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1 Introduction

Reasoning about exceptions in ontologies is nowadays one of the challenges the de-

scription logics community is facing, a challenge which is at the very roots of the de-

velopment of non-monotonic reasoning in the 80s. Many non-monotonic extensions of

Description Logics (DLs) have been developed incorporating non-monotonic features

from most of the non-monotonic formalisms in the literature [1, 10, 12, 19, 5, 4, 7, 24,

11, 3, 20, 6, 18, 15, 16], or defining new constructions and semantics such as in [2].

The abstract describes a preferential approach for dealing with exceptions in de-

scription logics [14], where a typicality operator is used to select the typical (or most

preferred) instances of a concept. This approach, as well as the preferential approach

in [5], has been developed along the lines of the preferential semantics introduced by

Kraus, Lehmann and Magidor [21, 22].

We focus on the rational closure for DLs [7, 9, 6, 16] and, in particular, on the con-

struction developed in [16], which is semantically characterized by minimal preferential

models. While the rational closure provides a simple and efficient approach for reason-

ing with exceptions, exploiting polynomial reductions to standard DLs [13], the rational

closure does not allow an independent handling of the inheritance of different defeasi-

ble properties of concepts so that, if a subclass of C is exceptional for a given aspect, it

is exceptional tout court and does not inherit any of the typical properties of C.

To cope with this problem Lehmann [23] introduced the notion of the lexicographic

closure, which was extended to DLs by Casini and Straccia [8], while in [17] Gliozzi

proposed a semantic approach in which models are equipped with several preference

relations. The lexicographic closure allows for stronger inferences with respect to ratio-

nal closure, computing the defeasible consequences in the lexicographic closure may

require to compute several alternative bases [23](namely, consistent sets of defeasible

inclusions which are maximal with respect to some specificity ordering).

In this extendedabstract we propose an alternative notion of closure, the skeptical

closure, which can be regarded as a skeptical variant of the lexicographic closure. It is a

refinement of rational closure which allows for stronger inferences, but it is weaker than

the lexicographic closure and its computation does not require to generate all the alter-

native maximally consistent bases. The construction is based on the idea of building a

single base, i.e. a single maximal consistent set of defeasible inclusions, starting with

the defeasible inclusions with highest rank and progressively adding less specific inclu-

sions, if consistent, but excluding the defeasible inclusions which produce a conflict at

a certain stage without considering alternative consistent bases.
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2 The rational closure

We briefly recall the logic ALC + TR which is at the basis of a rational closure con-

struction proposed in [16] for ALC. The idea underlying ALC + TR is that of extend-

ing the standard ALC with concepts of the form T(C), whose intuitive meaning is that

T(C) selects the typical instances of a concept C, to distinguish between the proper-

ties that hold for all instances of concept C (C ⊑ D), and those that only hold for

the typical such instances (T(C) ⊑ D). The ALC + TR language is defined as fol-

lows: CR := A | ⊤ | ⊥ | ¬CR | CR ⊓ CR | CR ⊔ CR | ∀R.CR | ∃R.CR, and

CL := CR | T(CR), where A is a concept name and R a role name. A KB is a pair

(TBox, ABox). TBox contains a finite set of concept inclusions CL ⊑ CR. ABox con-

tains a finite set of assertions of the form CR(a) and aRb, for a, b individual names.

The semantics of ALC +TR is defined in terms of rational models: ordinary models of

ALC are equipped with a preference relation < on the domain, whose intuitive meaning

is to compare the “typicality” of domain elements: x < y means that x is more typical

than y. The instances of T(C) are the instances of concept C that are minimal with

respect to <. We refer to [16] for a detailed description of the semantics and we denote

by |=ALC+TR
entailment in ALC +TR.

In [16] the rational closure construction has been defined for ALC +TR, extending

to DLs the notion of rational closure introduced by Lehmann and Magidor [22]. The

definition is based on the notion of exceptionality. Roughly speaking T(C) ⊑ D holds

in the rational closure of K if C is less exceptional than C ⊓¬D. We shortly recall this

construction of the rational closure of a TBox and we refer to [16] for full details.

Definition 1 (Exceptionality of concepts and inclusions). Let E be a TBox and C a

concept. C is exceptional for E if and only if E |=ALC+TR
T(⊤) ⊑ ¬C. An inclusion

T(C) ⊑ D is exceptional for E if C is exceptional for E. The set of inclusions in TBox

which are exceptional for E will be denoted by E(E).

Given a TBox, it is possible to define a sequence of non increasing subsets of TBox

ordered according to the exceptionality of the elements E0 ⊇ E1 ⊇ E2 . . . by letting

E0 = TBox and, for i > 0, Ei = E(Ei−1)∪{C ⊑ D ∈ TBox s.t. T does not occurr in

C}. Observe that, being KB finite, there is an n ≥ 0 such that, for all m > n,Em = En

or Em = ∅. A concept C has rank i (denoted rank(C) = i) for TBox, iff i is the least

natural number for which C is not exceptional for Ei. If C is exceptional for all Ei then

rank(C) = ∞ (C has no rank). Rational closure builds on this notion of exceptionality:

Definition 2 (Rational closure of TBox). Let KB = (TBox, ABox) be a DL knowl-

edge base. The rational closure of TBox is defined as: TBox = {T(C) ⊑ D |
either rank(C) < rank(C ⊓ ¬D) or rank(C) = ∞} ∪ {C ⊑ D | KB |=ALC+TR

C ⊑ D}, where C and D are ALC concepts.

Exploiting the fact that entailment in ALC +TR can be polynomially encoded into

entailment in ALC , it is easy to see that deciding if an inclusion T(C) ⊑ D belongs to

the rational closure of TBox is a problem in EXPTIME [16].

Example 1. Let K = {T(Student) ⊑ ¬Pay Taxes , T(WStudent) ⊑ Pay Taxes ,

T(Student) ⊑ Young, WStudent ⊑ Student} be a knowledge base stating that typ-

ical students do not pay taxes, but typical working students (which are students) do pay
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taxes and that typical students are young. It is possible to see that E0 = {T(Student) ⊑
¬Pay Taxes , T(Student) ⊑ Young,WStudent ⊑ Student}, E1 = {T(WStudent)
⊑ Pay Taxes ,WStudent ⊑ Student} and that the defeasible inclusions T(Student⊓
Italian) ⊑ ¬Pay Taxes and T(WStudent ⊓ Italian) ⊑ Pay Taxes both belong, as

expected, to the rational closure of K , as being Italian is irrelevant with respect to being

or not a typical student. However, we cannot conclude that T(Student) ⊑ Y oung: con-

cept WStudent is exceptional w.r.t. Student concerning the property of paying taxes

and, hence, it does not inherit any defeasible property of Student .

In the example above the rational closure is too weak to infer that typical working

students, as typical student, are young. The lexicographic closure [23] strengthens the

rational closure and allows to conclude that typical working students are young. The

property of typical students of being toung is inherited by working students, as it is

consistent with all the other (strict or defeasible) properties of working students.

3 From the lexicographic to the skeptical closure

Given a concept B, one wants to identify the defeasible properties of the B-elements.

Assume that the rational closure of the knowledge base K has already been constructed

and that k is the rank of concept B in the rational closure. The typical B elements

are clearly compatible with all the defeasible inclusions in Ek, but they might satisfy

further defeasible inclusions with lower ranks, i.e. those included in E0, E1, . . . , Ek−1.

In general, there may be alternative maximal sets of defeasible inclusions compatible

with B, among which one would prefer those that maximize the number of defeasible

inclusions with higher rank. This is indeed what is done by the lexicographic closure

[23], which considers alternative maximally preferred sets of defaults called ”bases”,

which, roughly speaking, maximize the number of defaults of higher ranks with respect

to those lower ranks (degree of seriousness), and where situations which violate a num-

ber of defaults with a certain rank are considered to be less plausible than situations

which violates a lower number of defaults with the same rank. In general, there may be

exponentially many alternative sets of defeasible inclusions (bases) which are maximal

and consistent for a given concept, and the lexicographic closure has to consider all of

them to check if a defeasible inclusion is accepted. Instead, in the following, we aim

at defining a construction which skeptically builds a single set of defeasible inclusions

compatible with B.

Let SB be the set of typicality inclusions T(C) ⊑ D in K which are individually

compatible with B (with respect to Ek), that is

SB = {T(C) ⊑ D ∈ TBox | Ek ∪ {T(C) ⊑ D} 6|=ALC+TR
T(⊤) ⊑ ¬B}.

Clearly, although each defeasible inclusion in SB is compatible with B, it might be the

case that overall set SB is not compatible with B, i.e., Ek∪SB |=ALC+TR
T(⊤) ⊑ ¬B.

When compatible with B, SB is the unique maximal basis with respect to the seri-

ousness ordering [23]. Let δ(Ei) denote the set of defeasible inclusions in Ei. When

SB is not compatible with B, we cannot use the defeasible inclusions in SB to derive

conclusions about typical B elements. In this case, we can either use just the defeasible

inclusions in Ek, as in the rational closure, or we can additionally use all the defeasible

inclusions in SB
k−1

∈ δ(Ek−1), with rank k − 1, provided they are compatible with B
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and Ek and, possibly, we can add all the defeasible inclusions in SB
k−2

∈ δ(Ek−2) (with

rank k − 2) provided they are compatible with B, Ek and SB
k−1

, and so on for lower

ranks. This leads to the construction below. For each rank j of the rational closure con-

struction, let SB
j be a set of the defeasible inclusions in Ej as follows: SB

j = {T(C) ⊑

D ∈ δ(Ej) | Ek∪SB
k−1

∪SB
k−2

∪ . . .∪SB
j+1∪{T(C) ⊑ D} 6|=ALC+TR

T(⊤) ⊑ ¬B}

Informally, SB
j is the set of the defeasible inclusions with rank j, which are not (indi-

vidually) overridden by defeasible inclusions with higher ranks (from j + 1 to k).

Definition 3. Let B be a concept such that rank(B) = k. We define the skeptical

closure Ssk,B of B as follows: Ssk,B = Ek ∪ SB
k−1

∪ SB
k−2

∪ . . . ∪ SB
h , where h is the

least integer j such that 0 ≤ j ≤ k − 1 and Ek ∪ SB
k−1

∪ SB
k−2

∪ . . . ∪ SB
j 6|=ALC+TR

T(⊤) ⊑ ¬B, if such a j exists; Ssk,B = Ek, otherwise.

Intuitively, Ssk,B contains, for each rank j, all the defeasible inclusions having rank

j which are compatible with B and with the more specific defeasible inclusions (with

rank > j). As SB
h−1

is not included in the skeptical closure, Ek ∪ SB
k−1

∪ SB
k−2

∪ . . . ∪

Sh ∪ SB
h−1

|=ALC+TR
T(⊤) ⊑ ¬B i.e., the set SB

h−1
contains conflicting defeasible

inclusions which are not overridden by more specific ones. The inclusions in SB
h−1

(and,

similarly, all the defeasible inclusions with rank lower than h− 1) are not added to the

skeptical closure of B. Let us now define when a defeasible inclusion is derivable from

the skeptical closure of a TBox.

Definition 4. Let T(B) ⊑ D be a query and let k = rank(B) be the rank of concept

B in the rational closure. T(B) ⊑ D is derivable from the skeptical closure of TBox if

Ssk,B |=ALC+TR
T(⊤) ⊑ (¬B ⊔D).

The identification of the defeasible inclusions in Ssk,B requires a number of entail-

ment checks which is linear in the number of defeasible inclusions in TBox. In Ex-

ample 1 the inclusion T(WStudent) ⊑ Young is derivable from the skeptical clo-

sure of TBox, as WStudent has rank 1 and inclusion T(Student) ⊑ Young in E0

is compatible with WStudent . No other inclusions in δ(E0) are compatible with E1.

Instead, the inclusion T(WStudent) ⊑ Young is not derivable from the skeptical

closure of the KB K ′ = {T(Student) ⊑ ¬Pay Taxes , T(Worker) ⊑ Pay Taxes ,

T(Student) ⊑ Young, WStudent ⊑ Student ⊓Worker}. as SWStudent
0 is not com-

patible with WStudent (w.r.t. E1), due to the conflicting defaults concerning tax pay-

ment for Worker and Student (both with rank 0). Hence, the defeasible property that

typical students are young is not inherited by typical working students.

Notice that, the property that typical working students are young is accepted in the

lexicographic closure of K ′, as there are two bases (the one including T(Student) ⊑
¬Pay Taxes and the other T(Worker) ⊑ Pay Taxes), both containing T(Student)
⊑ Young. The skeptical closure is indeed weaker than the lexicographic closure. Also,

while in the logicDLN [2], given the knowledge base K ′, the conceptWStudent has an

inconsistent prototype, in the skeptical closure one cannot conclude that T(WStudent)
⊑ ⊥ and, using the terminology in [2], the conflict is “silently removed”. In this respect,

the skeptical closure appears to be weaker than DLN , although it shares with DLN (and

with lexicographic closure) a notion of overriding. Detailed comparisons and the study

of the semantics underlying the skeptical closure will be subject of future work.
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