Towards parametric causal semantics in
w-calculus *

Doriana Medié and Claudio Antares Mezzina

IMT School for Advanced Studies Lucca, Italy

Abstract. In a concurrent setting, causally-consistent reversibility re-
lates causality and reversibility. In this note we overview three causal
semantics for m-calculus: two classical and a recent one used for a re-
versible variant of 7-calculus. We show the differences between them via
examples, and discuss how to revise the classical one in order to be used
as the underlying machinery for a reversible calculus. We propose a rein-
terpretation of such notions in particular when it comes to silent actions
and names extrusion. Our ultimate goal is to devise a general reversible
framework parametric into the underlying notion of causality.

1 Introduction

A reversible system is capable of executing both in the forward (normal) direction
and in the backward one. In a sequential setting, executing backwards is quite
straightforward since there exists only one execution order. In a concurrent sys-
tem, things are more complex as there exist no clear notion of last action: indeed,
several independent processes may execute concurrently. Causally-consistent re-
versibility [7] relates causality and reversibility of a concurrent system in the
following way: an action can be reverted provided all its consequences have been
reverted.

In Milner’s CCS, there exists just one notion of causality: the so-called struc-
tural which is imposed by the prefixing ‘.’ operator and by synchronizations.
An evidence of this is that the two reversible variants of CCS, RCCS [4] and
CCSK [9] are shown to be equivalent [8]. When moving to more expressive cal-
culi with name creation and passing like m-calculus things are more complex,
since there exist different notions of causality as witnessed by the plethora of
causal semantics for m-calculus [2, 5, 1] (just to cite a few of them). In m-calculus,
structural causality is determined by the nesting of the prefixes; for example, in
process ba.ce the output on channel ¢ structurally depends on the output on b.
Extruding (or opening) a name generates an object dependency; for example, in
process va (ba | a(z)) the input action on a depends on the output on b. Sending
a bound name to the context will make all the successive actions using that
name dependent on the extruder. There exist different interpretations on how
the first extrusion of a name causes the processes using it. In this short note we

* Partially supported by EU COST IC1405 (Reversible Computation - Extending
Horizons of Computing).

will consider the causal semantics introduced by Boreale and Sangiorgi [1], by
Degano and Priami [5] and by Cristescu, Krivine and Varacca [2]; and we will dis-
cuss on how these notions generate different interpretations of backward moves
especially when considering silent actions. Our goal is to devise a reversible cal-
culus parametric with respect the underlying causal semantics, in order to better
compare them.

2 Causal semantics by example

Processes in w-calculus are derived from the following syntax:
P,Q =:=0|n.P| P|Q |va(P) 7 u=bc|bla)|T

A process can be inactive 0, a prefixed process . P, the parallel composition
P | @ and the restriction of a name va(P) meaning that the channel name a is
only known in process P. A prefix m denotes the output, input and the silent
action, respectively. The semantics of w-calculus is expressed via an LTS and the
generated actions/labels are p ::= be | b(a) | b{va) | T, where b(va) represents
sending of a bound name a. Let us consider the 7 process P = va (ba | ¢a | a(z)),

where the actions are executed in following order: P b—a>E—a>ﬂ> P’ and * stands

for either y or z depending on whether the considered semantics is a late (x = z)
or an early (* = y) one. We now show how the different causal semantics behave.

Boreale et al. Causal information is added to the syntax and semantics of 7-
calculus in order to track down subject dependencies. Causal processes are of
the form K :: P, where the cause-set K contains all the causes of the process P.
Every visible action is associated with a unique cause k. The 7 actions are not
observable and do not exhibit causes. The set of the previous causes is noted by
K and in our example it is). Object dependencies can be observed in the labels
of the transitions, by looking at the process trace/run. In our example:
JRAIN 20|ca|alz) =25 k1 0| ko ::O|a(z)ﬂ>k1 20| ko0 ks::0
03k 0;ko 03ks

According to [1], the extrusion (the first action) causes every following action
in which a is a free name. This implies that both of the actions ¢a and a(y) are
caused by b{ra). Hence b{ra) cannot be undone unless ¢a and a(y) are undone.
To be able to capture this behaviour we need to be sure that action b(ra) is the

last one to be undone, the other two can be undone in any order.

Degano et al. The authors keep track of the structural dependence by specifying
which component of the process is performing a move. To uniquely identify the
actions, they use labels of the form du and ¥(||o Yopo, |1 P111) where 9 € {]|o, |1
}* represents the position of the (sub-)process making the action, and po = b(x)
iff 11 is either ba or b(va), or vice versa. The tag ||o (||1) is used to record that the
left (right) component in the process is moving. The object (link) dependency
can be observed by looking at the process run. In our example:

llollob(va) lloll1ca
—

P 0cala(z) 1% 010 a(z) 1“0 l0]0

The extrusion b(va) causes every following action that has the name a in the
subject position. In this way, the input a(z) is caused by the first action. The
output ¢a is neither object dependent on the extrusion, nor concurrent with it.
To order these kind of actions, the authors introduced the notion of temporal
precedence (structural and object). In this way, action b(rva) has object prece-
dence over action ca even if they are not causally dependent. From the reversible
point of view this notion of causality is similar to [1].

Cristescu et al. A compositional semantics for the reversible m-calculus is in-
troduced in [2]. The information about the past actions are kept into a memory
added to every process. A term of the form m > P represents the reversible pro-
cess, where memory m is a stack of events and P is process. A memory' event
(i, k,) contains the identifier ¢, the contextual cause k and executed action a,
respectively. If the action does not have a cause, it is noted with *. The indexed
restriction var behaves as the classical restriction when I' = (), otherwise it is
used to keep track of the past scope of the variable. The process that we get
from P after the execution of the first two actions is:
va; n((i,*%,ba) >0 | {h,*,¢a) >0 | a(2))

The outputs ba and ¢a are associated with the identifiers i and h, respectively.
Since these two actions were sending the bound name a to the context, their
identifiers are recorded into the process va; . According to the semantics, these
two actions are meant to be executed concurrently and both of them can be seen
as the extrusion of the name a. Hence, the input action a(z) can choose its cause
between ¢ and h, according to the context. For example, by choosing h, we will
get the process: _
va; p({i,*,ba) >0 | (h,*,¢a) >0 | (I, h,a[*/z]) > 0)

Since in the memory (I, h,a[x/z]), h is saved as a cause of the action I, that
force us to undo the action a(z) before the extrusion ¢a. The other extrusion
(ba) can be reversed at any time.

2.1 Causalities and silent actions

The semantics introduced in [1,5] lose information about object dependence
when it comes to consider silent actions. Let us consider the process P =
va (ba | €a | a(z)) with a context b(z).Zy | c¢(w) and see what happens.

Boreale et al. By adding a context to the example, all the executed actions will
become silent. Since after a synchronization the causes of the two synchronizing
processes are merged, and no new causes are created, in order to keep track of
them we need to give to processes initial and unique causes. We have:

va (k1 ::ba | ke Ca | k3 a(2)) | ks b(2).Ty | ks =2 c(w) >
a ({k1,ka} 20| ko 2 Ca | ks 2 a(2) | {ki,ka} = @y) | ks 2 c(w) =
va ({ki,ka} 20| {ko,ks} 20| ks a(2) | {k1,ka} : ay | {ke, ks} :: 0) >
a ({ki,ka} 0| {ko,ks} :: 0| {ks,k1,ka} :: 0] {ki,ka,ks} :: 0] {ko,ks5} ::0))

14

14

! For the sake of simplicity we are simplifying the information contained into the
memory m. We refer to [2] for more details on memories.

We can notice that the (silent) actions are no longer object-dependent (as the

example of the previous section). The third 7 action is structurally dependent
on the first one and we can detect it in the set of the causes {ki, k4, ks}. If
instead of imposing unique causes k; to the initial processes, we were to use ()
(as prescribed by the silent actions) we were unable to observe this fact. In [6],
authors proved that the causal information used to support reversibility in p7 is
consistent with this notion of causality, if a reduction semantics is considered.

Degano et al. The object dependence after the communication is not needed
because through the rule CLOSE the object is localised to the rest of the com-
municating processes via va. Hence these three silent actions are not object
dependent. The computation with a context will look like:

P | b(z).7y | c(w) (llollollod{va);ll1llob(a)) va (0 |ea | a(z) | @y) | c(w) (lollollze(va);ll1llre(a))

va (0 | 0 | G(Z) |ay | 0) (llollra(2),ll1llo@y) va (0 | 0 | 0 | 0 ‘ 0)

From the structural point of view the third action is depending on the first one
and we can notice it in the labels. Output ||1]|o @y has a prefix in the first label.

Cristescu et al. After the two synchronizations on the channel b and ¢, we will
get the process:

vag(van(vain((i, *,ba) >0 | (h,*,a) >0 | a(2)) | (i, *, bla/2]) >Ty) | (b, *, c[a/w]) > 0)
According to the authors, processes a(z) and (i, ¥, b[a/x])>Ty can communicate?
only if the instantiator of the action Zy is equal to the cause of the action a(z).
Since action i instantiates the name x with the name a, the cause of the input
action on the channel a is k = 7. Considering the silent actions, the causal order
does not change, as one property of their causal semantics is that object causality
correspond to the subject one.

2.2 Silently regaining information

From these examples we can notice the change in the dependences between the
visible actions and the silent ones. When considering just 7 actions in [1,5],
there is no object dependency among actions; they are considered as concurrent
events. Moreover, information on extruders is lost. To be able to use these causal
semantics for a reversible calculus we need to keep track of which process did
the extrusion and to record where the binder was before. Moreover, also silent
actions have to bring the same causal information as their visible counterpart.
But when considering these modified semantics we will have that in the struc-
turally equivalent processes, the same actions have different causal order. If we
consider our example we will have that Q = va (ba | ¢a | a(2)) | b(z).Zy | c(w),
Q' = va((ba | 2a | a(2)) | b(z).7y | c(w)) with Q = Q' , we will have that if
Q =% executes the synchronization on b and then on ¢ these two silent actions
will be object dependent, while in Q" —%"% the two actions are concurrent. This

2 Memory m is used as a variables store, hence variable z is evaluated into a.

is not the case of [2] since this semantics enjoys some correctness criteria [3] (one
of which is that causality is preserved via structural congruence) that the other
two semantics do not.

3 Conclusions and future work

We reviewed three notions of causality for m-calculus, two non reversible [1, 5]
and one reversible [2], and we showed the differences among them. From the
reversible perspective we pointed out the difficulties while using semantics [1,
5] and proposed a reinterpretation of them in particular when it comes to con-
sider silent actions. More in details, information about the extruder have to be
maintained, in order to bring back the binder while reverting a bound action. It
seems that different data structures can be used to maintain such information;
indeed, [2] uses a set while in [1, 5] since the first extruder causes the other an in-
dexed set should be the ideal data structure. Different data structures will induce
a different notion of causality. Currently we are working on developing a general
framework for reversible 7-calculi parametric with respect to the data structure
used to save extruders information. Then, depending on the underlying data
structure used to instantiate the framework, we could obtain different causal
semantics. In this way, once we are able to capture the two known reversible
variants of m-calculus [6, 2], it will be simpler to compare them.

Acknowledgments

We are grateful to Daniele Varacca for his useful remarks and suggestions which led
to substantial improvements. Furthermore, we thanks Jorge A. Pérez for his comments
on a preliminary version of this document.

References

1. M. Boreale and D. Sangiorgi. A fully abstract semantics for causality in the 7-
calculus. Acta Inf., 35(5):353-400, 1998.

2. 1. Cristescu, J. Krivine, and D. Varacca. A compositional semantics for the reversible
m-calculus. In LICS 2013, pages 388-397, 2013.

3. I. D. Cristescu, J. Krivine, and D. Varacca. Rigid families for CCS and the 7-
calculus. In ICTAC 2015, volume 9399 of LNCS, pages 223-240. Springer, 2015.

4. V. Danos and J. Krivine. Reversible communicating systems. In CONCUR 2004,
volume 3170 of LNCS, pages 292-307. Springer, 2004.

5. P. Degano and C. Priami. Non-interleaving semantics for mobile processes. Theor.
Comput. Sci., 216(1-2):237-270, 1999.

6. I. Lanese, C. A. Mezzina, and J. Stefani. Reversibility in the higher-order m-calculus.
Theor. Comput. Sci., 625:25-84, 2016.

7. 1. Lanese, C. A. Mezzina, and F. Tiezzi. Causal-consistent reversibility. Bulletin of
the EATCS, 114, 2014.

8. D. Medic and C. A. Mezzina. Static VS dynamic reversibility in CCS. In RC 2016,
pages 36-51, 2016.

9. 1. C. C. Phillips and I. Ulidowski. Reversing algebraic process calculi. J. Log. Algebr.
Program., 73(1-2):70-96, 2007.

