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Imagine you are sitting in a room with a large number of people attending
a conference and the organizers give you and all the other persons in the room
a small piece of paper, asking each person to write down a number between 0
and 100. All the numbers will then be collected and a prize will be given to the
person who will have written the closest number to half of the average of all the
numbers. What number would you write on your piece of paper?

Game theory [16] provides a powerful and elegant framework to predict the
outcome of situations like the one described above. Intuitively speaking, in order
to choose a number to write on her piece of paper, a person in the room could
think as follows: Since numbers are constrained to be between 0 and 100, their
average will be a number between 0 and 100 as well, so half of the average will be
a number between 0 and 50; hence, if I am rational I would definitely not write
a number larger than 50. Now, if everyone in the room is rational and writes a
number not larger than 50, then the average itself will be not larger than 50 and
half of the average will be not larger than 25; so, if I am rational and I believe
that all other people in the room are rational, I would not write a number larger
than 25. If everyone writes a number not larger than 25, . . .

A few more steps of reasoning along the above lines and we have the game
theoretic prediction of the outcome: Every person in the room writes 0 on her
piece of paper. This is indeed the unique Nash equilibrium [14] of that game.
However, if you try it out in any real scenario, you will see by yourself how far
from the truth is such a prediction. The main reason is that it relies on the very
strong assumption that rationality is common knowledge [6] among the agents
(everyone is rational, everyone knows that everyone is rational, everyone knows
that everyone knows that everyone is rational, and so forth).

Bounded rationality and the Logit dynamics

Several branches of game theory try to relax the rationality assumption in order
to get to more reliable predictions. For example, Evolutionary game theory [15]
applies the game theoretic framework to repeated games in biological contexts
and introduces new solution concepts (evolutionary stable strategies); Behavioral
game theory [9] proposes a more experimental approach: Observe the behavior
of real players and appropriately extend the theory to give explanation to the
outcomes.

A simple and elegant approach to model players with limited rationality in the
case of repeated games is the Logit dynamics, introduced in [8] and inspired by



statistical mechanics: Starting from some initial strategy profile, at each round
a player is selected uniformly at random and she updates her current strategy
according to a probability distribution biased toward strategies promising higher
payoffs. More formally, let n be the number of players, for i = 1, . . . , n let Si
be the set of strategies for player i and let ui : S1 × · · · × Sn → R be her
utility function. If x = (x1, . . . , xn) ∈ S1 × · · · × Sn is the current profile of
strategies and player i is selected for the update, then she will play strategy
y ∈ Si with probability proportional to eβui(x−i,y), where (x−i, y) is the vector
obtained from x by replacing the i-th entry xi with y and β > 0 is a parameter
measuring the rationality level of the players (it is indeed easy to see that,
for β = 0 players play one of their strategies uniformly at random, i.e., they
have no rationality at all, while for β → ∞ players tend to best respond to
the current strategies of the other players, i.e., they are fully rational). Logit
dynamics defines an ergodic Markov chain over the space of strategy profiles
(more precisely, a family of ergodic Markov chains indexed by β) whose unique
stationary distribution πβ we proposed [5] as the equilibrium solution concept
for the game. The “prediction” of such a solution concept is thus that, for any
subset A ⊆ S1×· · ·×Sn of the state space, the fraction of times that the system
spends in A is given by its stationary probability πβ(A), in the long run. This
is certainly a more rough prediction than that of a Nash equilibrium but it is
likely much more realistic in several cases (as much as a statement like “The next
economic crisis will happen in 2059” cannot be considered a serious prediction
today, while a statement like “We should expect at least two global economic
crises for each century” is certainly weaker but also much more credible while
still containing some non-negligible information).

Once we model an evolving system of agents as an ergodic Markov chain, the
unique stationary distribution of the chain becomes a powerful solution concept
for the system, since it allows us to make predictions on its behavior in the
long run, regardless of the starting state. However, the strength of this solution
concept is also its weakness: The predictive appeal of the stationary distribution
essentially vanishes if the mixing time [13] (the time it takes the chain to get
close to its stationary distribution, starting at an arbitrary state) is too long with
respect to the time-scale we are interested in. In [2, 3] we classified some classes of
strategic games with respect to their Logit dynamics’ mixing time, distinguishing
between polynomial and exponential (in the number of players) mixing. For the
games whose Logit dynamics has exponential mixing time, in order to be able to
make predictions at polynomial time-scales, in [4] we introduced a generalization
of the concept of stationary distribution for a Markov chain and we called it
metastable probability distribution.

Metastability is a word that can have slightly different meanings in differ-
ent scientific disciplines. Nevertheless, all the meanings are somehow related to
evolving systems hanging around “persistent” configurations but out of their
main equilibrium. Our definition in [4] is no exception: Roughly speaking, we
define a probability distribution µ to be metastable for a Markov chain with tran-
sition matrix P , if µP is close (with respect to an appropriate distance function)



to µ. Among all possible metastable distributions, the interesting ones are those
quickly reached from some subset of the state space. As a simple example, con-
sider the following process: Start with a sequence of n bits (x1 . . . , xn) ∈ {0, 1}n;
at each round pick one index i ∈ [n] uniformly at random and replace xi with
either 0 or 1 with probability 1/2; stop when you reach either the sequence with
all zeros 0 = (0, . . . , 0) or the sequence with all ones 1 = (1, . . . , 1). This is a
lazy random walk on the hypercube (see, e.g., [10]) modified by making 0 and
1 absorbing states. Clearly, starting from any state x ∈ {0, 1}n, eventually the
process will end up in one of the two absorbing states. However, for every initial
state x 6= 0,1, the process will run for an exponential number of rounds, in ex-
pectation, before being absorbed; can’t we say anything on the distribution xP t

at a shorter time-scale? Yes, indeed. It is easy to see that, after t = Θ(n log n)
rounds, xP t will get close to the uniform distribution U ∼ {0, 1}n, and it will
stay close to U for an exponential number of rounds.

In [4] we introduced and studied metastable probability distributions as so-
lution concepts for strategic games. However, the usefulness of looking at the
“metastable phase” of evolving systems goes beyond the domains of game the-
ory and Markov chains. In the next section we briefly describe an example of a
simple dynamics whose metastable phase analysis allowed us to solve an intrigu-
ing computational task in a distributed way [7].

Community detection via averaging

Consider the following simple rules executed synchronously, in discrete rounds,
by the nodes of an undirected graph: Each node initially holds a value (say, a
rational number) and then, at each round, it updates its value to the average
of the values held by its neighbors. It comes as no surprise that, under mild
assumptions on the graph (namely, it has to be connected and non-bipartite) all
nodes will converge to the same value, in the long run. May be it is much less
obvious that, in its metastable regime, this simple dynamics can be effectively
used to efficiently solve the community detection problem [12, 11, 1] in a fully-
distributed way.

Let us consider a graph formed by two good expanders connected by a sparse
cut. For the sake of concreteness and simplicity, let us assume we have a “very
regular” graph G = (V,E) with an even number n of nodes partitioned in two
blocks of equal size, V1 and V2, and that each node has exactly a neighbors in its
own block and exactly b neighbors in the other block, for some positive integers
a and b, with a � b. Let µ1 and µ2 be the averages of the initial values of the
nodes in V1 and V2, respectively. Intuitively speaking, by running the averaging
dynamics on a graph like that the following happens: In a first phase, the values
of all nodes in V1 quickly converge to a value close to µ1, while those of nodes
in V2 to a value close to µ2. After that initial phase, the system enters in a
metastable regime in which all values slowly converge toward the global average
(µ1 + µ2)/2; if the two averages µ1 and µ2 are different, say µ1 < µ2, in this
second phase the value of each node in V1 increases at every round and the value
of each node in V2 decreases. Thus, if we augment the averaging dynamics with



a “clustering criterion” asking each node to raise, at each round, a blue flag or a
red flag depending on whether its value has increased or decreased from the last
round, then as soon as the system enters the metastable regime, all nodes in one
of the blocks raise the red flag and all nodes in the other block raise the blue
one. We thus have a fully-distributed protocol that allows the nodes to perform
a perfect reconstruction of the two clusters of the graph.

To make the intuitions in the above paragraph a bit more real, we can use

some linear algebra: Let us name x(t) = (x
(t)
u , u ∈ V ) the vector where x

(t)
u is the

value of node u at round t. It is easy to see that the averaging dynamics is defined
by the recursion x(t+1) = Px(t), where P = A/(a + b) and A is the adjacency
matrix of the graph. The vector of values at round t is thus x(t) = P tx(0). Since
P is a symmetric matrix with real entries, all its eigenvalues are real. Since P is
stochastic (the entries of each row sum up to 1), all its eigenvalues are between
−1 and 1 and vector 1 = (1, u ∈ V ), i.e., the vector with all entries equal to 1,
is an eigenvector with eigenvalue 1. Moreover, for our “very regular” graph G,
the partition indicator vector χ = (1, u ∈ V1; −1, u ∈ V2), taking value +1 on
all the nodes of one of the blocks and −1 on all the nodes of the other block, is
also an eigenvector and its eigenvalue is (a − b)/(a + b). Under the assumption
a� b, that formalizes the fact that the two blocks are internally well-connected
with respect to the cut between them, (a − b)/(a + b) is the second-largest
eigenvalue, λ2, of P . The vector of values at round t can thus be written as
x(t) = α11 + α2λ

t
2χ + e(t), where α1 and α2 are suitable coefficients depending

only on the initial values (namely, α1 is the global average (µ1 + µ2)/2 of the
initial values and α2 is half of the difference of the initial averages (µ1 − µ2)/2)
and e(t) is a vector orthogonal to 1 and χ. When we consider the difference
between the vectors in two consecutive rounds, the component in the direction
of 1 cancels, and what is left is x(t−1) − x(t) = α2λ

t−1
2 (1− λ2)χ + e(t−1) − e(t).

Since e(t), for t = 0, 1, . . . , are vectors orthogonal to 1 and χ, the norm of
e(t) goes to zero at least as fast as the third eigenvalue of P , λt3. Hence, if the
coefficient α2 is non-zero, after a number of rounds depending on 1/(λ2 − λ3) it
holds that |α2λ

t−1
2 (1 − λ2)| > |e(t−1)(u) − e(t)(u)| for all nodes u. This implies

that, for each node u, the sign of x
(t−1)
u − x(t)u is equal to the sign of α2χ: In

other words, it is positive for all the nodes in one of the blocks and negative for
all the nodes in the other block. Finally, in order to ensure in a distributed way
that α2 = (µ1−µ2)/2 is non-zero, we can use randomness: If each node chooses
its initial value as +1 or −1 with probability 1/2, then the two initial averages
differ for Θ(1/

√
n) with high probability.

Some final remarks

Evolving systems governed by simple local rules that produce observable global
phenomena, can be fruitfully studied from a computational perspective. On the
one hand, they seem suitable for modeling natural phenomena emerging in dif-
ferent fields (physics, economy, biology); on the other hand, they can be used
as design principles and building blocks for lightweight distributed protocols for
relevant computational tasks.



Randomness plays a fundamental role in this kind of processes, either in a
Bayesian sense, to model the intrinsic uncertainty about the local rules executed
by the agents of the system, or as a distributed symmetry-breaking tool.

The most interesting phenomena often cannot be studied by means of limiting
behaviors and equilibria, because they appear at shorter time-scales, i.e., when
systems are in their metastable phases.

References

1. Emmanuel Abbe and Colin Sandon. Community detection in general stochastic
block models: Fundamental limits and efficient algorithms for recovery. In Proc.
of the 56th IEEE Ann. Symp. on Foundations of Computer Science (FOCS’15),
pages 670–688. IEEE, 2015.

2. Vincenzo Auletta, Diodato Ferraioli, Francesco Pasquale, Paolo Penna, and
Giuseppe Persiano. Logit dynamics with concurrent updates for local interaction
potential games. Algorithmica, 73(3):511–546, 2015.

3. Vincenzo Auletta, Diodato Ferraioli, Francesco Pasquale, Paolo Penna, and
Giuseppe Persiano. Convergence to equilibrium of Logit dynamics for strategic
games. Algorithmica, 76(1):110–142, 2016.

4. Vincenzo Auletta, Diodato Ferraioli, Francesco Pasquale, and Giuseppe Persiano.
Metastability of Logit dynamics for coordination games. In Proc. of the ACM-
SIAM Symp. on Discrete Algorithms (SODA’12), pages 1006–1024. SIAM, 2012.

5. Vincenzo Auletta, Diodato Ferraioli, Francesco Pasquale, and Giuseppe Persiano.
Mixing time and stationary expected social welfare of Logit dynamics. Theory of
Computing Systems, 53(1):3–40, 2013.

6. Robert J. Aumann. Agreeing to disagree. The Annals of Statistics, pages 1236–
1239, 1976.

7. Luca Becchetti, Andrea Clementi, Emanuele Natale, Francesco Pasquale, and Luca
Trevisan. Find your place: Simple distributed algorithms for community detection.
In Proc. of the ACM-SIAM Symp. on Discrete Algorithms (SODA’17), pages 940–
959. SIAM, 2017.

8. Lawrence E. Blume. The statistical mechanics of strategic interaction. Games and
Economic Behavior, 5(3):387–424, 1993.

9. Colin Camerer. Behavioral game theory: Experiments in strategic interaction.
Princeton University Press, 2003.

10. Persi Diaconis, Ronald L. Graham, and John A. Morrison. Asymptotic analysis
of a random walk on a hypercube with many dimensions. Random Structures &
Algorithms, 1(1):51–72, 1990.

11. Santo Fortunato. Community detection in graphs. Physics reports, 486(3):75–174,
2010.

12. Michelle Girvan and Mark E.J. Newman. Community structure in social and
biological networks. Proc. of the National Academy of Sciences, 99(12):7821–7826,
2002.

13. David A. Levin, Yuval Peres, and Elizabeth L. Wilmer. Markov chains and mixing
times. American Mathematical Society, 2009.

14. John Nash. Non-cooperative games. Annals of Mathematics, pages 286–295, 1951.
15. J. Maynard Smith. The theory of games and the evolution of animal conflicts.

Journal of Theoretical Biology, 47(1):209–221, 1974.
16. John von Neumann and Oskar Morgenstern. Theory of games and economic be-

havior. Princeton University Press, 1944.


