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Abstract. We provide a brief overview of a set of analytical results
regarding some very simple randomized protocols, called dynamics, for
solving the plurality consensus problem, together with some examples
on how to build efficient and robust distributed algorithms for other fun-
damental tasks using these protocols as a core subroutine. More specifi-
cally, we look at the 3-Majority and the Undecided-State dynamics, and
at how to use them to solve fundamental problems such as information
propagation and clock synchronization.

1 Introduction

Since the advent of the computer, scientists found themselves with a new tele-
scope which provided them with the capacity to observe the computational uni-
verse at a new scale. Through simulations, they were able to look far beyond
their mathematical understanding of the relationship between local interactions
among the tiny parts of a system and its global behavior and, in the last decades,
they were astounded by the unexpected appearance of global complexity from
local simplicity. However, such enthusiasm brought from the shocking new ability
to explore the universe of computational rules has been counterbalanced from
the inability to develop a new mathematics which could account for our new
observations.

Within the world of theoretical computer science, a particularly appealing
tool to look at the interplay of local/individual and global/collective behavior
is the theory of distributed computing. From programmable matter to chemi-
cal reaction networks, from sensor networks to the behaviour of insect colonies,
there is a huge part of the distributed computing discipline driven by the as-
piration to develop a theory analogous to that built by statistical mechanics
for interacting particle systems, when we replace “particle” with “agent”. With
this respect, distributed computing researchers have recently managed to start
analyzing analytically some particularly simple protocols, collectively called dy-
namics [7]. Informally, a dynamics is a distributed computing protocol in which
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each node of the graph updates its state according to a time- and topology-
invariant function which only depends on the node’s current state and on that
of its neighbors.

In the next section, we briefly discuss two of the most notable examples of
dynamics and some of the associated results, whose development the author had
the pleasure to take part of. In the subsequent section, we finally discuss some
way to use such results to improve the state of the art of some fundamental
distributed computing problems.

1.1 Dynamics for majority consensus

One of the simplest, non-trivial1 dynamics one can think of is the 3-Majority
dynamics [3], in which at each round each node looks at the states of three
random neighbors and then switch to the majority state among these three ones
(breaking ties uniformly at random).

Rather surprisingly, we found that the convergence time of the 3-Majority
dynamics in solving the consensus problem, is essentially linear in the number
of initial different opinions in the system. We further proved that the situation
does not change if instead of the 3-Majority we consider any protocol within a
wide class of dynamics (h-input dynamics), and that the 3-Majority dynamics
was already optimal, in a precise sense, w.r.t. all those dynamics which basically
consist in exchanging opinions making use of at most 3 inputs.

These results were very bad news for the potential use of majority-like dynam-
ics as a building block for more complex protocols and as an efficient dynamics
per-se, and motivated the further investigation of faster dynamics for achieving
plurality consensus. After exploring the vast space of possible candidates for
quite a while, stumbled upon the Undecided-State dynamics.

The Undecided-State dynamics was already famous in computer science as
an elegant solution to more restricted majority consensus problems (i.e. asyn-
chronous communication models with binary initial states). After some attempts
at proving upper bounds on its convergence time w.r.t. the standard hypothe-
ses that are assumed in majority consensus problems, we noticed that under its
deceptively simple structure the Undecided-State dynamics shows an evolution
with an unexpected anatomy [2]. Namely, its behaviour and convergence time,
instead of depending on few crucial parameters, are a function sensible to the
whole initial configuration. We named this function the monochromatic distance.
By inspecting the monochromatic distance we see that the Undecided-State dy-
namics has the advantage of having a convergence time which is at least as good
as that of the 3-Majority dynamics (for a number of opinions in the system
which can be as large as

√
n/ log n), and exponentially faster for a wide range

of configurations. Thus, it is a simple but way more effective dynamics in many
applicative contexts, such as congested communication models [1].
1 A trivial dynamics is, for example, the Polling Process, in which at each round each
node copies the state of a random neighbor. While the analysis of the latter process
already poses many mathematical challenges, from a computational point of view it
doesn’t exhibit surprising features.



1.2 Applications of majority dynamics

In addition to the purely theoretical interest and potential applications in techno-
logical contexts (e.g. sensor and ad-hoc networks), the investigation of dynamics
is also partially motivated by biological questions. In the biological world, infor-
mation propagation and majority consensus are common phenomena in a wide
range of systems. Examples of such processes include a single ant that has found
food and recruits others, few cells that trigger large population responses, a
school of fish that reaches consensus around a group of leaders, or a small num-
ber of observant individuals that alert their herd. Such information propagation
is achieved despite what appear to be highly unpredictable, uncoordinated, noisy
and limited communication settings.

In [5], the authors investigate “natural” protocols for solving the information
propagation and majority consensus problems in a noisy version of the uniform
PUSH model, where each message can be corrupted before being received. We
generalize the previous problem to the case with multiple opinions [6]. Such gen-
eralization required us to solve both conceptual and technical issues. On the
conceptual side, while in the binary-message case the noise merely consists in
the fact that with some probability one of the two values can be “flipped”, in the
multivalued case it is not clear what is the right way of modeling the fact that
messages can be misunderstood. Here, the “right” modeling is the formalization
that allows to separate in the most natural way the settings in which the prob-
lem can be solved from those in which it is not solvable. On the technical side,
the problem shares the following usual difficulty of generalizing a finite-volume
process from dimension one to more than one. In the binary case, the fact that
there are only two possible values provides the possibility to “take the comple-
ment” of quantities regarding one value, to get those regarding the other one.
This possibility, which is often a key ingredient of the analysis, vanishes when
we introduce further degrees of freedom in the process by allowing more than
two possible values. While the aforementioned generalization in the end is still
far from being a dynamics per-se, the subroutines at the core of the algorithm
rely on a generalization of the 3-Majority dynamics.

The above noise variant of the rumor spreading problem deals with reaching
consensus despite the presence of noise in the system. The consensus problem,
however, has a wider general significance within the natural world. In a biologi-
cal setting, maintaining consensus is an evolutionary convenient strategy to cope
with the limitations of single individuals in acquiring information from the envi-
ronment, and to maximize the probability of survival in general. As an example,
let us imagine a group of birds on a wire2. At some point some bird starts to
fly. The other birds have the legitimate doubt that the moving one is leaving her
spot on the wire because she has caught sight of a predator. Therefore, other
birds start flying as well. Perhaps, shortly after leaving her point on the wire the
first bird lands again on it, since her original intention was only to move to a
better place. The other alarmed birds then realize that it was a false alarm, and

2 The author thanks Amos Korman for the nice “stubborn bird” example.



they also start landing again on the wire. On the other hand, the first bird may
also stubbornly continue her escape from an imminent threat; although initially
many others may not follow her, after few moments more and more other birds
start leaving the wire as they see other fellows doing it, so that and eventually
realizes that it might be wiser to take off.

From the previous anecdotal example, we can abstract the following dis-
tributed computing problem. We have a system of agents in the PULL model,
and one of them, the source, has some important piece of information that the
system could use, which we call input bit. At the outset, each agent as a guess on
the value of the input bit. However, there is no assumption on the initial states
of the agents: some of them, for example, may hold a wrong assumption on the
value of the input bit. Therefore, we would like to devise a strategy, as simple
as possible, such that the system can rapidly reach consensus on the true value
of the input bit, starting from an arbitrary initial configuration of the agents’
states.

Equivalently, given the previous abstract formulation, we are essentially asked
to solve the self-stabilizing consensus problem in the setting in which there is
one agent (the source) which does not change her mind (she knows the true
input bit). By leveraging on the power of simple dynamics, we show a sound
connection between the self-stabilizing information propagation problem and
the problem of synchronizing clocks, in a self-stabilizing manner, in the uniform
PULL model [4]. We thus end up devising a solution for the self-stabilizing clock
synchronization problem. Our solution uses, as a subroutine, any dynamics for
majority consensus such as the 3-Majority dynamics and, in the uniform PULL
model using messages of 3 bits only, the presented solution allows the agents
to synchronize a clock modulo T in time essentially logarithmic in T and the
size of the system. This allows to remove the assumption of an initial common
time notion from an entire class of protocols, and provides a general solution
for the self-stabilizing majority information propagation problem, which is a
generalization of the aforementioned information propagation problem which
includes the majority consensus problem as a special case.
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