Game Design: A Preliminary Review on
Techniques and Tools

Jorge Ruiz Quifiones and Antonio J. Ferndndez-Leiva

Departamento de Lenguajes y Ciencias de la Computacion,
Universidad de Malaga (Spain).
jorge.ruiz@alu.uma.es, afdez@lcc.uma.es

Abstract. This paper is a preliminary attemps to serve as a reference of
the state of the art of the techniques and tools related to ‘Game Design’
(GD). We analyze the relationship existing between Game Design and
the main subareas related to Artificial and Computational Intelligence
in Games. Here, we focus particularly in Techniques and Tools that help
in any way to designers involved in game development.

Keywords: Game Design, Tools, Artificial Intelligence

1 Introduction

This paper focuses on Game Design and, in particular, in the tools helping
game designers in any way. It is a first step in the search of a more ambitious
objective consisting in ‘Automating the Generation of Complete Games’. The
paper describes our first considerations to determine and define the elements
that are already in use or under investigation as a possible source to reach this
goal.

Here, we provide a preliminar analysis of the current situation of Game De-
sign under different perspectives. In a first approach (section 2.1), a brief sum-
mary of the most used technique in the field of Artificial Intelligence in Games
(AIG) is presented. Second (Section 2.2), we analyze how the 10 main Game
Research subareas of AIG [1, p. 317] are interconnected and related with Game
Design. Then, from the point of view of Tools oriented to Game Design, some of
the most relevant existing works up to date are mentioned and classified accord-
ing to the AIG subarea that it covers as well as to their commercial purposes.
We also provide a brief description of the Tools described. The recognition and
enumeration of these tools may be useful later on in the investigation where this
document is framed into.

Inside AIG, much of the publications related with Game Design have been
oriented to Procedural Content Generation (PCG) helping designers to build
different kind of contents for games such as levels, bitmaps, maps, items, etc.
Nowadays, other areas such as Narrative, have become a promising research field,
with many surveys to take into account (PCG is still the leader in this aspect)
but including important advances in helping tools like Twine [2] or Inform 7
[3]. Although we can find works oriented to generate elements not coupled to a



concrete game (PCG, Narrative or any other area, see section 3), usually they
are oriented to a concrete game or platform. Commercial 2D platform games
such as Mario Bros or first person shooters like Unreal (with about 50 relevant
publications each in lasts years) are just a couple of examples of games/engines
that have been included in lots of articles and publications. As this survey is
framed into an investigation whose goal is to generate complete games in the
Design level, we focus here in general purpose tools and techniques.

This paper enumerate used techniques and current tools focused in Game
Design from a generic point of view but, although we focus in general/abstract
tools oriented to Game Design, it is remarkable that the importance of Game
Design Tools is apparent on today’s games as far as there are several examples
of commercial games that include their own tools (mainly focused to create
maps or levels). For mentioning some of them, the World Editor included in Sid
Meier’s Civilization Saga, the recently released Super Mario Maker for different
consoles platforms or Warcraft I1I world editor are some examples to be taken
into account. These features give the game an extra value and highlights that
is important nowadays for the general public to have this kind of tools even in
commercial games.

2 Al Techniques

Game Al in general, and more concretely Al Assisted Game Design can be de-
fined in part as a group of techniques of Al that are applied to the complete
development process of a Game including not only processes related to develop-
ing phases but as well related to the realtime gameplay (for instance, decisions
or pathfinding for agents). Techniques are composed by methods, processes and
algorithms, all of them related in a particular way with AI. All of them can
be applied solely for a concrete task but may be gathered for obtaining better
performance during the process of Game Design. For instance, use Evolution-
ary Computation (EC) for finding the best solution representation in consonance
with Search techniques for exploring efficiently a wide range of possible solutions.

2.1 List of techniques

The most relevant techniques used up to date in Al Game Design are:

Bio-Inspired computing: In a general way, we consider bio-inspired comput-
ing as a technique that tries to apply any working example in Nature to solve
complex problems using algorithms and representations that mimic real scenar-
ios in Nature and reproduce them as a computing problem. There are some
examples of this kind of algorithms used in Al in games, and more concretetly,
in Game Design. Evolutionary Computation can be considered as a family of
algorithms inspired by biological aspects or elements such as evolution, natural
selection, animals behaviors, mutations, etc...based in a population that reflect
a concrete representation of singular elements and the solution of the problem.



This population can evolve (and mutate) as it tries to find the best most optimal
solution for the problem.

Machine Learning: This term was coined in 1959 [4] and is known as the
ability of a computer (process) to learn without being programmed explicitily.
Algorithms based in Machine Learning are those who can learn from a data set
or subset and are able to make predictions using that data. It can be divided in
several different approaches but, regarding to Al in Games, we can highlight:

- Reinforcement Learning (RL): The way that a process can take decisions
in order to maximize the reward of a concrete solution. Actions are associated
to a positive or negative reward. Related to Game Design, RL is applied for
evolving strategies or Non Player Characters (NPCs), trying to maximize any of
the concepts relative to the game itself (score, winning conditions, duration of
game, etc...)

- Supervised Learning: Learning through well known and labeled example
data that produces a concrete output, the process aim is to infer a function that
fits (maps) the training data and can be used to map new example data not
included in the initial study.

- Unsupervised Learning: Contrary to the previous point, unsupervised learn-

ing tries to infer a function using example data which is not categorized or labeled
previously. While Supervised Learning refers to learning a model that maps in-
stances of datasets to target values, Unsupervised Learning tries to find patterns
in datasets that do not have target values. Regarding to Game Design, Machine
Learning technique is mainly used in NPC and Player Modelling.
Search and planning: Search and Planning techniques are related directly
with AT in Games subareas such as PCG or NPCs. This technique may be used
in an inferior rate that Evolutionary Computation is, but has a relevat role as
well mainly in exploring solutions space in an optimized way. Planning is used
often basically to build processes that generate any kind of 'plans’ such a path
from one point to another or a sequence of transitions between states. And con-
sider as well Searching as an important extra contribution to other techniques,
most often used to search efficiently the most promising elements (may be gen-
coded algorithm solution in evolutionary computation) for obtaining the next
generation of possible solutions, combining the best parts of all ancestors.

2.2 Techniques applied to Game Design

Artificial Intelligence assisted Game Design: The Artificial Intelligence
takes a main role in Game Desgin due to its capacity to contribute with tools
that support almost all aspects of Game Design. It’s been around 35 years from
the first conference related to video games [5] and during the earlier years of
study (and not so far away in time), Al was mainly focused on NPCs and, a
bit later on, pathfinding/strategies. Artificial Intelligence in computer games
used to covered mainly the behavior and decision processes and populate the
environment with characters that require any kind of human intelligence and
behavior [6]. This situation has changed strongly and more recently AT has been
redefined [7] to a new much more general concept related to Game Design. As



we already mentioned, nowadays it’s not only Al as simply generating NPCs
and strategies (the first historic approach) but also it’s a key concept and taking
part in almost all the rest of subareas. Moreover, its current scope has been
divided into four subareas, namely, General Game AI, Al as benchmarks, Al in
comercial games and AI assisted Game Design (AIGD).

AIGD may be the most promising research area [7,1] and also the one that
concentrates numerous researches (thousands of publications in the last three
years in the most important channels including IEEE Xplore, ACM Digital Li-
brary). From the point of view of Game Design tools, we can consider Al as a
tool itself, making possible to achieve advances in other areas providing tools
that will help in the process of designing. Not only that but, maybe out of scope
of this paper, Al contributes with several tools that are directly oriented to be
used by developers and apply Al to games, organizations and general purpose
products We’ll focus on those related to Game Design.

Regarding to Techniques, it is obvious that Artificial and Computational
Intelligence provides a wide range of techniques usually applied to generate game
content, NPCs or agents, game narrative and stories, etc. Just to point out
several of them, we can highlight bioinspired algorithms (like Evolutionary and
Co-evolutionary Computation, Genetic algorithms, ants colony search), machine
learning (like Reinforcement, supervised and unsupervised) or Planning/Search
algorithms (like Montecarlo Tree search). The main techniques involved with
AIGD are mainly Evolutionary Computation and Planning. This methods are
used in realtime for obtaining strategies and behaviors (to be applied to NPC,
for instance) and may be mixed as well with Learning methods (usually RL) to
evolve a population representing game elements, such a strategy, NPC Al and,
with less relevance, may be applied to other aspects of the game as game rules.

EC is actually the most used in subareas such as Non Player Character (NPC)
behavior learning, Player Modelling, Procedural Content Generation (PCG) and
AT Assisted Game Design. Although it can be considered the most used tech-
nique, Evolutionary Computation is not the only example, as it can be found as
well examples of Neuroevolution (neural networks, related as well with machine
learning) like in FORZA Motorsport 6 racing game to create avatars that learn
from players and others like Cognitive Modeling [8] focused in player strategies
modeling.

Behavior Trees (BT) is a method often framed into Machine Learning (but
also Planners) techniques and are used widely in Game Design tools, like for
instance in Behaviour Bricks [9](work still in progress), a tool supporting and
helping designers, in many cases without any programming skills, to participate
actively in the behavior development process and not to be focused just in the
previous design and subsequent adjustments. It implements a model of BT with
special emphasis in reusing behaviors and using customizing parameters. This
kind of trees is used as well in ” Behavior Designer - Behavior Trees for Everyone”,
available in Unity Asset Store and focused in helping not only programmers but
also designers and artists. It has lots of features, including creating believable
Agents with a provided visual editor. Another well known example of using



behavior trees is the Unreal Engine, which is defined as a powerful tool to create
Artificial Intelligence combining the AT memory (the blackboard) that keeps the
BT values and the BT as is, in charge of taking decisions and performing actions
accordingly.

Programming by demonstration (PbD), an example of Learning technique®
is a technique also used in already mentioned Behavior Bricks for obtaining
trained nodes based on end-user interactions and not only as a tool but also as
an environment like Pong Designer [10], used even for building complete simple
games. Kodu [11], can be settled as well as another example of PbD.

To mention other examples, for instance both neuroevolution and machine
learning is also used in authoring tools like NERO [12] and trees search based
techniques are mainly used in narrative tools like Twine [2] or Inform 7 [3]
Computational Narrative (CN): CN affects directly both the evolution of
the game and in the player experience. So, it is not only about content or ele-
ments that will be generated during game design/development, but also elemnts
that have influence during realtime game playing. So, it is important to think
in tecniques that can be applied accepting realtime requirements in order to
not affect the gameplay performance. Usually, decision trees [2] are used during
design phase to apply the narrative aspects and define the game story. During
gameplay, it will be a mix of pathfinding (performing any kind of heuristic search
using A* algorithm) and player experience who decides mostly the game story.
Procedural Content Generation: PCG is highly interconnected with Game
Design in a sense that the PCG is used often to create and generate different
types of contents that are key concepts of the Game Design. For instance, we can
mention elments such as maps, items, characters, enemies, bitmaps and so on...
PCG, as any kind of Game content generation, could be any of mixed (techniques
and tools) initiative Al assistance.

According to techniques, and contrary to AI Game Design which is the area
with the most diverse and richest palette of Al methods [6], PCG is widely
dominated by evolutionary computation. Thinking in PCG as a process which
is usually executed offline (not during game playing), it seems that evolutionary
computation fits so much with this concept, because it is usually involved in pro-
cesses that are related with heavy and large computation tasks. Once the content
has been generated, it can be used by any real-time process during gameplay,
but the process itself to generate that content can be considered ’offline’.

Non Playable Character and Agents: Also known as NPC, refers to any
character involved in the game, not controlled directly by a human, so is complete
responsibility of computational processes to manage and control these elements.
This subarea is related with GD in several ways. It’s not only to define how
these characters are going to be represented during the game but also their
characteristics and behavior which is the most relevant concept related to NPC.
Methods related with NPC behavior learning are Evolutionary Comptuation and
Reinforcement Learning. This methods are focused in two main aspects. First, in
finding a way to improve the NPC behavior so that the NPC can be competitive

! https://en.wikipedia.org/wiki/Programming_by_demonstration



during the game play and, second, trying to make the NPC as much believable
as possible. In this subarea, we could mention Behaviuor Trees (deciding which
of a set of behaviors should be chosen in a concrete situation of the game) or
Pathfinding (automatically find out which is the best move in map according
to the state and targets of the game/agent) as the most used techniques. To
mention some examples of using of concrete algorithms, we find for example A*
combined with Influence Map [13] or Layered Learning [14], as a particular case
of machine learning technique used to train agents.

3 Al and Tools in Game Design phases

The contributions on Game Design tools have increased significantly in lasts
years [15]. These tool are centered in assisting the process of creation of game
in any sense. It is important to notice that, currently, most of the tools are
being developed for specific games and/or platforms/AI and is not easy to find
general purpose tools oriented to game design [16], independents from the game
or platform that they are going to be used with. Developing a general tool must
take into account all tasks related to game design and be able to assist designers
in all that tasks or procedures and also identify how to create a model of that
tasks in order to improve it the way that the tool could be optimized.

In general, most relevant tools developed up to date are oriented to PCG help-
ing designers to build new levels, worlds or stories (narrative) to be incorporated
or used into a game, but also GD tools are used in other areas, such as mechanics
(rules) or agents. Other areas less rich in provided Tools is NPC, contributing
with tools helping to create Believable Agents for simulating playthroughs or
generate agents automatically. So, this a promising area to research in.

As we have already seen in this document, Al techniques has a significant
role in Game Design, taking part in several different processes related to Game
development phases. Following, a brief summary of Game Design phases is pre-
sented and AI Techniques and Tools are identified for each of them. Also, Table
1 represents a summary of all mentioned tools with their main characteristics.

3.1 Technical specifications

This phase focuses mainly in determining technical aspects of the game, such as
frame rate, screen resolution and color depth, and also in some game details like
the number of players, NPCs or allowed game modes. Because of the idea of gen-
erating complete games, tools oriented to generate specifications automatically
should include any way to coding this information and the capacity yo generate
all those aspects using any kind of Al technique. This is a very promising and
unexplored game design phase with no tools associated to it.

3.2 Defining Game Story - Narrative

The game main story, differents stories’s timelines, secondary stories and also
a storyboard for the game’s intro and other video scenes during the game can



Tool - Phase |PCG|MR|NRR|AG|COMPG||COMM|RES|OS|FREE
v

Tanagra
Sketcha World
Sentient World
Sentient Sketchbook
SpeedTree
Charack
NERO v
MetaGame v
RuLearn v
ABL
TADS
Inform 7
Twine
Kodu v v
Ceptre v I/
PuzzleScript 4
Pong Designer v v
Ludi v v
Machinations v v |/
Total [6 4 [4 2 4 4 [12 [6 [10, 1%
Table 1. This table shows the most relevant tools related with Game Design according
the Game AT areas they are focused in ( that is to say: PCG: Procedural Content Gen-
eration, MR: Mechanics and Rules, NRR: Narrative, AG: Agents, COMPG: Complete
Games) and according to commercial aspects (that is to say, COMM: Commercial pur-

poses, RES: Research purpuses, OS: Open Source, FREE: Free license to use in game
development). * denotes the existence of a Free evaluation version.

v

SNNNNS
NE
\

\
N

NINN N NS

NN NS

NN NN NS

be framed into Narrative subarea. This phase becomes really important (if not
the most important) in some cases like in adventure games and requires specific
software helping designers during these tasks. Focused on Narrative, Twine [2]
is a powerful free and open source tool helping creating stories for games, suc-
cessfully used in "Howling Dogs” and ”Depression Quest”. Inform7 is another
example to mention. Platform independent, is a visual tool used for creating
in a easy way Interactive Ficition (IF) for games. Following, a list of the most
interesting tools regarding to Narrative:

— TADS [17]: Text adventure development system (TADS) is a free authoring
system for writing your own Interactive Fiction (IF). It offers a complete set
of programming tools for creating high-quality IF.

— Inform 7 [3]: Inform is a design system for interactive fiction based on natural
language. It is a radical reinvention of the way interactive fiction is designed,
guided by contemporary work in semantics and by the practical experience
of some of the world’s best-known writers of IF.



— Twine [2]: Twine is an open-source tool for telling interactive, nonlinear
stories. There’s no need to write any code to create a simple story with
Twine, programmers simply extend stories with variables, conditional logic,
images using simply CSS, and JavaScript..

3.3 Generating Game Content

All concepts related to game content such as bitmaps, characters, weapons, maps,
levels, environments, music, etc can be generated using Al in any way. Procedural
Content Generation (PCG) has been pioneer and historically the subarea with
the most contributions in research aspects and is as well the subarea with more
game desing oriented tools dedicated to. As comented in the Introduction section
of this document, content generation is being more and more important as far
as many games include their own software for adding or editing content, and not
only that but also games fully dedicated to 'create’ that content and real-time
play with it. Following, a list of the most interesting tools regarding to PCG:

— Tanagra [18]: A prototype 2D games generic Level Design Generator tool
helping designers to create levels and manipulate levels. It is a mixed initia-
tive (PCG-Assisted game Design) focused in improving the designer experi-
ence.

— SketchaWorld [19]: Integrated and very accessible modelling tool which com-
bines 3D modelling and semi-automated techniques for building a world.

— Sentient World Simulation [20]: Builder of a sythetic mirror of the real world
with automated and continous calibration with respect to current real-wolrd
information. SWS consists of components capable of capturing new events
as they occur anywhere in the world, focus on any local area of the synthetic
world offers sufficient detail. In other words, the set of models that make
up the synthetic environment encompass the behavior of individuals, orga-
nizations, institutions, infrastructures and geographies while simultaneously
capturing the trends emerging from the interaction among entities as well
as between entities and the environment.

— Sentient Sketchbook [21]: A tool which supports a designer in the creation
of game levels.

— Speedtree [22]: Render Software for generating animated plants and trees
for games (but also used in other areas). It has been used in many games in
lasts 10 years fully integrated with Unity platform.

— Charack [23]: A tool able to generate pseudo-infinite virtual worlds with
different types of terrains. Using a combination of algorithms and content
management methods, Charack is able to create beaches, islands, bays and
coastlines that imitates real world landscapes.

3.4 Defining Rules and Mechanics

Game Mechanics and rules usually governs the logical and functional evolution
of a game. There are some references that highlights the importance of this



area, naming them as the core of a game [24]. Even in some cases, generating
game’s rules has been considered, as a generation of games [25]. Taking them into
account and using tools based in Al techniques would be powerful to combine
and generate new sets of rules or mechanics, and so, we could say new games as
far as the game rules are different. Exploring using any of the search methods
such as Tree Search and combining it with bioinspired algorithms [26], may result
in good solutions to evaluate and to start from to find new promising rule sets
to generate new games. Some examples of tools based on Al and oriented to
generate game mechanics are:

— Meta Game [27]: Meta-Game Playing (Metagame) is a paradigm for research
in game-playing in which programs can be designed to take in the rules of
unknown games and play those games without human assistance. Strong
performance in this new paradigm is evidence that the program, instead of
its human designer, has performed the analysis of each specific game.

— RuLearn [28]: An open-source toolkit for the automatic inference of rules for
shallow-transfer machine translation from scarce parallel corpora and mor-
phological dictionaries. RuLearn will make rule-based machine translation
a very appealing alternative for under-resourced language pairs because it
avoids the need for human experts to handcraft transfer rules and requires,
in contrast to statistical machine translation, a small amount of parallel
corpora (a few hundred parallel sentences proved to be sufficient).

— Ceptre [29]: Ceptre is a rule specification language intended to enable rapid
prototyping for experimental game mechanics, especially in domains that
depend on procedural generation and multi-agent simulation.

— Machinations [30]: Machinations is a conceptual framework and diagram
tool that focuses on structural qualities of game mechanics. An interactive
and visual tool is provided with the framework to allow drawing and run
Machinations diagrams.

3.5 Strategies and Agents

— NERO [12] [31]: Authoring Tool NERO is a machine learning game in which
the player uses real-time neuroevolution to train a team of robotic soldiers
for combat. Training takes place in a sandbox, where the player can place
obstacles and enemies, and change the fitness function according to the skills
that should be learned. After training, players can pit their teams against
other teams in combat.

— ABL [32]: A Behavior Language for Story-Based Believable Agents (ABL) is
a programming language explicitly designed to support programming idioms
for the creation of reactive, believable agents. ABL has been successfully used
to author the central characters Trip and Grace for the interactive drama
Facade (Mateas and Stern, 2003). The ABL compiler is written in Java and
targets Java; the generated Java code is supported by the ABL runtime
system



3.6 Generating complete games

We have to notice that nowadays exist general purpuse tools designed for help-
ing in all game design phases and generating complete games, called usually
Game Engines. For just naming a couple of them, Unity 3D, Unreal Engine,or
CryEngine.Although these tools/engines are supporting game developers to cre-
ate games, are out of the scope of this document as far as is the developer/Designer
who is in charge of build the game and, usually, doesn’t generate games auto-
matically but programatically.

What about generating complete games automatically? It’s clear that this
task should be much more complex and ambitious that simply focus in a concrete
desgin phase and difficult to realize. When generating complete games, should
be necessary as well an evaluation method (also called fitness function) that
allows to evaluate every game individually in order to have an idea of how good
this game is. There are some examples of researches that are focused in this
path, but with some restrictions. Usually, tools for generating complete games
are focused in a concrete type of games, for instance, board games [25] or tile
based games [33] and may be difficult (if not impossible up to date) to find a
tool to generate games not tied to any kind of games. Difficult as well is to
find any kind of fitness function applied to these games, so we could say this is
an unexplored and very promising area. Following, example of tools oriented to
generate complete games:

— PuzzleScript [33]: PuzzleScript is a game engine designed to help game de-
velopers to make tile-based puzzle games.

— Kodu [11]: Kodu lets designers create games on the PC and Xbox via a
simple visual programming language. Kodu can be used to teach creativity,
problem solving, storytelling, as well as programming,.

— Ludi GDL [25]: Language that allows designer to define game’s rule sets and
provides a player (Ludi General Game Player) that parses those rule sets
allowing to play games between human players and NPC agents.

— Pong Designer [10]: An environment for developing 2D physics games through
direct manipulation of object behavior.

4 Conclusions

As seen in this survey, we find that there are two main concepts to focus. First,
the idea is that game design tools are mainly oriented to one specific game. We
feel that it is really interesting to analyze the role of Al for developing new games
or tools that are not tied to an specific game or platform (that is to say, a generic
perspective for AIG). Second, the majority of tools related with game design are
oriented to generate specific content for games. This situation is a good starting
point for our research taking into account that complete game generation is one
of the most interesting (and hard) challenges for the application of Artificial
Intelligence in Games.



Game processes as well as realtime gameplay are also elements well stud-
ied that attract the attention of the research community. In this context, it
is mandatory to take into account the process of Game Evaluation. This is
a very unexplored area that offers many possibilities of investigation from the
point of view of techniques to be applied and possibly tools that help designers
and players to evaluate, compare and rate automatically Games. This concept
is really important if we think in generating games automatically, because it is
needed for accomplishing the complete process of generation without any human
intervention.

Usually, most of the publications up to date related with Game Design tools
are framed and tied to a concrete platform or game. Thinking in how to open
the mind in this aspect will guide us to find more powerful tools to help build
games in any sense. Some tools mentioned in this document, oriented to a more
general concept of automatic games generation are very tied to a concrete type
of games (board or tiles games, puzzles, etc...). Generating games not tied to
any specific genre is a challenge from the research point of view.

We have presented some tools aimed to generate complete games, but with
restrictions as far as they are oriented to a particular game type such as tile
or board games. The first phase in game development that involves technical
decisions (i.e., determining frame rate, game resolution, type of games, number
of players, etc.) corresponds to the Technical Definition phase in Game Design.
We feel that there is a big gap related to both tools and ways to generate game
elements automatically. The tools already mentioned in this document usually
obviate this phase. For us, this phase represents a a starting point in the search
of a schema/model to generate games completely.

References

1. Georgios N. Yannakakis, J.T.: A panorama of artificial and computational intel-
ligence in games. IEEE Transactions on Computational Intelligence and Al in
Games 7(4) (2015)

2. Klimas, C.: Twine, https://twinery.org/ (2009)
3. Inform: Inform 7 - design system for interactive fiction, http://inform7.com/ (2014)
4. Samuel, A.L.: Some studies in machine learning using the game of checkers. IBM

Journal of Research and Development 3(3) (1959) 210-229

Mitchell, E.: Video games visit harvard yard, Antic, 2:24 (1983)

6. Artificial Intelligence in Games, International Journal of Soft Computing and En-
gineering (IJSCE) (2012)

7. Yannakakis, G.N.: Game ai revisited. In: Proceedings of the 9th Conference on
Computing Frontiers. CF ’12, New York, NY, USA, ACM (2012) 285-292

8. Camerer, C.F., Ho, T., Chong, J.K.: A cognitive hierarchy model of games. The
Quarterly Journal of Economics 119(3) (2004) 861-898

9. Olivenza, 1.S.: Aplicacién de técnicas de aprendizaje automdtico supervisables por
el disenador al desarrollo de agentes inteligentes en videojuegos (2017)

10. Mayer, M., Kuncak, V.: Game programming by demonstration. In: Proceedings
of the 2013 ACM International Symposium on New Ideas, New Paradigms, and
Reflections on Programming & Software. Onward! 2013, New York, NY, USA,
ACM (2013) 75-90

ot



11.
12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.
31.

32.

33.

Microsoft-Research: Kodu game lab, https://www.kodugamelab.com/ (2009)
NEROGame.org: Nero game, http://nerogame.org/ (2017)

Prihatmanto, A.S., Prasetyanto, F., Harsoyo, A.: Strategy and behavior models of
non-playable character using computational intelligence approach. In: 2013 IEEE
3rd International Conference on System Engineering and Technology. (2013) 411—
414

Mondesire, S., Wiegand, R.P.: Evolving a non-playable character team with layered
learning. In: 2011 IEEE Symposium on Computational Intelligence in Multicriteria
Decision-Making (MDCM). (2011) 52-59

Yannakakis, G.N., Togelius, J.: A panorama of artificial and computational intel-
ligence in games. (2014)

Togelius, J., Yannakakis, G.N.: General general game ai. In: IEEE Conference on
Computational Intelligence and Games (CIG’16), Press (2016) 468-473
Vicarious: Tads - text adventure development system (2017)

Smith, G., Whitehead, J., Mateas, M.: Tanagra: a mixed-initiative level design
tool. In: Proceedings of the Fifth International Conference on the Foundations of
Digital Games, New York, NY, USA, ACM (2010) 209-216

TNO: (Sketchaworld: From scketch to virtual world, https://www.tno.nl/en/focus-
areas/defence-safety-security /missions-operations/sketchaworld-from-sketch-to-
virtual-world /)

Tony Cerri, D.A.C.: Sentient world simulation (sws) (2006)

Antonio Liapis, J.T., Yannakakis, G.N.: Sentient sketchbook: Computer-aided
game level authoring. (2013)

Interactive Data Visualization, I.I.: Speedtree (2016)

Bevilacqua, F., Pozzer, C.T., d’Ornellas, M.C.: Charack: Tool for real-time gen-
eration of pseudo-infinite virtual worlds for 3d games. In: 2009 VIII Brazilian
Symposium on Games and Digital Entertainment. (2009) 111-120

Zook, A., Riedl, M.O.: Automatic game design via mechanic generation. In:
Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, July
27 -31, 2014, Québec City, Québec, Canada. (2014) 530-537

Browne, C.: Automatic generation and evaluation of recombination games (2008)
Shaker, N., Togelius, J., Nelson, M.J.: Procedural Content Generation in Games:
A Textbook and an Overview of Current Research. Springer (2016)

Pell, B.D.: Strategy generation and evaluation for meta-game playing. Technical
report (1993)

Sanchez-Cartagena, V.M., Pérez-Ortiz, J.A., Sanchez-Martinez, F.: Rulearn: an
open-source toolkit for the automatic inference of shallow-transfer rules for machine
translation (2016)

Martens, C.: Ceptre: A language for modeling generative interactive systems.
(2015)

Dormans, J.: Machinations: Game feedback diagrams (2017)

Stanley, K.O., Cornelius, R., Miikkulainen, R., D’Silva, T., Gold, A.: Real-time
learning in the nero video game. In: Proceedings of the First AAAI Conference
on Artificial Intelligence and Interactive Digital Entertainment. ATIDE’05, AAAT
Press (2010) 159-160

Mateas, M., Stern, A.: A behavior language for story-based believable agents.
IEEE Intelligent Systems 17(4) (2002) 39-47

Lavelle, S.: open-source html5 puzzle game engine, http://www.puzzlescript.net/
(2017)



