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(execution), which makes point-based temporal logics a natural choice for the
specification formalism.

In the last years, however, a certain interest is emerging towards model check-
ing for temporal logics with an interval-based semantics, in particular for Halpern
and Shoham’s logic HS [13], which plays a prominent role in the literature about
interval-based temporal logics, along with its fragments. HS can be viewed as the
logic of Allen’s relations [2]. While some of its theoretical properties, such as sat-
isfiability and expressiveness, have been already studied in a very systematic way
(see, for instance, [1, 8]), its model checking problem has entered the research
agenda only recently, despite it has several potential application domains, as
shown in [22].

Model checking for full HS, interpreted over finite Kripke structures, accord-
ing to the so-called state-based semantics [6], has been studied in [18, 23]. The
authors showed that, under the homogeneity assumption [25], which constrains
a proposition letter to hold over an interval if and only if it holds over each com-
ponent state, the problem is non-elementarily decidable (EXPSPACE-hardness
has been later shown in [5]). Since then, the attention has been brought to HS
fragments, whose computational behavior is often much better [5, 7, 19–21]. The
model checking problem for some HS fragments extended with epistemic op-
erators has been investigated in [15, 16]. The semantic assumptions for these
epistemic HS fragments differ from those of [5, 7, 18–21, 23] in two important
respects, making it difficult to compare the two families of logics: formulas are
interpreted over the unwinding of the Kripke structure (computation-tree-based
semantics [6]) and interval labeling takes into account only the endpoints of inter-
vals. The latter assumption has been later relaxed by allowing the use of regular
expressions to define the labeling of proposition letters over intervals in terms of
the component states [17]. An in-depth investigation of interval temporal logic
model checking with regular expressions, under the homogeneity assumption,
has been recently undertaken [3, 4].

In this paper, we focus our attention on the problem of model checking a
single, finite path/interval. Unlike standard model checking, where logical spec-
ifications are evaluated against temporal structures which are abstract (finite)
representations of the infinite set of finite/infinite computation paths of a sys-
tem, we are interested in checking the truth of a formula against a concrete,
finite interval model. In [22], it has been shown that such a problem has vari-
ous interesting applications, such as, for instance, temporal query evaluation and
temporal constraint checking in temporal databases [10, 14, 26, 27].

We describe an implementation of a model checker for HS formulas against
concrete, finite interval models, and we report the outcomes of a series of sys-
tematic performance tests. Even though the proposed implementation is inspired
by the well-known model checking algorithm for CTL formulas by Emerson and
Clarke [11], devising an efficient procedure is not trivial at all and it requires a
deep theoretical analysis as well as suitable choices in representing and searching
the finite model, e.g., a symbolic representation is used when labeling intervals
with special kinds of formulas (see [22] for a more detailed discussion).
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Fig. 1. Allen’s interval relations, HS modalities, and some useful shortcuts.

2 The logic HS

Halpern and Shoham’s logic HS is a multi-modal logic with formulas built on a
set AP of proposition letters, the Boolean connectives ∨ and ¬, and 6 existential
modalities based on the following 6 Allen’s relations: meets (modality 〈A〉), begins
(modality 〈B〉), and ends (modality 〈E〉), graphically depicted in Figure 1, and
their transposes met-by (modality 〈A〉), begun-by (modality 〈B〉), and ended-by
(modality 〈E〉). Formulas of HS are defined by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | 〈A〉ϕ | 〈A〉ϕ | 〈B〉ϕ | 〈B〉ϕ | 〈E〉ϕ | 〈E〉ϕ.

The other Boolean connectives are defined as usual, while the universal version of
each existential modality 〈X〉 is denoted by [X] and defined as [X]ψ ≡ ¬〈X〉¬ψ.
The language of HS allows for additional (existential) modalities corresponding
to the other Allen’s relations, namely, during (modality 〈D〉), later (modality
〈L〉), and overlaps (modality 〈O〉), graphically depicted in Figure 1, and their
transposes contains (modality 〈D〉), before (modality 〈L〉), and overlapped-by
(modality 〈O〉), which can be defined as follows:

〈D〉ψ ≡ 〈B〉〈E〉ψ, 〈D〉ψ ≡ 〈B〉〈E〉ψ,
〈L〉ψ ≡ 〈A〉〈A〉ψ, 〈L〉ψ ≡ 〈A〉〈A〉ψ,
〈O〉ψ ≡ 〈E〉〈B〉ψ, 〈O〉ψ ≡ 〈B〉〈E〉ψ.

Hereafter, we denote by RX the Allen relation corresponding to modality 〈X〉,
e.g., we denote by RA the relation corresponding to modality 〈A〉 (see Figure 1).

Let D = 〈D,<〉 be a finite linearly ordered set. An interval over D is an
ordered pair [x, y], where x, y ∈ D and x < y (strict semantics). An interval of
the type [x, x+1] is called unit (x+1 denotes the immediate successor of x in D).



The semantics of HS is given in terms of interval models M = 〈I(D), V 〉, where
I(D) is the set of all intervals over D and V : AP 7→ 2I(D) is a valuation function
that assigns to every p ∈ AP the set of intervals V (p) over which p holds. Since
every finite linear order is isomorphic to a prefix of the set N of the natural
numbers, for every N ∈ N we denote the linear order D = {0, 1, . . . , N − 1}
by [N ]. The truth relation 
 of an HS formula over a given interval [x, y] in an
interval model M is defined by structural induction on formulas as follows:

– M, [x, y] 
 p iff [x, y] ∈ V (p);
– Boolean connectives are dealt with in the standard way;
– M, [x, y] 
 〈A〉ϕ iff there exists z > y such that M, [y, z] 
 ϕ;
– M, [x, y] 
 〈A〉ϕ iff there exists z < x such that M, [z, x] 
 ϕ;
– M, [x, y] 
 〈B〉ϕ iff there exists x < z < y such that M, [x, z] 
 ϕ;
– M, [x, y] 
 〈B〉ϕ iff there exists z > y such that M, [x, z] 
 ϕ;
– M, [x, y] 
 〈E〉ϕ iff there exists x < z < y such that M, [z, y] 
 ϕ;
– M, [x, y] 
 〈E〉ϕ iff there exists z < x such that M, [z, y] 
 ϕ.

We say that an HS formula ϕ is satisfiable if and only if there exists a model M
and an interval [x, y] such that M, [x, y] 
 ϕ. The satisfiability problem for HS
is the problem of finding a model and an interval that satisfies a formula.

Given an interval model M = 〈I(D), V 〉 over a finite linearly ordered set
D = 〈D,<〉, an interval [x, y] in M , and an HS formula ϕ, the problem of
checking ϕ against [x, y] in M (finite (concrete) model checking, model checking
for short) consists in establishing whether or not M, [x, y] 
 ϕ.

In the rest of the paper, we make use of the following two shortcuts: the global
modality [U ]ψ, that forces ψ to hold everywhere in the model, and the strong
intersect modality 〈SI〉, that forces ψ to hold on some interval [z, t], distinct
from the current interval [x, y], such that at least one w ∈ {z, . . . , t} falls inside
[x, y]. Their formal definitions are given in Figure 1.

3 A model checking algorithm for HS

In this section, we present the algorithm for model checking HS formulas against
(concrete) finite intervals/models [22].

Data structures for representing the input. The algorithm receives as input
an instance of the model checking problem, that is, a pair consisting of an HS
formula and an interval model.

An HS formula can be represented as a binary rooted decorated tree. A
rooted tree is a triple G = (V,E, r), where (V,E) is a directed acyclic graph
and r ∈ V is a distinguished vertex, called root of G, such that there is exactly
one incoming edge for each vertex except for the root, which has none, that is,
{(u, r) | u ∈ E} = ∅ and |{(u, v) | u ∈ E}| = 1, for each v ∈ V \{r}. Vertices of a
tree are also called nodes. A rooted decorated tree is a rooted tree equipped with
a function that associates a decoration with each node. A decoration is either a
proposition letter or an operator, which, in turn, is either a Boolean or a modal
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Fig. 2. An example of model representation as (i) input model (top side), (ii) concep-
tual model (middle), and (iii) internal data structure (bottom).

operator. For each edge (v, u) ∈ E, we say that u is a child of v. We focus on
binary trees, that is, trees in which each node has at most 2 children, which we
refer to as its left and its right child. If a node has only one outgoing edge, then
its right child is undefined. Nodes without children are called leaves.

As a preliminary step, the algorithm transforms the input formula into an
equivalent one belonging to the language generated by the grammar in Section 2,
that is, a formula only containing negations, disjunctions, conjunctions, and
existential modalities from the set {〈A〉, 〈B〉, 〈E〉, 〈A〉, 〈B〉, 〈E〉}, and, then, it
stores the resulting formula into a tree-like structure.

An input model M is represented by a string carrying the following pieces
of information: a number, that specifies the size (number of points) of the linear
order, and, for each proposition letter, a list of intervals encoding the valuation
function (Figure 2, top). Input models are stored in a linear array A of pointers
(Figure 2, bottom), whose elements correspond to intervals, in ascending order
with respect to their second coordinate and, if their values on the second coor-
dinate is the same, with respect to their first coordinate. In Figure 2, the first
(resp., second, third) element of A corresponds to the interval [0, 1] (resp., [0, 2],
[1, 2]), and so on. This is a classic representation of an upper triangular matrix,
that reflects the intrinsic structure of an interval model. At the beginning, each
element of A contains (points to) those proposition letters that hold at the cor-
responding interval, that is, A represents the valuation function V of M . Then,
the algorithm will associate with each element of A the set of pointers to the
subtrees of the formula tree that ‘hold’ in the corresponding interval.

Figure 2 shows a model, based on the linear order D = {0, 1, 2, 3, 4}, which
features the set of proposition letters AP = {p, q}. At the top, the unstructured
input model is given. Such an unstructured model corresponds to the conceptual
one shown in the middle of the picture. The internal representation of the model
is depicted at the bottom.



proc ModelCheck (A, T (ϕ))
for each T (ψ) subtree of T (ϕ){
for each (0 ≤ i ≤ N·(N−1)

2 − 1)
Check(T (ψ), A, i)

return (T (ϕ) ∈ A[0])

proc Check (T (ψ), A, i)

if (Op(T (ψ)) ∈ {¬,∨,∧})
then

if (Op(T (ψ)) = ¬ and Left(T (ψ)) /∈ A[i])
then A[i] = A[i] ∪ {T (ψ)}

if (Op(T (ψ)) = ∧ and Left(T (ψ)) ∈ A[i] and Right(T (ψ)) ∈ A[i])
then A[i] = A[i] ∪ {T (ψ)}

if (Op(T (ψ)) = ∨ and (Left(T (ψ)) ∈ A[i] or Right(T (ψ)) ∈ A[i]))
then A[i] = A[i] ∪ {T (ψ)}

else
for each (j ∈ I(i, Op(T (ψ)), N)){
if (Left(T (ψ)) ∈ A[j])
then A[i] = A[i] ∪ {T (ψ)}

Fig. 3. Pseudo-code of the model checking procedure.

Execution. Following Clarke and Emerson’s schema [9], model checking a given
HS formula (represented as a binary tree) against a certain model (represented
as an array of sets of pointers to trees) can be done by a simple procedure that
executes a bottom-up visit of the formula tree.

Let ϕ be the formula to be checked and, for each subformula ψ, let T (ψ) be the
corresponding subtree. Moreover, let M = 〈[N ], V 〉 be the model against which
ϕ is to be checked. The size of the array A used to store M is equal to the number

of intervals featured by M , namely, N ·(N−1)2 . For each i ∈ {0, . . . , N ·(N−1)2 − 1},
let us denote by Int(i) the interval corresponding to the i-th position in A. As
an example, we denote by Int(2) the interval [1, 2] (see Figure 2). For a binary
tree T that represents a formula, we denote by Op(T ) the decoration of the root
of T , and we denote by Left(T ) (resp., Right(T )) the subtree rooted in its left
(resp., right) child.

We define a function I that, for any position i in A and any modality 〈X〉, re-
turns the set of positions corresponding to intervals [z, t] such that Int(i)RX [z, t].
Besides the position i and the modality 〈X〉, I clearly depends on the size N of
the underlying linear order:

I : N× {A,B,E,A,B,E} × N→ 2N.

As an example, with reference to the model depicted in Figure 2, where N = 5,
we have that I(2, A, 5) = {5, 8}.

In Figure 3, we provide the pseudo-code of the model checking procedure, and
then, in Figure 4, we show the result of checking the formula ϕ ≡ 〈A〉(〈B〉p∧ q)
against the model in Figure 2.

Theoretical complexity and optimization. In [22], Della Monica et al. have
shown that the problem of checking an HS formula against a finite (concrete)
interval model can be solved by a deterministic algorithm that runs in polyno-
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Fig. 4. A graphical account of the result of the execution of the model checking pro-
cedure on the input (ϕ,M), where ϕ ≡ 〈A〉(〈B〉p∧ q) and M is the model in Figure 2.

mial time in the size of the input. The execution time of our implementation
of the model checking procedure is polynomial in the size of the representa-
tion of the input formula, but it is not necessarily polynomial in the size of the
representation of the model (this is the case with some particular input models).

Classic model checking, e.g., LTL and CTL model checking, where infinite
paths are finitely encoded in the input structure, is infinite in nature. In our
setting, as shown in Figure 2, models can be compactly represented by specifying
the size (number of points) of the underlying domain and then listing, for each
proposition letter, the set of intervals over which it holds. The fundamental
difference between the two frameworks is that, in classic model checking, frame
information, i.e., states and transitions, must be explicitly represented in the
input, while, in our setting, frame information, i.e., intervals and their relations,
is implicit in the size of the temporal domain, as the relations among intervals are
induced by the underlying linear order. As a consequence, while the size of the
representation of a Kripke structure is polynomial in the number of states and
labels, the size of the representation of a finite interval model may be logarithmic
in the number of intervals.

As an example, consider an interval modelM = 〈[N ], V 〉 overAP = {p}, with
V (p) = {[N − 1, N ]}. Its representation consists of the number N , whose binary
encoding takes space O(log(N)), and the mapping p 7→ {[N−1, N ]}, which takes
space O(log(N)) as well, as it suffices to represent two numbers. In [22], it has
been shown that such degenerate instances can be reduced in polynomial time
to non-degenerate, equivalent ones, making it possible to efficiently employ the
proposed algorithm to model check any instance.

To improve the performance of the algorithm, we devised a non-trivial heuris-
tics that exploits a suitable form of ‘lemma caching’. It makes use of a complex
data structure, denoted here by S, which can be seen as a hash table (acces-
sible in constant time) that, for each already-visited subtree T (ψ), keeps track
of the set of positions S(T (ψ)) in A corresponding to intervals where ψ is true.
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Fig. 5. A model for the classic version of wolf (blue), goat (brown), and cabbage (green)
problem in HS (farmer is associated with red).

By construction, S(T (ψ)) is undefined if T (ψ) has never been visited before. At
each iteration, before checking a generic subtree T (ξ), the procedure makes the
following steps:

1. if ξ = ψ, that is, if ξ and ψ are two occurrences of the same sub-formula, for
some ψ such that S(T (ψ)) is defined, then, for each index i, we add to A[i]
a pointer to T (ξ) if and only if i ∈ S(T (ψ));

2. otherwise, ifOp(T (ξ)) is a modality and |S(Left(T (ξ)))| = 0, then no pointer
to T (ξ) is added to any cell of A.

Notice that whenever any of the above conditions applies, executing the entire
check for T (ξ) takes precisely one pass over A instead of two.

4 Experimental analysis

In this section, we describe the outcomes of a set of systematic experiments
to test the effectiveness of our implementation. To start with, we consider the
well-known riddle wolf, goat, and cabbage, which can be described as follows. A
farmer wants to cross a river and take with him a wolf, a goat, and a cabbage.
There is a boat that can fit himself plus either the wolf, the goat, or the cabbage,
and the following constraints apply: if the wolf and the goat are alone on one
shore, the wolf will eat the goat, and if the goat and the cabbage are alone on
the shore, the goat will eat the cabbage. The problem asks to find a plan so
that the farmer can bring the wolf, the goat, and the cabbage safely across the
river. This problem can be easily described in HS, using proposition letters that
represent the localization (left hand side of the river, right hand side of the river,
or the boat) of the farmer, the wolf, the goat, and the cabbage at each time. A
model that solves the problem is represented in Figure 5.
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Fig. 6. Graphical representation of the generalized wolf, goat, and cabbage riddle.

To test our implementation, we designed a generalized version of the above-
described riddle with n characters (or elements) and m rivers. In this version,
the (single) farmer must cross every element e1, . . . , en from the left side of the
i-th river to its right side using a boat that may host, at most, n−2 elements at
the same time, plus the farmer. The main constraints of the system are: (i) for
each j, ej “eats” ej+1 (if any), and (ii) the relation “eats” is not transitive.
Clearly, to keep the meaning of the original riddle unchanged, the farmer must
bring everyone across all rivers, sequentially (no river can be skipped). We give
a formalization of this generalized version of the problem in HS, which makes
use of the following proposition letters:

– for i ∈ {0, . . . ,m}, f i,S represents the situation where the farmer is on some
river side: f0,S means that the farmer is on the left side of the 1st river,
fm,S means that the farmer is on the right side of the m-th river, and f i,S ,
with 1 ≤ i < m, means that the farmer is on the right side of the i-th river
(and on the left side of the (i + 1)-th one); analogously, proposition letters

ei,Sj , with i ∈ {0, . . . ,m} and j ∈ {1, . . . , n}, represent the situation where
the j-th element is on some river side;

– for i ∈ {1, . . . ,m}, f i,B represents the situation where the farmer is on a

boat crossing the i-th river; analogously, proposition letters ei,Bj , with i ∈
{1, . . . ,m} and j ∈ {1, . . . , n}, represent the situation where the j-th element
is on a boat crossing the i-th river.

The problem can be encoded in HS as follows. First of all, we introduce a formula
ϕboat, which states that if anyone is on the boat, then the farmer must be as
well, and a formula ϕsafe, which prevents two incompatible elements from being
alone (unguarded) on the same side of a river:

ϕboat ≡ [U ]
∧
i,j(e

i,B
j → f i,B);

ϕsafe ≡ [U ]
∧
i,j((e

i,S
j ∧ e

i,S
j+1 ∧ ¬f i,S)→ ⊥).

Next, we need to force some obvious physical constraints:

ϕphy ≡



[U ]
∧
i>0,j(e

i,S
j → (〈L〉ei,Bj ∨ 〈A〉ei,Bj )); (i)

[U ]
∧
i>0(f i,S → (〈L〉f i,B ∨ 〈A〉f i,B)); (ii)

[U ]
∧
i,j(e

i,B
j → (〈L〉ei−1,Sj ∨ 〈A〉ei−1,Sj )); (iii)

[U ]
∧
i(f

i,B → (〈L〉f i−1,S ∨ 〈A〉f i−1,S)); (iv)

[U ]
∧
i,j,∗(e

i,∗
j →

∧
i′,∗′ ¬〈SI〉e

i′,∗′
j ); (v)

[U ]
∧
i,∗(f

i,∗ →
∧
i′,∗′ ¬〈SI〉f i

′,∗′). (vi)
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Formulas (i) and (ii) impose that the farmer, as well as any element, has been
on the boat on the i-th river before being on the right hand side of that river.
Similarly, formulas (iii) and (iv) state that the farmer, as well as any element,
must have been on the left hand side of the i-th river before being on the boat
across it. Furthermore, formulas (v) and (vi) constrain the model to be coherent:
whenever any element or the farmer are somewhere, they are not anywhere else.

Finally, we add a formula ϕriddle (the riddle constraint) which states that
the capacity of the boat is limited (as in the original formulation of the riddle,
it states that the boat cannot host all the elements together) and that everyone
starts at the left hand side of the first river and, eventually, ends up at the right
hand side of the last one:

ϕriddle ≡


f0,S ∧ e0,S1 ∧ . . . ∧ e0,Sn ,

[U ]
∧
j(
∧
i(e

i,B
1 ∧ . . . ∧ ei,Bj−1 ∧ e

i,B
j+1 ∧ . . . ∧ ei,Bn )→ ⊥),

〈L〉(fm,S ∧ em,S1 ∧ . . . ∧ em,Sn ).
In Figure 7, we have reported the elapsed time for model checking the con-

junction of the above formulas against a generalized version of the model in
Figure 5. The size of the problem is expressed in bytes, and time in milliseconds.
All experiments have been run on a CPU Intel(R) Core(TM) i7, with a clock



of 2.60GHz and 8GB RAM. For each number of rivers, ranging from 1 to 5, we
have tried to model check the conjunction of all specifications for a number of
elements ranging from 8 to 48 (with 4-unit steps).

As one may observe from Figure 7, the elapsed time grows quadratically,
i.e., as a parabola, with the size of the input (size of the model plus size of the
formula), as expected in a non-degenerate experiment.

5 Conclusions

Model checking is a fundamental problem in computational logic. In the recent
past, it has been applied to a number of different contexts, ranging from program
and protocol checking to system verification. Point-based temporal logics have
been traditionally used for property specification in model checking. The interest
for interval temporal logic model checking is much more recent.

We focused on the problem of model checking formulas of the interval tem-
poral logic HS against (concrete) finite interval models, which comes into play
in a number of applications different from automated system verification. As an
example, constraint checking and query answering in temporal databases can
be viewed as special instances of such a problem. The same holds for temporal
rule extraction in data mining. A formalization of the problem, an analysis of its
complexity, and a discussion of some possible applications can be found in [22].

Here, we proposed a first implementation of the model checking procedure
outlined in [22], and we reported the outcomes of its systematic testing against
benchmarks obtained from the generalization of a known riddle and its solution.
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avicco. A complete classification of the expressiveness of interval logics of Allen’s
relations: The general and the dense cases. Acta Informatica, 53(3):207–246, 2016.

2. J. Allen. Maintaining knowledge about temporal intervals. Communications of the
ACM, 26(11):832–843, 1983.

3. L. Bozzelli, A. Molinari, A. Montanari, and A. Peron. An in-Depth Investigation
of Interval Temporal Logic Model Checking with Regular Expressions. In Proc. of
the 15th SEFM, volume 10469 of LNCS, 2017.

4. L. Bozzelli, A. Molinari, A. Montanari, and A. Peron. On the Complexity of Model
Checking for Syntactically Maximal Fragments of the Interval Temporal Logic HS
with Regular Expressions. In Proc. of the 8th GandALF, 2017.

5. L. Bozzelli, A. Molinari, A. Montanari, A. Peron, and P. Sala. Interval temporal
logic model checking: The border between good and bad HS fragments. In Proc.
of the 8th IJCAR, volume 9706 of LNCS, pages 389–405. Springer, 2016.

6. L. Bozzelli, A. Molinari, A. Montanari, A. Peron, and P. Sala. Interval vs. point
temporal logic model checking: an expressiveness comparison. In Proc. of the 36th
FSTTCS, volume 65 of LIPIcs, pages 26:1–26:14, 2016.

7. L. Bozzelli, A. Molinari, A. Montanari, A. Peron, and P. Sala. Model checking the

logic of Allen’s relations meets and started-by is PNP-complete. In Proc. of the
7th GandALF, volume 226 of EPTCS, pages 76–90, 2016.



8. D. Bresolin, D. Della Monica, A. Montanari, P. Sala, and G. Sciavicco. Interval
temporal logics over strongly discrete linear orders: Expressiveness and complexity.
Theoretical Computer Science, 560:269–291, 2014.

9. E.M. Clarke and E.A. Emerson. Design and synthesis of synchronization skeletons
using branching-time temporal logic. In Logics of Programs, volume 131 of LNCS,
pages 52–71. Springer, 1981.

10. C. Combi and A. Montanari. Data models with multiple temporal dimensions:
Completing the picture. In Proc. of the 13th CAiSE, volume 2068 of LNCS, pages
187–202. Springer, 2001.

11. E.A. Emerson and J.Y. Halpern. Decision procedures and expressiveness in the
temporal logic of branching time. Journal of Computer and System Sciences,
30(1):1–24, 1985.

12. E.A. Emerson and J.Y. Halpern. “Sometimes” and “Not Never” revisited: On
branching versus linear time temporal logic. Journal of the ACM, 33(1):151–178,
1986.

13. J. Halpern and Y. Shoham. A propositional modal logic of time intervals. J. of
the ACM, 38(4):935–962, 1991.

14. K. Kulkarni and J.E. Michels. Temporal features in SQL:2011. ACM SIGMOD
Record, 41(3):34–43, 2012.

15. A. Lomuscio and J. Michaliszyn. An epistemic Halpern-Shoham logic. In Proc. of
the 23rd IJCAI, pages 1010–1016, 2013.

16. A. Lomuscio and J. Michaliszyn. Decidability of model checking multi-agent sys-
tems against a class of EHS specifications. In Proc. of the 21st ECAI, volume 263
of Frontiers in Artificial Intelligence and Applications, pages 543–548, 2014.

17. A. Lomuscio and J. Michaliszyn. Model checking multi-agent systems against
epistemic HS specifications with regular expressions. In Proc. of the 15th KR,
pages 298–308, 2016.

18. A. Molinari, A. Montanari, A. Murano, G. Perelli, and A. Peron. Checking interval
properties of computations. Acta Informatica, 53(6-8):587–619, 2016.

19. A. Molinari, A. Montanari, and A. Peron. Complexity of ITL model checking:
Some well-behaved fragments of the interval logic HS. In Proc. of the 22nd TIME,
pages 90–100, 2015.

20. A. Molinari, A. Montanari, and A. Peron. A model checking procedure for interval
temporal logics based on track representatives. In Proc. of the 24th CSL, volume 41
of LIPIcs, pages 193–210, 2015.

21. A. Molinari, A. Montanari, A. Peron, and P. Sala. Model checking well-behaved
fragments of HS: the (almost) final picture. In Proc. of the 15th KR, pages 473–483,
2016.

22. D. Della Monica, D. de Frutos-Escrig, A. Montanari, A. Murano, and G. Sciavicco.
Evaluation of temporal datasets via interval temporal logic model checking. In
Proc. of the 24th TIME. LIPIcs, 2017.

23. A. Montanari, A. Murano, G. Perelli, and A. Peron. Checking interval properties
of computations. In Proc. of the 21st TIME, pages 59–68, 2014.

24. A. Pnueli. The temporal logic of programs. In Proc. of the 18th FOCS, pages
46–57, 1977.

25. P. Roper. Intervals and tenses. Journal of Philosophical Logic, 9(4):451–469, 1980.
26. R.T. Snodgrass, editor. The TSQL2 Temporal Query Language. Kluwer, 1995.
27. R.T. Snodgrass, I. Ahn, G. Ariav, D.S. Batory, J. Clifford, C.E. Dyreson, R. El-
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