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ABSTRACT
Persuasive health technologies in the sport domain focus mostly
on motivating and supporting people in reaching an active lifestyle.
In this paper, we exploit a real-world dataset made available by a
commercial persuasive ecosystem called u4fit. u4fit allows coaches
to create tailored workout plans and to constantly monitor and
support their sportsmen remotely. Occasional sportsmen often and
suddenly abandon their workout routines, without giving any prior
notice to the coach, frequently because of a decline in motivation.
In this paper, we tackle this issue by developing an approach able to
spot users’ behavioral changes and predict if one will soon stop ex-
ercising. These predictions can be further elaborated and provided
as a recommendation to the user’s coach, to let her get in touch
with the sportsmen and prevent such a situation. Experiments, val-
idated through standard accuracy metrics, revealed that behavioral
changes in training patterns represent one of the main markers
that lead sportsmen to abandon.
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1 INTRODUCTION
Persuasive technologies in the eHealth domain are an emerging and
promising research field. eHealth persuasive technologies (eHPT)
are designed to help people change their habits to overcome their
frictions to healthier behaviors [7, 8, 12].

The rise of mobile technologies and the spread of Internet access
across the globe favored the development of eHPT. In 2010, we
started investigating on the effects of the gamification on users’
motivation to exercise [13] and these efforts have led to the de-
velopment of the u4fit platform1. The system connects users with
coaches, allowing for a tailored exercise experience at a distance [1].

One important issue that coaches face while following people is
that sometimes they stop exercising, without giving any prior notice
to them. This aspect is critical, given that a sedentary behavior can
negatively affect several social, physical, and mental aspects of the
individual, leading, especially on elder people, to chronic diseases.

There are obviously unpredictable cases of users who stop train-
ing (e.g., injuries), but there are also behavioral changes in the way
users workout that might help predicting such a situation. The
automatic detection of motivation decline is still an open issue that,
if addressed, will allow coaches (or professionals in general) to act
proactively in order to prevent this scenario.

Recommender systems (RS) can help supporting decisions in
health environments. As highlighted in [17], when a RS is developed
for health professionals (as in our case) they provide information
that allows them to address specific cases. Moreover, health RS help
providing reliable and trustworthy information to the end users [17].
The goal of health RS is usually to lead to lifestyle changes [16] and
to improve the patients’ safety [5]. Readers can refer to [3] for a
recent survey on health RS.

In this paper, we aim at predicting when a sportsman will stop
exercising by analyzing and inferring behavioral patterns from
past performances recorded through u4fit. To this end, we train
a classifier using as class the fact that the current performance
led or not to a subsequent workout within x days (where x is a
parameter that sets the granularity with which a coach monitors
the sportsmen she follows). Therefore, our objective is to predict
if a sportsman will stop exercising within x days. If this happens,

1www.u4fit.com. Please note that the coaches marketplace is visible only by setting
the Italian language on the platform.
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we are able to promptly recommend the sportsman to his coach, in
order for her to intervene and prevent him to give up training.

The analysis and the results presented in this paper take into
account users’ workouts made by means of u4fit for a timespan
of approximately two years and a half. The proposed method can
greatly help human coaches to intervene in order to reduce the
amount of people going to abandon an active lifestyle with the
obvious positive outcomes for their health.

The contributions of this paper can be summarized as follows:
• this is the first time in the literature of health RS in which,
given the past exercising behavior of a sportsman, he is
recommended to his professional (the coach), to trigger her
reaction and motivate him not to stop;
• we validated our proposal on a real-world dataset made up
of approximately two years and a half of data, by comparing
different classifiers on standard accuracy metrics;
• our solution can be embedded in real-world persuasive eHealth
systems, thus finding practical and effective applications.

The rest of the paper is structured as follows: Section 2 describes
the collected dataset; Section 3 illustrates the features we modeled
and the details of the classifiers; Section 4 presents the experimental
framework; Section 5 contains conclusions and future work.

2 DATASET
The dataset employed for the analysis consists of a subset of work-
outs collected by means of the u4fit platform. For each workout we
considered the following aggregate statistics:

(1) covered distance (in meters);
(2) workout duration (in seconds);
(3) rest time (in seconds);
(4) average speed (in km/h);
(5) burnt calories;
(6) time elapsed since the previous workout (in hours).

From the total number of available workouts we excluded those
whose aggregated statistics are neither related to running nor to the
beginner/amateur runner2. In particular, we considered only those
matching the following constraints: (i) 0.5km ≤ distance ≤ 43km,
(ii) workout duration ≤ 5 hours , (iii) rest time ≤ 1 hour , (iv)
averaдe speed ≤ 16 km/h, (vii) burnt calories ≤ 3000. The final
sample contains 65315 workouts, performed by u4fit users from
January 1, 2015 to May 10, 2017.

3 CLASSIFICATION
This section will illustrate the features we modeled and will intro-
duce the classifiers used in this study.

3.1 Features
The values that were measured for each workout have been used
to model six sets of features, given as input to the classifiers:

ABS. Each feature contains the absolute value recorded during
the workout, presented in the previous list (e.g., the distance
feature of a workout contains the number of meters covered
by the sportsman). In addition to the features of the current

2We are deliberately not disclosing the total number of workouts before the cleanup
given it is a sensitive commercial information.

workout, we considered also a new feature representing the
number of workouts performed by the user previous to the
current one, which allows us to contextualize the current
performance of the sportsman to his expertise;

INC. Each feature is represented as the increment with respect
to the previous workout performed by the user. For example,
let distanceC represent the distance covered in the current
workout and distanceP the one associated to the previous
workout. The covered distance feature for the INC set is
represented as: (distanceC − distanceP )/distanceP ;

MIN, AVG, MAX. Each feature contains the minimum [aver-
age, maximum] of the user’s historical training data;

In addition to the features that consider the current workout and
perform a matching with the history of a user, we modeled an addi-
tional set, named Weekly Load (WL), which measures the impact
of the previous week’s workouts on the current performance. This
is achieved by summing the values of the previous seven days for a
user, considering the following three features: (i) covered distance,
(ii) workout duration, and (iii) burnt calories.

In conclusion, each workout is represented by 34 features.
The class used to train a classifier was binary and it was 1 if the

user worked out in the next x days and 0 otherwise.

3.2 Classifiers
In our study, we evaluated and compared the performances of four
among the most effective classifiers at the state of the art [6].

Random Forest (RF) is a meta-estimator of the family of the en-
semble methods [4]. It fits a number of decision tree classifiers, such
that each tree depends on the values of a random vector sampled
independently and with the same distribution for all the trees in
the forest. See [2] for further details.

Ada Boost (AB) is another ensemble method that, in order to
produce the final prediction, combines the predictions from a se-
quence of weak learners (i.e., models that are only slightly better
than random guessing, such as small decision trees) that are fit on
repeatedly modified versions of the data [9].

Extra Trees (ET) is also an ensemble method. Similarly to Random
Forest, it uses a random subset of candidate features while splitting
a tree node; however, instead of looking for the most discriminative
thresholds, thresholds are drawn at random for each candidate
feature and the best of these randomly-generated thresholds is
picked as the splitting rule [11].

Multi-Layer Perceptrons (MLP) is a neural network that, given a
set of features and a target, can learn a non-linear function approx-
imator for classification or regression. It is different from logistic
regression, in that between the input and the output layer there
can be one or more non-linear layers, called hidden layers [10].

4 EXPERIMENTAL FRAMEWORK
This section will present the experimental setup and strategy, the
evaluation metrics, and the obtained results.

4.1 Experimental Setup and Strategy
The experimental framework exploits the Python scikit-learn 0.17.1
library3 for all the classifiers. The experiments were executed on
3http://scikit-learn.org/0.17/
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an Intel Core i7 2630QM processor equipped with 8GB RAM. Each
classification was repeated 10 times with a 10-fold cross-validation.

In order to avoid class imbalance, we tested several undersam-
pling and oversampling strategies on the training set, but the most
accurate one was random undersampling. It is worth noting, how-
ever, that with x = 1, classes are naturally balanced.

We performed three sets of experiments:
(1) Classifiers comparison. We compared the classifiers, by

running them on all the modeled features, to evaluate the
most effective one for x = 1, 3, 7.

(2) Feature sets importance evaluation. For each set of fea-
tures, we evaluated its importance by measuring the fea-
ture_importances_ parameter of the RandomForest class in
scikit-learn.

(3) Evaluation of the classifier with less features. Consid-
ering the most performing classifier in the first experiment,
we removed one by one the least important set of features.
This allows us to evaluate if any of them represents noise in
the classification process (i.e., not only a set is less relevant,
but it also contains misleading information for our task) or if,
even though it is less relevant, each set of features is essential
to improve the classification accuracy.

4.2 Metrics
In the evaluation phase, we selected a series of metrics that, going
beyond simple accuracy, are suitable to assess the performance of
a binary classifier that operates with imbalanced classes (i.e., when
one class is much bigger than the other, as in our case).

Accuracy, which measures the fraction of all instances that are
correctly classified, can be defined as: (TP+TN )/(P+N ).TP are the
true positives (i.e., instances of the positive class that are correctly
labeled as positive by a classifier), TN are the true negatives (i.e.,
instances of the negative class that are correctly labeled as negative
by a classifier), P are the real positive instances and N are the
real negative ones. This metric can be misleading when the two
classes are highly imbalanced (a classifier that always predicts the
majority class would have a high accuracy). For this reason, we also
measured some other metrics that are more reliable in our scenario.

Recall measures a classifier’s completeness and is defined as:
TP/P .

Precision is a measure of a classifier’s exactness and is defined
as: TP/(TP + FP ).

In our case-study, we considered recall to be more relevant than
precision; indeed, motivating a user who does not need it (false
positive) is a lesser evil for a trainer, compared to failing to motivate
a user who, on the contrary, needs to be motivated (false negative).
Considered this, we decided to measure the F2-score, which, like
other forms of F-measures, is a metric that considers both recall
and precision, although weighing the former higher than the latter:

F2 = 5 ·
Precision · Recall

4 · Precision + Recall
It is important to notice that neither the recall nor the precision

(and, consequently, not even the F2-score) take the true negative
rate into account and this is a problemwhen dealing with highly im-
balanced classes [14]; for this reason we measured Informedness, de-
fined as:Recall+true_neдative_rate−1, where true_neдative_rate

Table 1: Classifiers’ comparison for a 1-day prediction, mod-
eling each workout with all the available features.

1 day RF AB ET MLP
Accuracy 0.7 0.69 0.68 0.58
Recall 0.72 0.74 0.71 0.54

Precision 0.7 0.69 0.68 0.65
F2 0.72 0.73 0.71 0.52

Informedness 0.39 0.38 0.36 0.16

Table 2: Classifiers’ comparison for a 3-days prediction,mod-
eling each workout with all the available features.

3 days RF AB ET MLP
Accuracy 0.69 0.68 0.67 0.62
Recall 0.74 0.74 0.72 0.52

Precision 0.44 0.44 0.43 0.39
F2 0.65 0.65 0.63 0.45

Informedness 0.4 0.4 0.37 0.17

Table 3: Classifiers’ comparison for a 7-days prediction,mod-
eling each workout with all the available features.

7 days RF AB ET MLP
Accuracy 0.69 0.69 0.67 0.53
Recall 0.74 0.73 0.73 0.71

Precision 0.22 0.22 0.22 0.16
F2 0.51 0.5 0.5 0.41

Informedness 0.42 0.41 0.4 0.22

is TN /N . It ranges between -1 and 1, where 1 represents a perfect
prediction, 0 no better than random prediction, and -1 indicates
total disagreement between prediction and observation. As [15]
claims, it is the clearest measure of predictive value of a system.

4.3 Experimental Results
4.3.1 Classifiers comparison. Tables 1, 2, and 3 compare the ca-

pability of the classifiers to predict if a sportsman will stop working
out within the next 1, 3, or 7 days. Figures show that the classifiers
are effective for all the metrics we measured. Indeed, for the metrics
whose values are between 0 and 1 (i.e., all except Informdness), the
values are high; Informedness, whose values are between -1 and 1,
returns values close to 0.5, thus in line with the other metrics. This
means that, in 70% or more of the cases, we can correctly predict if
a sportsman will stop training by monitoring his past performance;
therefore, we can assume that the remaining 30% is partially related
to unpredictable events for a classifier, such as injuries or personal
problems not related to sports. Therefore, by tracking behavioral
changes, we can produce effective recommendations for the coaches
in most of the cases.

It is also worth noting that the best results are obtained with
x = 1, i.e., when classes are already balanced. This happens because,
when x grows, we remove information with the undersampling, in
order to balance the classes. Moreover, sportsmen in our platform
tend to work out with a high frequency, so this explains why our
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Table 4: Importance of each set of features.

ABS INC WL AVG MAX MIN
x = 1 0.22 0.17 0.17 0.22 0.12 0.1

Table 5: Results returned by training Random Forest with
different sets of features (1: ABS+AVG+INC+WL+MAX+MIN,
2: ABS+AVG+INC+WL+MAX, 3: ABS+AVG+INC+WL, 4:
ABS+AVG+INC, 5: ABS+AVG, 6: ABS, 7: AVG).

1 2 3 4 5 6 7
Accuracy 0.7 0.7 0.7 0.7 0.69 0.63 0.65
Recall 0.72 0.73 0.73 0.73 0.72 0.65 0.68

Precision 0.7 0.7 0.7 0.7 0.69 0.64 0.66
F2 0.72 0.72 0.72 0.72 0.71 0.65 0.67

Informedness 0.39 0.39 0.39 0.39 0.38 0.27 0.3

algorithm can track more effectively behavioral changes in a short
amount of time. In our application scenario, this means that the
coach can effectively monitor sportsmen on a daily basis. Due
to space constraints, the results of the next experiments will be
reported just for this scenario (x = 1), since it is the most effective.

In all the three settings, Random Forest is the classifier that
performs best (as underlined in the tables), so it is the one selected
for the subsequent experiments. For some metrics, however, Ada
Boost achieves similar or (very few times) slightly better results.

4.3.2 Feature sets importance evaluation. Table 4 reports the
importance of each set of features. The absolute values of the cur-
rent workout (ABS) and the average historical values (AVG) clearly
have more impact in the classification process, although no set of
features is much more important than the others.

4.3.3 Evaluation of the classifier with less features. Thanks to the
previous experiment, we can rank the sets of features by importance
and remove them one by one, to see how the effectiveness of the
Random Forest classifier is actually affected by them. The results
reported in Table 5 show that the MAX, MIN, and WL sets do not
help improve the effectiveness of the classifier and that the MIN set
actually represents a small form of noise (indeed, by removing it,
the recall increases of 0.1). However, if we remove the other, more
important sets of features, the classifier’s effectiveness decreases
noticeably.

5 CONCLUSIONS AND FUTUREWORK
In this paper, we presented an effective approach to predict if a
sportsman will soon stop training. These predictions can be used
to recommend the sportsman to his coach, who can motivate him
not to stop.

We modeled 34 features, by considering the performance of a
sportsman during a workout and by correlating it with his past
performances. The results showed that behavioral changes can
be effectively tracked by monitoring the workout performances,
and that nor the recent history of the user, nor the best or worst
performance, add information that can be exploited by a classifier.

In future work we will integrate our RS in the u4fit platform to
actually investigate the impact of the recommendations. Moreover,
we will also exploit chats between sportsmen and trainers to try to
improve the classification accuracy and to investigate if there exist
other markers not considered by the presented study.
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