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Abstract. The mashup of microdata sources to form a data hub must fulfill a set 
of privacy preservation anonymity requirements that hinder data analysts to 
figure out sensitive information of the source datasets. This is relevant in a 
number of fields that include smart cities, electronic healthcare records and 
others. Linked data publishing architectures are not designed to adapt well to 
the requirements of existing approaches to sanitize the linked datasets, which do 
not always exploit the potential of semantics. Besides, the sanitizing protocols 
are not always controlled by a central coordinator. We propose a classification 
framework to decide on the distribution of control and partitioning of the 
dataset information models. Based on the framework, we define an approach to 
engineer privacy-preserving linked data mashups that defines the essential 
functionalities of privacy-preserving linked data publishing architectures. The 
classification framework and engineering method for data privacy preservation 
can have an implication for big data systems and emergent blockchain-based 
distributed ledgers. 

Keywords: privacy preservation, data mashups, linked data architectures. 

1 Introduction 

Data mashups or hubs are combinations of information from multiple, independent 
origins into a single data source that can be queried through a single endpoint, thus 
serving data integration on demand. Data mashups constitute the basis of Data-as-a-
Service (DaaS) architectures [24], aimed at reducing the cost of data management to 
support data scientists in mining combined data from disparate datasets so as to 
explore new knowledge. 

However, sensitive information can be revealed when setting up a data mashup, so 
different privacy-preserving data publishing (PPDP) techniques such as data 
aggregation, noise addition and generalizations have been applied to the data that 
reside in each dataset [14]. Privacy preservation in data mashups is a relevant issue in 
diverse domains, including electronic business users’ databases [27], electronic 
healthcare records [22,13,15] and smart city data hubs [34], among others. 

1.1 An example on smart city data mashups 

PPDP techniques focus on publishing personally identifiable information (i.e. 
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microdata1) about individuals. Because of privacy protection requirements, however, 
datasets are usually made public as aggregate data instead of microdata. For instance, 
the MK:Smart project (www.mksmart.org) provides citizens and companies with 
access to a number of aggregate data sources about diverse aspects of Milton Keynes 
town [8]. Provided by diverse institutions, such data include, among others, transport, 
average energy and water consumption of citizens and companies, which are 
compiled and stored in the MK Data Hub mashup (datahub.mksmart.org). The Milton 
Keynes City Council also provides the data hub with statistics about population 
growth, jobs, crime, marital status, religion and employment of their citizens as 
aggregate data that can be queried by place, ward, district, postcode and other forms 
of administrative aggregations. For that aim the MK Data Hub provides a public 
entity-centric API (Application Programming Interface). The MK Data Hub API and 
available datasets are very convenient and useful for citizens’ open data efforts, but its 
analytical utility is limited to what can be observed on aggregate data, since microdata 
are not usually available. Doing so would require applying PPDP techniques on data 
providers (i.e. the city council, energy companies, etc.) and the resulting data mashup. 

Despite the set of policies regulating the usage of each data source, and in spite of 
anonymizing microdata in each dataset, one cannot impede someone from knowing 
sensitive information by means of a linking attack to two or more datasets. For 
instance, even removing explicit identifiers, an individual’s name in the City Council 
dataset DS1(address, birthdate, sex, postcode, name, taxes) can be linked with 
another record in the energy consumption dataset DS2(birthdate, sex, postcode, 
electricityConsumption, gasConsumption) through the combination of postcode, 
birthdate and sex. Each of these attributes does not uniquely identify a record 
owner, but their combination is a quasi-identifier that points to a unique or small 
number of records [19]. The linking attacker can thus notice that one house at a 
certain address might be unoccupied because its electricityConsumption and 
gasConsumption are almost nil. This can pose a threat about burglary, but it can be 
also a tool for tax agencies to investigate occupied rental houses that might have 
unpaid taxes from the lessor. 

Even if anonymizing both datasets by means of generalization techniques on the 
quasi-identifiers of each dataset, there is the possibility that potential quasi-identifiers 
are split in both datasets that needs to be merged for analysis. For instance, let the 
City Council dataset schema be DS1(id, sex, defaulter) and the energy consumption 
dataset schema be DS2(id, occupation, defaulter, electricityConsumption, 
gasConsumption), as shown in Table 1. Assuming that a data analyst needs to 
combine DS1 and DS2 to predict default risks, DS1 and DS2 can be merged by 
matching the id field in a new integrated and then anonymized dataset DS. Then the 
sex and occupation attributes form a new quasi-identifier, which was not included in 
each dataset separately, so linking attack is still possible on these fields of the 
integrated dataset DS. After integrating the tables of both datasets, the (Female, 
Carpenter) individual on (sex, occupation) becomes unique and vulnerable to link 
sensitive information, such as address and energy consumptions. 

                                                             
1 In Statistics, microdata is individuals’ information consisting of properties that 

are recorded separately for every person who responds a survey; not to be confused 
with HTML microdata, which is commonly used in Web Engineering. 
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Table 1. Data tables from the City Council dataset (DS1) and the Energy provider 

dataset (DS2) that build up the data mashup DS 
 

Shared DS1 DS2 
ID default sex address occupation electricity 

Consumption 
gas 

Consumption 
1-3 0y3n M A1 Sales 18 17 
4-7 0y4n M A2 Ceramist 24 8 

8-12 2y3n M A3 Plumber 25 10 
13-16 3y1n F A4 Webmaster 20 17 
17-22 4y2n F A5 Animator 31 11 
23-25 3y0n F A6 Animator 34 10 
26-28 3y0n M A7 Carver 32 12 
29-31 3y0n F A8 Carver 30 14 
32-33 2y0n M A9 Carpenter 33 11 

34 1y0n F A10 Carpenter 29 15 
 
Because the ultimate motivation underlying to data releases is to conduct analyses 

on the such data, anonymization should be done in a way that the protected data still 
retain as much analytical utility as possible; that is, the conclusions or inferences 
extracted from the analysis of the anonymized dataset should be similar to those of 
the original dataset. With the goal of balancing privacy and utility preservation, the 
PPDP methods [13,40] build the protected dataset by modifying the original quasi-
identifying attributes while preserving certain statistical features. On the one hand, 
non-perturbative masking methods modify quasi-identifying attributes either by 
suppressing some of the data or by reducing their level of detail, such as 
generalization [32]. On the other hand, perturbative masking methods are based on 
distorting the quasi-identifying attributes by adding noise [7,25], data permuting [28] 
or data aggregating [10,11]. 

Most existing masking techniques poorly consider the semantics of nominal values 
and many times they manage individual attributes independently, thus neglecting the 
potential correlation between attribute pairs. For instance, numerical values such as 
electricityConsumption and gasConsumption on the Table 1 can be generalized 
by defining the intervals –e.g. [0,10), [10,20), [20,30) and [30,∞)– that mask the 
values of each microdata record, in order to sanitize the DS2 dataset. On the contrary, 
the nominal values of the occupation column cannot be easily distorted by means of 
generalization techniques to sanitize the dataset. In previous works [26,31], distortion 
methods were improved to exploit the semantics provided by an ontology to better 
preserve the semantics underlying the nominal values. Therefore, nominal data have 
to be properly mapped to the instance values of an ontology of concepts that replace 
the original values of a nominal attribute in a dataset.  

1.2 Mashup sanitizing approaches 

There are two PPDP approaches when dealing with the manifold publishers that set 
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up a data mashup. The first one is integrate-then-sanitize, i.e., first integrates the 
distributed datasets by means of a common identifier, such as SSN, and then sanitize 
the quasi-identifying attributes from the integrated dataset using a PPDP masking 
method. As a result, the sanitized integrated dataset is expected to satisfy a given 
privacy model, such as k-anonymity [32]. In this approach, k-anonymity would not be 
completely satisfied for privacy-preserving distributed data mashups, because non-
sanitized microdata should have to go through to the mashed-up database custodian. 
As a consequence, by knowing the original microdata, the data mashup holder may 
attempt to infer additional information (e.g., sensitive information) about their 
owners. The second approach, sanitize-then-integrate, provides better privacy 
guarantees because, before the data integration, each data publisher sanitizes its 
dataset locally. If a quasi-identifier formed by attributes spanning different data 
publishers is involved, this approach does not work because (i) sanitized datasets do 
not have identifying attributes to carry out the integration process and (ii) if it were 
possible to integrate the data, the resulting sanitized dataset would hardly fulfill the k-
anonymity privacy requirement because the PPDP masking method needs as input the 
combination of the quasi-identifier of all involved datasets. To solve this issue, [38] 
proposes a similar approach to the integrate-then-sanitize strategy, which does not 
reveal the local data until it has been sanitized by generalization to satisfy k-
anonymity. [27] extends this idea to distributed data mashup applications by 
establishing a collaboration among the data publishers. [34] also proposes a 
collaborative strategy to achieve k-anonymity on horizontally partitioned datasets. In 
these collaborative sanitization proposals, a communication among data publishers 
and/or between each data publisher and a central party or mashup coordinator is 
required. 

In summary, should sanitization affect two or more datasets of a data mashup, the 
process must be collaboratively carried out by each dataset custodian. This paper 
proposes a novel approach to engineer the architecture of linked data publishing 
systems that takes into account two major requirements of the sanitizing solutions for 
privacy-preserving data mashups, namely where the control of the sanitizing protocol 
resides and how the data mashup schema is partitioned. 

2 Semantic privacy-preserving data mashups 

As many datasets can be involved in a data mashup, two aspects are relevant for 
privacy-preserving data publishing, so we are dealing with them independently in this 
section. First, the semantics and information model of the datasets is fundamental to 
solve data integration issues, which are common to other approaches in the databases 
field, such as the Extract-Transform-Loading (ETL) systems. Second, the dataset 
partitioning determines the requirements of the sanitizing protocol to be applied. 

2.1 Semantics and conceptual mapping 

Sanitized datasets are expected to satisfy a given privacy model, such as k-anonymity 
[32]. A sanitized integrated dataset satisfies k-anonymity if every combination of 
values on the quasi-identifiers is shared by at least k records.  
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Besides, usual perturbative PPDP approaches do not deal well with nominal data 
because of their mathematical operating principle [19]. For example, the noise 
addition mechanisms require computing the variance of the input data to generate 
noise sequences that reflect the degree of dispersion of the original values; the rank 
swapping mechanisms require sorting the input data to restrict the swap to a given 
rank-distance; and aggregation techniques typically use the mean to aggregate input 
data. As nominal data take values from a discrete and finite list of categories, which 
are usually expressed by words, a priori, it is not possible to carry out these 
operations. On the other hand, since nominal data utility is closely related to the 
preservation of semantics [37], any data transformation or calculation performed to 
anonymize data should carefully consider the meaning of the input values. 

To enable a semantically-coherent protection of nominal data, recent PPDP 
proposals [3,26,31] exploit the formal knowledge modeled in ontologies. For that, 
prior to the masking process, the input nominal values are unequivocally associated 
with concepts in an ontology by means of a process named interlinking or conceptual 
mapping [2] (see Fig. 1). Following conceptual mapping, semantic PPDP methods 
will then be able to capture the semantics conveyed by nominal data. Specifically, 
these methods use the notion of semantic distance [4] to semantically compare the 
nominal values and so to detect how similar they are, and adaptations based on the 
semantic distance of the arithmetical operators involved in the masking process.  

 
Fig. 1 Interlinking in semantic PPDP methods 

2.2 Dataset partitioning 

The mashup coordinator must discover how the data mashup is partitioned, i.e. 
horizontally or vertically (see Fig. 2), as explained in [6]. Such partitioning will 
condition the data integration and sanitization procedure. When the data mashup is 
horizontally partitioned, integration and sanitization processes must be delegated to 
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the mashup coordinator, as in the centralized integrate-then-sanitize approach. Unlike 
the centralized approach, however, the data publishers of a collaborative sanitization 
procedure will contribute their data in a privacy-preserving fashion by following an 
integration and sanitization protocol that can be managed by the mashup coordinator 
[34]. On the other hand, when the data mashup is vertically partitioned, the 
integration and sanitization processes must be delegated to the data publishers. Unlike 
the local sanitize-then-integrate approach, where each publisher independently 
sanitizes its data prior to sending them to the mashup coordinator, in the collaborative 
approach the sanitization has to be cooperatively performed by all data publishers 
involved in the mashup. In this context, the coordinator initiates the integration and 
sanitization protocol and remains in the background, looking forward to receiving the 
sanitized integrated dataset when the protocol is completed [27].  

(a) Vertical partitioning 

 Party 1 ... Party N 
ID + other 
shared 
attributes 

non-sensitive 
attributes 

sensitive 
attributes 

  non-sensitive 
attributes 

sensitive 
attributes 

       
       
       

(b) Horizontal partitioning 

 Shared data schema 

ID non-sensitive attributes sensitive attributes 

Party 1    
...    
Party N    

 
Fig. 2 Dataset partitioning 

3 Where sanitizing a data mashup? 

The architectural patterns of linked data applications are discussed by [18] as a means 
to structure the software components that are comprised in the system (see Fig. 3). In 
this architecture, where do data sanitizing techniques have to be implemented to 
obtain a privacy-preserving data mashup? 

On the top layer, the architecture of an LD application is usually made up of a 
number of data access, integration and storage modules (i.e. web access module, 
vocabulary mapping, identity resolution and quality evaluation). An extension has 
been implemented [16] based on an LD API layer on top of the data access and 
integration layer, which mediates between consumer applications and an integrated 
database. Eventually, pipelining all the functional modules of the data access and 
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integration layer leads to an integrated database which feeds the SPARQL endpoint or 
the API mediator module with RDF data. 

In the bottom, the publication layer usually implements wrapper modules that, 
either by scraping [29] or enriching [21] web resources, add the required semantics to 
existing resources and datasets. Setting up a middleware module is also a strategy to 
reengineer existing applications to build such LD wrappers from a wide variety of 
data sources. When such distributed data sources have to be sanitized for privacy 
preservation, however, the architectural layer where sanitization must be implemented 
is not clear. 

 

 
Fig. 3 Linked data applications architecture as described by [Heath et al., 2011] 

 
The issue of what is the architectural layer that better fits data sanitization is not an 

exclusive concern of LD architectures. In distributed big data architectures based on 
the ETL paradigm, a data mashup application may also need several datasets from 
various data custodians and has to confront the challenge of privacy preservation at 
the same time (see Fig. 4) [20]. The location of data sanitization modules that 
implement the distributed algorithm for privacy preserving each pairwise dataset 
combination is not clear in the architectural design of ETL systems. In the 
architecture of Fig. 4, should it be part of the pre-validation, the ETL validation, or 
both? 

To tackle an answer to the question about where does sanitizing should be carried 
out in a LD mashup or ETL architecture, an analysis of the main sanitizing 
approaches must be done. On the one hand, in the integrate-then-sanitize approach, it 
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seems reasonable to implement both the integration process and the PPDP masking 
techniques in the quality evaluation module of the data access and integration layer. 
However, should the data privacy requirements be implemented in this layer, k-
anonymity would not be completely satisfied for privacy-preserving distributed data 
mashups, because non-sanitized microdata should have to go through all or some of 
the upper layer modules (i.e., data access, integration and storage layer) before being 
stored in the integrated, mashed-up database. On the other hand, as for the sanitize-
then-integrate approach, it seems reasonable that PPDP masking techniques be 
implemented at the publication layer of a linked data application architecture and the 
integration process in the quality evaluation module of the data access and integration 
layer. However, if a quasi-identifier formed by attributes spanning different data 
publishers is involved, this approach does not work because.  

 

 
Fig. 4 Extract-Transform-Load paradigm in big data architectures [Jain et al., 2016] 

 
As an answer to the issue of where data mashups should be sanitized, we need to 

either (1) implement anonymization and data integration techniques in the same 
architectural layer, or (2) to define a new architecture that reasonably does not 
disclose all the microdata that build up the privacy-preserving data mashup. The 
source of this architectural trade-off about PPDP issues is that existing LD 
architectures do not have into account the collaborative nature of the protocol for 
distributed dataset sanitizing. The data publishing functionalities are constrained to 
the data publication layer, but may affect other architectural layers, as discussed 
above. 
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4 Engineering privacy-preserving linked data mashups 

The engineering PPDP approach proposed in this paper consists of a number of 
functions to be implemented in the modules of an LD application architecture (see 
Fig. 3). The following steps have to be taken before integrating LD datasets that come 
from existing data sources in a privacy-preserving fashion: 
 
1. Revealing the underlying data model: A linked data model that is equivalent to the 
application schema is generated and published. This step can be readily carried out 
through existing wrapping tools, depending on the technology of the underlying data 
store –e.g. D2R server [5] or Virtuoso RDF Views [12] can be used with relational 
databases. To facilitate external linking with standard vocabularies, a set of mapping 
options can be configured. Thus, the web access module and vocabulary mapping 
module functionalities of the architecture are implemented in this stage. 
 
2. Linking the data instances: The linked datasets retrieved from the internal data 
storage of the application can be explored and linked. This step is a function of the 
identity resolution module of the LD architecture. It can be made with the help of an 
external interlinking module [39], such as LIMES or Silk [30], that conceptually maps 
nominal data to values of the semantic model. 
 
3. Publishing the linked data API: A controller API that follows the CRUD (Create-
Read-Update-Delete) pattern to consume the LD resources can be generated in this 
phase. As a consequence, an extended description for the API mediator functionality 
are automatically produced. Yet the legacy web application might have existing 
operation implementations that already provide the right data that feeds the API 
mediator. If making such implementations public preserves the privacy requirements, 
they can be immediately revealed. Otherwise, they must be submitted to the next step. 
 
4. Privacy-preserving linked data access: Since access to the generated linked data 
should be privacy-preserving, the appropriate PPDP technique must be implemented 
here. The approach for collaborative data sanitizing is explained in detail at the end of 
this section. It must be noted that, for the aim of this work, only the privacy 
preservation aspect has been considered. Nonetheless, other non-functional quality 
features (e.g. secure access control) can be also pipelined in this phase as additional 
quality requirements. 
 

When it comes to implementing the data sanitizing protocol of step 4, two 
architectural concerns have to be considered: (1) who has control over the 
collaborative sanitizing protocol, and (2) how are the datasets partitioned. Fig. 5 
depicts a two-dimensional classification framework that represents the coarse-grained 
options for both concerns. 
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Fig. 5 Frame classification of collaborative sanitizing approaches according to the dataset 

partitioning and protocol control 
 

A collaborative sanitizing protocol in which two or more distributed datasets are 
involved does not necessarily imply that control is also distributed. As explained 
above, there is often a need for a mashup coordinator to take decisions about if a 
given data publishing can be authorized, as well as for coordinating the sanitizing 
protocol. An example of centralized control is presented in [34], where the sanitizing 
process is carried out on a horizontally partitioned data mashup and managed by a 
coordinator. Another example of centralized control on horizontal partitioning is 
suggested in [22]. In this case, a leading part takes all decisions to recursively 
partition the quasi-identifier domain space in a top-down approach. On the other 
hand, a typical case of distributed control is proposed in [27], where the sanitizing 
process is cooperatively performed by all owners of a vertically partitioned data 
mashup, without a coordinator that manages the process or a fixed leading party that 
monopolizes the decision making. Nowadays, the growing role that is being played by 
the blockchain technologies for information registry and distribution eliminates the 
need of a centralized control, thus turning the spotlight on collaborative sanitizing 
protocols to distributed control approaches. 

5 Cases of privacy-preserving linked data mashup publishing 

As explained above, two kinds of dataset partitioning are considered when applying 
privacy-preserving sanitizing techniques for a distributed data mashup, namely 
horizontal partitioning and vertical partitioning. In horizontally partitioned datasets, 
each dataset custodian has a subset of the records defined over the same data attribute 
schema. Horizontal dataset partitioning case is common when several custodians have 
agreed upon a shared semantic model. For instance, Electronic Health Records (EHR) 
usually mash up data from several health organizations, such as hospitals and health 
care centers of different size and operating in different regions [9].  

On the other hand, in vertically partitioned datasets, each data custodian has a 
subset of the attributes defined over the same set of records. They usually share an 
identifying attribute that enables to map records of the same individuals in the 
mashup. This is also a recurrent case in EHRs, since different stakeholders may keep 
a different data schema about the same individual, either at an inter-organizational 
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level (e.g. hospitals, clinical laboratories, radiological imaging centers, etc.) or intra-
organizational level (e.g. physicians, pharmacists, nursing, diagnostic testing, etc.) 
[17]. Another common case of vertical partitioning is the Smart Cities application 
field. In the example described at the beginning of the paper, different players such as 
City Councils, energy and transport providers may form a vertically partitioned data 
mashup and their data needs to be sanitized if they are going to be exploited at the 
microdata level for an analytic purpose. 

For instance, when looking at the MK Data Hub mashup, one can find relevant 
datasets with aggregated information about energy consumption2 and demography3 
that can be query through a data-centric API4. Should the MK Data Hub aim at 
publishing microdata, to combine and publish such datasets would pose privacy 
concerns and can be exposed to linking attacks like the explained above. In MK Data 
Hub, for example, there might be records with electricityConsumption or 
gasConsumption equal to zero that might be exposed to an attack to discover the 
house addresses. To prevent such linking attacks, we can generalize Carpenter and 
Carver to Wood worker such that the (Female, Carpenter) individual becomes one of 
many female professionals. 

The issue is that this generalization must be done collaboratively by both data 
holders. On the one hand, the integrate-then-sanitize approach must first integrate 
DS1 and DS2 and then generalize the DS table using sanitizing methods on a single 
table. This approach does not preserve privacy because any party holding the 
integrated table will know all private information from both parties. On the other 
hand, the sanitize-then-integrate approach first generalizes each table locally and then 
integrate the generalized tables. This approach does not guarantee k-anonymity to be 
achieved on the quasi-identifier (sex, occupation) by k-anonymizing on sex and 
occupation separately. 

Regarding the control of the mashup sanitizing protocol, most existing 
application areas demand a central mashup coordinator to decide what data can be 
published and how. In smart cities scenarios like the MK Data Hub, for instance, 
given the number of datasets, it is difficult to envisage that, for any number of 
combinations, data custodians can agree a collaborative PPDP approach. Instead, the 
data coordinator or administrator, who has the responsibility to oversee all datasets, 
allows the combination of specific datasets and possibly part of their data models to 
carry out the PPDP procedure on the integrated mashup. In these cases, a centralized 
control approach, combined with a vertical or horizontal PPDP technique should 
suffice. In the EHR field, however, a centralized coordinator for privacy-preserving 
policies is not always available. For example, it is difficult to foresee a Europe-wide 
institution with the responsibility of control over the data that can be exchanged and 
mashed-up between datasets of different healthcare centers and service providers. 
Even at some nationwide level, such as Spain, this is hardly attainable. In such cases, 
a completely distributed control of the sanitizing protocol might be required when 
building up an EHR mashup composed by two or more individual EHR. The reasons 

                                                             
2 https://datahub.mksmart.org/dataset/lower-layer-super-output-area-lsoa-domestic-

electricity-consumption-2013-2/ 
3 https://datahub.mksmart.org/dataset/mki-census-2011-demography/ 
4 https://datahub.beta.mksmart.org/entity-lookup/ 
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for needing a distributed control approach can be greater when blockchain-based 
technologies are mature enough to replace centralized EHRs and other data 
repositories with distributed ledgers [1]. These are cases of completely distributed 
control, either vertical or horizontally partitioned depending on the custody 
responsibilities for each involved dataset. 

6 Discussion 

Engineering an LD mashup publishing system involves two privacy-preserving 
functionalities. First, a configurable ontology mapping function that enables to bind 
nominal data in an existing application or dataset to the ontology concepts. This can 
be provided by existing interlinking solutions. And second, a sanitizing function that 
implements the privacy-preserving strategy at each dataset, thus avoiding to reveal 
sensitive data to the end user and other parties that intervene in the data mashup. 

When publishing a data mashup, privacy preservation techniques must be carried 
out in collaboration between all data custodians involved in the mashup. 
Consequently, distributed collaboration protocols are important for the architectural 
design of data mashups and ETL approaches of big data systems. In particular, LD 
architectures have to be aware of data privacy concerns and implement privacy-
preserving data publishing techniques in the presence of distributed data mashups.  

A number of privacy-preserving data mashup algorithms have been proposed to 
securely integrate private data from multiple parties that collaborate in producing an 
integrated data mashup that satisfies a given k-anonymity requirement [27,24]. 
However, in the solutions proposed to integrate the datasets [27], data publishers need 
to exchange the identifying attribute with each other involved in the sanitizing 
process. As a consequence, publishers have additional information (i.e. a link between 
the identifying attribute and the sanitized quasi-identifier) to the published in the 
eventually sanitized dataset, thereby violating one of the requirements of collaborative 
data sanitizing. To solve this issue, it would be interesting to explore the use of 
pseudonyms for the identifier attributes during the sanitization process. 

Distributed implementations of PPDP algorithms are becoming more relevant as 
microservice-based cloud architectures are implemented in the Semantic Web [23]. 
What is more disruptive, the blockchain paradigm change brings lots of implications 
concerning the distributed nature of data storage services and the privacy of 
distributed ledgers [36]. As long as metadata and linked data are going to be stored on 
blockchain technologies [33], there is the need for a completely distributed PPDP 
solution. 

The solution proposed in this paper considers privacy protection in the engineering 
process as a primary requirement, as recommended by [13], instead of after the 
deployment of a new technology, such as the deployment of mobile devices with 
location-based services, sensor networks and social networks. The proposed method 
provides a privacy-preserving tool for individuals as well as for data publishers, by 
enabling record owners to have the opportunity to configure the protection of their 
own private information, before this is aggregated in a data mashup [35]. 
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