
Visualizing Code Variabilities for Supporting Reuse

Decisions

Anna Zamansky and Iris Reinhartz-Berger

Department of Information Systems, University of Haifa, Israel

annazam@is.haifa.ac.il, iris@is.haifa.ac.il

Abstract. Software reuse is the practice of using artifacts from existing systems

to build new ones. It has been shown effective for improving quality and main-

tainability and for reducing cost and development time. Human factors have been

identified as significant barriers to a wider adoption of reuse practices in industry.

In this paper we consider a tool-supported approach for systematic reuse of ob-

ject-oriented programs (written in Java) based on polymorphism-inspired mech-

anisms. The suggested tool gets as input implementations of multiple products,

and produces a visual representation of the similarities and variabilities between

their classes in terms of exhibits behaviors, as well as presents possible reuse

options. We discuss the suitability of this approach for educational and training

settings, and specifically for supporting reuse decisions of novice developers.

Keywords: Software reuse, Education, Decision Support, Software Product Line

Engineering, Variability Analysis, Variability Mechanisms, Polymorphism

1 Introduction

Development has become increasingly complex while reducing time-to-market remains

a critical issue. Software reuse has been shown to be effective for reducing cost and

development time [14]. However, there are significant barriers in the adoption of reuse

practices in industry. As pointed out in [2], “initial research on software reuse has fo-

cused on the technological issues (e.g., programming language support, creating and

retrieving reusable artifacts, repositories, etc.), and only later non-technical factors

(e.g., organization, processes, business drivers) were found to be important for the suc-

cess of a reuse strategy”.

Recently more attention has been drawn to the human factors of reuse practices,

focusing mainly on decision making processes of developers [12], [20]. In particular,

empirical studies suggest reuse training is an important factor for improving reuse prac-

tices [5], [4]. Nevertheless, work on how to educate for reuse is scarce. Frakes and Kang

[6] stress the need for addressing reuse education: “Industry studies have shown that

education is a primary factor in better reuse, yet there had been little systematic study

of how best to do reuse education. Certainly, both academia and industry could improve

educational practices”.

5th Symposium on Conceptual Modelling Education (SCME 2017)

25

In this paper we propose a tool-supported approach for educating and training nov-

ices and supporting reuse decisions. In [19] we presented a tool for comparing pairs of

software artifacts (object-oriented code) and representing their similarities and varia-

bilities. The tool, called VarMeR – a Variability Mechanisms Recommender, is based

on an ontological framework that compares software behaviors rather than concrete

implementations [16], [17], [18]. This way software systems that have similar inten-

sions (i.e., exhibit similar behaviors) can be considered for reuse, even if their imple-

mentations are different (e.g., contains different components).

We particularly explore the suitability of VarMeR to assist novice developers in re-

use decisions. To this end, VarMeR was extended to compare an arbitrary number of

software artifacts (rather than pairs of artifacts). In other words, the input of VarMeR

is object-oriented code artifacts (in Java) that belong to multi software systems and the

output is a graph that captures the similarities and variabilities of the classes of those

systems in terms of their exhibited behavior. The tool further recommends how to in-

crease reuse by utilizing suitable polymorphism-inspired mechanisms.

The rest of this paper is structured as follows. Section 2 provides an overview of our

proposed approach, while Section 3 presents the capabilities of the extended version of

the VarMeR tool (for supporting reuse when multi software products are available).

Section 4 describes the benefits of the tool and its possible use scenarios in educational

and training contexts, as well as some preliminary usability feedback. Finally, Section

5 summarizes and refers to future plans.

2 The VarMeR Approach

VarMeR analyzes the commonality and variability of products behaviors and presents

the analysis outcomes in the form of polymorphism-inspired mechanisms among clas-

ses that behave similarly (even if their realizations are different). Specifically, the ap-

proach is composed of three steps, shown in Figure 1: Extract Behaviors, Compare

Behaviors, and Analyze Variability.

P1

Pn

Extract

Behaviors

Products’

representations

Compare

Behaviors

Variability

mechanisms

Similar elements

Analyze

Variability

Reuse

Recommendations

Ontological

foundation

Similarity

measures

.

.

.

Figure 1. A high level overview of the approach

2.1 Extracting Behaviors

Based on ontological considerations [16], a software behavior can be represented as

a triplet of initial state – the status of the software before the behavior occurs, external

5th Symposium on Conceptual Modelling Education (SCME 2017)

26

event – that triggers the behavior, and final state– the status of the software after the

behavior occurs. Those behavioral components are extracted from the public operations

of the different classes1. Each public class operation specifies some behavior of the

software product that is widely relevant within the product. We assume that the opera-

tion name captures the essence of the behavior and thus can describe its trigger (the

external event), e.g., Borrow and Return of a Book Copy class in a library management

system (see Figure 2).

Borrow:
InitialState = {AvailabilityStatus:Boolean, BorrowingPeriod:int}

ExternalEvent = Borrow

FinalState = {AvailabilityStatus:Boolean, Borrow:void}

Figure 2. An example of behavior extraction

For extracting initial and final states, we distinguish between two levels of operation

descriptor: shallow – which refers to the signature of the operation, and deep – which

takes into consideration the behavior in terms of attributes used and modified through-

out the operation (including those that are used and modified indirectly by operations

called from the analyzed operation). We consider only attributes and ignore local vari-

ables, as the later can be defined for implementation and realization purposes and may

hinder the operation’s behavior essence. The initial state of the behavior is composed

of all the parameters passed to the operation (part of shallow) and all the class attributes

used (read) by the operation (part of deep). The final state consists of the operation

name and its returned type (part of shallow) and all the class attributes modified (set)

by the operation (part of deep). Figure 2 exemplifies the behavior extraction outcome

for the operation Borrow of the Book Copy class. Note that each attribute is presents

via its name and type which provide the basis for comparison.

2.2 Compare Behaviors

Different methods have been proposed for measuring the similarity of applications

or software systems. McMillan et al. [11], for example, propose an approach called

CLAN that measures similarity of Java applications using the notion of semantic layers

that correspond to packages and class hierarchies. As opposed to that approach and

1 The assumption is that private and protected operations are introduced for implementation pur-

poses and thus hinder the exhibited behavior of the analyzed software product.

5th Symposium on Conceptual Modelling Education (SCME 2017)

27

many other methods, which take into account structural implementation and realization

considerations, VarMeR measures the behavioral similarity of software systems.

To this end, a similarity mapping between the behavior constituents (namely, initial

state, external event, and final state) is applied. This mapping can be based on existing

general-purpose or domain-specific similarity metrics or some combination of such

metrics. The metrics can be based on semantic nets or statistical techniques to measure

the distances among words and terms [13]. Alternatively, they can use type or sche-

matic similarities, potentially ignoring the semantic roles or essence of the compared

elements [7]. The similarity mapping associates to each operation’s constituent (param-

eter, attribute used, or attribute modified) all of its similar counterparts in the other

operation (i.e., elements whose similarity with the given constituent exceeds some pre-

defined threshold).

Returning to our example of Book Copy, assume a class named Car which has an

operation named Rent that changes the In Agency status of a car from true to false. It

further calculates the Back Date according to the Rental Period. Figure 3 exemplified

two potential similarity mappings: the first one (a) is based on based -schematic typea

similarity according to which two attributes are similar if and only if their types are

is based on a semantic measure named) b(. The second mappingsimilar Latent Seman-

tic Analysist (LSA) [10].

book co
py car

book co
py car

Figure 3. Examples of similarity mappings based on: (a) type-based similarity and

(b) semantic similarity (LSA)

2.3 Analyze Variability

Based on the similarity mapping, we can distinguish between the following cases

among (public) operations:
1. USE – the similarity mapping is bijection (each constituent of operation 1 has exactly

one counterpart in operation 2 and vice versa).

2. REF (abbreviation for refinement) – at least one constituent in operation 1 has more than

one counterpart in operation 2.

5th Symposium on Conceptual Modelling Education (SCME 2017)

28

3. EXT (abbreviation for extension) – at least one constituent in operation 1 has no coun-

terpart in operation 2.

Note that REF and EXT are not mutually exclusive; we refer to a combination of

both as REF-EXT (abbreviation for refined extension).

Aggregating the above notions from the level of operations to the level of classes,

we take inspiration from the polymorphism mechanisms. Polymorphism is the provi-

sion of a single interface to entities of different types. Therefore, the cases of polymor-

phism are characterized by similar signatures of operations (namely, the USE category

in the shallow level of the operations). We further focus on three types of polymorphism

which are widely used in industry:

1. Subtyping (inclusion) polymorphism which includes refinement or extension of behav-

iors (e.g., function pointers, inheritance).

2. Parametric polymorphism which includes name or type analogy (e.g., C++ templates).

3. Overloading which includes behavior change while maintaining the same signature.

Table 1 presents recommendations for those polymorphism-inspired mechanisms

based on the reuse mapping characteristics.

Table 1. Characteristics of Polymorphism-Inspired Mechanisms

Shallow Deep Description Polymorphism-Inspired

mechanism

USE USE Both signatures and behaviors are

similar

Parametric

USE REF Signatures are similar and behavior

is refined

Subtyping
USE EXT Signatures are similar and behavior

is extended

USE REF-EXT Signatures are similar and behavior

is both refined and extended

USE Not mapped Signatures are similar and behavior

is different

Overloading

3 The VarMeR Tool

In order to make our approach accessible to developers (potentially novice ones and

students), we developed a tool named VarMeR – Variability Mechanisms Recom-

mender. While the first version of the tool, described in [19], concentrated on analyzing

the commonality and variability between a pair of software products, the current ver-

sion extends the scope to a multi-product setting. This way the tool aims at supporting

reuse decisions and particularly the selection of the most suitable products (or product

parts) to reuse.

The inputs of the tool, namely the software products, are provided as (paths to) jar

files. Those files are reverse engineered into class diagrams (in XMI format) and Pro-

gram Dependence Graphs (PDG)
2
 [8] (in JSON format). The shallow and deep levels

of the behaviors are extracted from those representations and the tool proceeds in the

2 PDG explicitly represents the data and control dependencies of a program.

5th Symposium on Conceptual Modelling Education (SCME 2017)

29

three stages described in the previous section. The outcome is presented visually in

three levels of analysis, using graph-based representations:

• Product level with nodes representing the software products and edges representing

their degrees of similarity.

• Class level with nodes representing the classes of the analyzed software products and

edges representing recommendation on polymorphism-inspired mechanisms (paramet-

ric, subtyping, and overloading).

• Operation level with nodes representing operations (of a certain sub-set of classes of

software products) and edges representing the mechanism characteristics listed in Table

1 (USE, REF, EXT, REF-EXT).

In the product and class levels, the size of the nodes is proportional to the size of

objects they represent; the larger the node is, the more operations the class have or the

more classes the product has. The width of an edge, as well as its length, represents the

degree of evidence (e.g., the number of operations related with a certain type of poly-

morphism); the thicker/longer the link is, the more evidence exist.

An example of VarMeR output at the class level is depicted in Figure 4. The com-

parison is done between three different software products, the classes of which are rep-

resented using different colors. To support scalability, VarMer provides the user with

several possibilities for fine-tuning and information hiding, which are further discussed

in the next section.

4 Potential Use of VarMeR in Education and Training Contexts

Although lack of training has been identified as a major barrier to a wider adoption of

reuse practices in industry, no systematic way to address this problem has been pro-

posed [6]. We suggest the VarMeR tool presented above as a starting point for devel-

oping methods for education and decision support of novice developers and software

engineering students due to its intuitive abstractions, its visualization, and its support

for scalability. These features are discussed below, as well as some usability scenarios

and feedback we have collected regarding VarMeR.

4.1 VarMeR in Education and Training Contexts

Intuitive abstractions. Krueger [9] highlights the importance of choosing the right

abstraction in the context of reuse: “Why is software reuse difficult? Useful abstractions

for large, complex, reusable software artifacts will typically be complex. In order to use

these artifacts, software developers must either be familiar with the abstractions a priori

or must take time to study and understand the abstractions. The latter case can defeat

some or all of the gains in reusing an artifact.”

5th Symposium on Conceptual Modelling Education (SCME 2017)

30

Figure 4. Class Level Analysis

VarMeR makes use of graph-based abstractions which are intuitive and easy to un-

derstand: nodes to represent (different types of) elements, and edges to represent their

similarity relations. It also supports switching between different abstraction levels by

supporting multi-level analysis (product-, class- and operation-levels). Another kind of

abstraction made by the VarMeR approach is that comparison between software ele-

ments is made in terms of intensions (i.e., exhibited behavior) rather than in terms of

realizations and implementations. Starting with understanding behavior may be much

easier than starting by understanding old code, especially for novices. As highlighted

by Agresti [1]: “It takes effort to understand old code. The developer is trying to estab-

lish whether the old code will meet some or all of the new requirements so it can be

part of a new system. When that old code is written such that it makes it especially

difficult to understand, a developer can reasonably conclude that her effort is better

spent developing new code from scratch.”

Visualization. While a large body of research on software visualization exists [3],

to the best of our knowledge visualization for reuse has not yet been addressed. The

type of visualization offered by VarMeR can be classified as what is called in [15]

‘changing the perspective’, or “bringing large software engineering problems within

the scope of a single view,.., an attempt at complexity control, helping to keep a large

problem ‘in a single head’ by visualizing the overall structure and providing some as-

sistance for navigating or traversing that structure.” In VarMeR’s visualization we aim

to increase cognitive effectiveness by the use of simple and intuitive graph-based ele-

ments (nodes and edges), employing also other visual variables such as color (to encode

different products), size (to encode the number of operations/classes in each class/prod-

uct) and edge thickness (to encode extent of similarity).

Scalability: fine-tuning and information hiding. Reuse decisions might be easy

when considering two simple operations such as Borrow and Rent from Figure 3, but

5th Symposium on Conceptual Modelling Education (SCME 2017)

31

dealing with large scale projects with hundreds of classes and thousands of behaviors

introduces an additional dimension of complexity when making reuse decisions. To

reduce the user cognitive load, VarMeR supports several ways of information hiding

and fine-tuning at the class level analysis (see Figure 4):

- Modifying thresholds for presenting recommendations for each type of polymor-

phism (namely, the minimal percentages of “similar” operations to present para-

metric, subtyping, and overloading edges can be set; the lower these thresholders

are, the more abstraction is needed to apply reuse for those classes).

- Hiding classes which have no similarity to other classes (Hide Classes button).

- Filtering the graph-based visualization according to different software packages of

the product (Filter Files button).

4.2 Usability Scenarios and Feedback

The above features provide a starting point for developing a method for supporting

novice developers and software engineering students in reuse decisions. Consider, e.g.,

a scenario in which a novice developer, or a student in a programming course, needs to

develop a software system. In an industrial setting, the company may have already de-

veloped various similar systems and maintain a repository of software artifacts. In other

settings, some open-source applications may be available. Searching in such reposito-

ries, e.g., using keywords or queries, our developer may discover several similar sys-

tems, not all of which have informative descriptions, and each of which may have many

different versions. Let us assume that our developer finally decides to select five sys-

tems, which according to their descriptions are quite similar to the system he/she needs

to develop. For making a decision which system (or system parts) to reuse, it is useful

to comprehend how the five systems differ.

This is exactly the point where VarMeR enters the scene, providing assistance to

support such decisions. The developer can run the tool on the five selected systems3

and browse the similarity analysis and recommendations at different levels of abstrac-

tion. The product-level analysis will show him/her which of the systems are most sim-

ilar. Zooming into class level, he/she can identify clusters of classes which can poten-

tially be reused for implementing different behaviors. Zooming again into the operation

level, we obtain information on the reuse relations among operations. At this stage the

developer can zoom into the implementation itself, by looking at the relevant segment

of code in an Eclipse-like environment and adapt the code to the task at hand.

We are currently in the process of evaluating VarMeR’s usability. In a pilot setting,

we gave the tool to two pairs of students studying in the Information Systems depart-

ment at the University of Haifa. Each pair received two portions of similar Java projects

from SourceForge. They were requested to inspect VarMeR’s outcomes, and grade the

appropriateness of its recommendations. Our analysis of the open-text feedback, pro-

vided by the students and classified by us according to VarMeR’s features, shows that

visualization was positively mentioned – and particularly the use of colors and size.

3 Note that theoretically the developer could run VarMeR on all the game applications. However,

the complexity of multi-object comparison dramatically increases as the number of objects

increases. Hence, some a-priori filtering is recommended.

5th Symposium on Conceptual Modelling Education (SCME 2017)

32

The intuitive abstractions, and specifically the ability to zoom-in and zoom-out between

the product, class, and operation levels, was also considered very useful. The scalability

support was also mentioned as important, but the comprehensibility of three independ-

ent bars (for parametric, subtyping, and overloading mechanisms) was questioned.

5 Summary and Future Work

The human factor is one of the most significant barriers in wider adoption of reuse

practices in industry. Yet aspects of reuse training and decision support have so far been

overlooked in the software engineering literature. We addressed this problem by pre-

senting a tool-supported approach aiming to support developers in making reuse deci-

sions, and discussed its applications in training settings. The VarMeR tool, supporting

our approach, has several features which make it attractive in the context of reuse edu-

cation. It applies intuitive abstractions of software artifacts, and allows for easy switch-

ing between abstraction levels. Furthermore, it uses visualization which employs intu-

itive visual constructs and variables, and aims to reduce cognitive load of developers

when dealing with large scale software projects by allowing for fine-tuning and infor-

mation hiding.

In the future, we intend to explore several paths for further development of VarMeR

for educational purposes. First, we intend to develop a querying language on top of

VarMeR, in order to retrieve the most relevant artifacts to a given development task.

Second, we intend to systematically support reuse activities. After retrieving the rele-

vant (portions of) software artifacts, we need to explore how to guide the developer in

applying the reuse recommendations. Finally, we are in the process of adapting

VarMeR in an academic software engineering course. Empirical studies with the stu-

dents are planned to evaluate the benefits and limitations of the tool and further improve

the tool. Our long term vision is for VarMeR to be fully integrated in standard devel-

opment environments to promote reuse thinking as an integral part of development.

Acknowledgment. The authors thank Jonathan Liberman for his help in the implemen-

tation of the VarMeR tool. We also thank Alex Kogan and Asaf Mor for their assistance

in the initial steps of the development. The first author was supported by the Israel

Science Foundation under grant agreement 817/15.

References

[1] Agresti, W.W. (2011). Software reuse: developers’ experiences and perceptions. Journal of

Software Engineering and Applications, 4 (1), pp. 48-58.

[2] Anisa, S. (2015). Do Developers Make Unbiased Decisions? The Effect of Mindfulness and

Not-Invented-Here Bias on the Adoption of Software Components. ECIS’2015.

[3] Diehl, S. (2007). Software visualization: visualizing the structure, behaviour, and evolution

of software. Springer Science & Business Media, 2007.

[4] Favaro, J. (1991). What price reusability?: a case study. ACM SIGAda Ada Letters, 11

(3), ACM, pp. 115-124.

5th Symposium on Conceptual Modelling Education (SCME 2017)

33

[5] Frakes, W.B. and Fox C.J. (1995). Sixteen questions about software reuse. Communications

of the ACM, 38 (6): 75-ff.

[6] Frakes, W.B. and Kang, K. (2005). Software reuse research: Status and future. IEEE trans-

actions on Software Engineering, 31 (7), pp. 529-536.

[7] Kashyap, V. and Sheth, A., (1996). Semantic and schematic similarities between database

objects: a context-based approach. VLDB Journal, 5(4), pp. 276-304.

[8] Krinke, J. (2001). Identifying Similar Code with Program Dependence Graphs. 8th Working

Conference on Reverse Engineering, pp. 301-309.

[9] Krueger, C. W. (1992). Software reuse. ACM Computing Surveys (CSUR) 24 (2), 131-183.

[10] Landauer, T. K., Foltz, P. W. and Laham, D. (1998). Introduction to Latent Semantic Anal-

ysis. Discourse Processes 25, pp. 259-284.

[11] McMillan, C., Grechanik, M. and Poshyvanyk, D. (2012). Detecting similar software appli-

cations. 34th International Conference on Software Engineering (ICSE’2012), pp. 364-374.

[12] Mellarkod, V., Appan, R., Jones, D. R., & Sherif, K. (2007). A multi-level analysis of factors

affecting software developers’ intention to reuse software assets: An empirical investiga-

tion. Information & Management, 44(7), 613-625.

[13] Mihalcea, R., Corley, C., and Strapparava, C. (2006). Corpus-based and knowledge-based

measures of text semantic similarity. American Association for Artificial Intelligence

(AAAI’06), pp. 775-780.

[14] Mohagheghi, P., and Conradi, R. (2007). Quality, productivity and economic benefits of

software reuse: a review of industrial studies. Empirical Software Engineering 12(5), 471-

516.

[15] Petre, M., A. F. Blackwell, and T. R. G. Green. (1998) Cognitive questions in software

visualization. Software visualization: Programming as a multimedia experience, 453-480.

[16] Reinhartz-Berger, I., Zamansky, A., & Wand, Y. (2016). An Ontological Approach for Iden-

tifying Software Variants: Specialization and Template Instantiation. 35th International

Conference on Conceptual Modeling (ER’2016), pp. 98-112.

[17] Reinhartz-Berger, I., Zamansky, A., and Kemelman, M. (2015). Analyzing Variability of

Cloned Artifacts: Formal Framework and Its Application to Requirements. Enterprise, Busi-

ness-Process and Information Systems Modeling, EMMSAD’2015, pp. 311-325.

[18] Reinhartz-Berger, I., Zamansky, A., and Wand, Y. (2015). Taming Software Variability:

Ontological Foundations of Variability Mechanisms. 34th International Conference on Con-

ceptual Modeling (ER'2015), LNCS 9381, pp. 399-406.

[19] Reinhartz-Berger, I. Zamansky, A. (2017). VarMeR - A Variability Mechanisms Recom-

mender for Software Artifacts. CAiSE-Forum-DC2017, 57-64.

[20] Sojer, M. and Henkel, J. (2010). Code reuse in open source software development: Quanti-

tative evidence, drivers, and impediments. Journal of the Association for Information Sys-

tems, 11 (12), 868-901.

5th Symposium on Conceptual Modelling Education (SCME 2017)

34

	SCME_2017_Preface
	SCME_2017_Keynote
	SCME_2017_paper_2
	SCME_2017_paper_4A4
	iStarT_2017_Preface
	iStarT_2017_Keynote
	SCME_2017_paper_5
	istarT_2017_paper_1
	istarT_2017_paper_2
	istarT_2017_paper_3A4
	TableOfContents-v2.pdf
	SCME 2017 - iStarT 2017
	Proceedings of the 5th Symposium on Conceptual Modeling Education and the 2nd International iStar Teaching Workshop co-located with the 36th International Conference on Conceptual Modeling (ER 2017)
	Valencia, Spain, November 6 and 8, 2017
	Table of Contents
	SCME 2017
	SCME Papers
	iStarT 2017
	iStarT Papers

