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Abstract. In increasing number of real world applications, data are pre-
sented as streams that may evolve over time and this is known by concept
drift. Handling concept drift through ensemble classifiers has received a
great interest in last decades. The success of these ensemble methods
relies on their diversity. Accordingly, various diversity techniques can
be used like block-based data, weighting-data or filtering-data. Each of
these diversity techniques is efficient to handle certain characteristics of
drift. However, when the drift is complex, they fail to efficiently han-
dle it. Complex drifts may present a mixture of several characteristics
(speed, severity, influence zones in the feature space, etc) which may vary
over time. In this case, drift handling is more complicated and requires
new detection and updating tools. For this purpose, a new ensemble ap-
proach, namely EnsembleEDIST2, is presented. It combines the three
diversity techniques in order to take benefit from their advantages and
outperform their limits. Additionally, it makes use of EDIST2, as drift
detection mechanism, in order to monitor the ensemble’s performance
and detect changes. EnsembleEDIST2 was tested through different sce-
narios of complex drift generated from synthetic and real datasets. This
diversity combination allows EnsembleEDIST2 to outperform similar en-
semble approaches in term of accuracy rate, and present stable behaviors
in handling different scenarios of complex drift.
Keywords:Ensemble Classifier, Diversity techniques, Complex Concept
Drift, Adaptive Learning, Evolving Data Stream, Change Detection

1 Introduction

Learning from evolving data stream has received a great attention. It ad-
dresses the non-stationarity of data over time, which is known by concept drift.
The term concept refers to data distribution, represented by the joint distribution
p(x, y), where x represents the n− dimensional feature vector and y represents
its class label. The term concept drift refers to a change in the underlying dis-
tribution of new incoming data. For example, in intrusion detection application,
the behavior of an intruder may evolve in order to confuse the system protection
rules. Hence, it is essential to consider these changes for updating the system in
order to preserve its performance.



Ensemble classifiers appear to be promising approaches for tracking evolving
data streams. The success of the ensemble methods, according to single classifier,
relies on their diversity [17] [22] [21]. Diversity can be achieved according to three
main strategies [15]: block-based data, weighting-data or filtering-data. In block-
based ensembles [5], [16], [20], the training set is presented as blocks or chunks
of data at a time. Generally, these blocks are of equal size and the evaluation
of base learners is done when all instances from a new block are available. In
weighting-data ensembles [3] [4] [18] [13], the instances are weighted according
to some weighting process. For example in Online Bagging [19], the weighting
process is based on re-using instances for training individual learners. Finally,
filtering-data ensembles [1] are based on selecting data from the training set
according to a specific criterion, for example similarity in feature space.

In many real-life applications, the concept drift may be complex in the sense
that it presents time-varying characteristics. For instance, a drift can present
different characteristics according to its speed (abrupt or gradual), nature (con-
tinuous or probabilistic) and severity (local or global). Accordingly, complex drift
can present a mixture of all these characteristics over time. It is worth to under-
line that each characteristic presents its own challenges. Accordingly, a mixture
of these different characteristics may accentuate the challenge issues and com-
plicate the drift handling.

In this paper, the goal is to underline the complementarity of the diversity
techniques (block-based data, weighting-data and filtering-data) for handling dif-
ferent scenarios of complex drift. For this purpose, a new ensemble approach,
namely EnsembleEDIST2, is proposed. The intuition is to combine these three
diversity techniques in order to efficiently handle different scenarios of complex
drift. Firstly, EnsembleEDIST2 defines a data-block with variable size for up-
dating the ensemble’s members, thus it can avoid the problem of tuning off size
of the data-block. Secondly, it defines a new filtering criterion for selecting the
most representative data of the new concept. Thirdly, it applies a new weight-
ing process in order to create diversified ensemble’s members. Finally, it makes
use of EDIST2 [14] [12], as drift detection mechanism, in order to monitor the
ensemble’s performance and detect changes.

EnsembleEDIST2 has been tested through different scenarios of complex
drifts generated from synthetic and real datasets. This diversity combination
allows EnsembleEDIST2 to outperform similar ensemble approaches in term of
accuracy rate, and present a stable behavior in handling different scenarios of
complex drift.

The remainder of the paper is organized as follows. In Section II, the chal-
lenges of complex concept drift are exposed. In Section III, the advantages and
the limits of each diversity technique are studied. In Section IV, the proposed ap-
proach, namely EnsembleEDIST2, is detailed. Section V, the experimental setup
and the obtained results are presented. Finally, in Section VI, the conclusion and
some future research directions are exposed.



2 Complex Concept Drift

In many real-life applications, the concept drift may be complex in the sense
that it presents time-varying characteristics. Let us take the example of a drift
with three different characteristics according to its speed (gradual or abrupt),
nature (continuous or probabilistic) and severity (local or global). It is worth
to underline that each characteristic presents its own challenges. Accordingly,
a mixture of these different characteristics may accentuate the challenge issues
and complicate the drift handling.

For instance, we can consider the drift depicted in Fig.1 as complex drift as
it simulates a Gradual Continuous Local Drift, in the sense that the hyperplane
class boundary is gradually rotating during the drifting phase and continuously
presenting changes with each instance in local regions. Namely, the time until
this complex drift is detected can be arbitrarily long. This is due to the rarity
of data source representing the drift, which in turn makes it difficult to confirm
the presence of drift. Moreover, in some cases, this drift can be considered as
noise by confusion, which makes the model unstable. Hence, to overcome the
instability, the model has to (i) effectively differentiate between local changes
and noises, and (ii) deal with the scarcity of instances that represent the drift
in order to effectively update the learner.

Another interesting complex drift represents the Gradual Continuous Global
Drift (see Fig.2). During this drift, the concept is gradually changing and contin-
uously presenting modifications with each instance. Namely, during the transi-
tion phase, the drift evolves and presents several intermediate concepts until the
emergence of the final concept (see Fig.2.b). Hence, the challenging issue is to
efficiently decide the end time of the old concept and detect the start time of the
new concept. The objective is to update the learner with the data that represent
the final concept (see Fig.2.c) and not with data collected during the concept
evolution (see Fig.2.b). Moreover, this drift is considered as global because it is
affecting all the instances of the drifting class. Namely, handling this complex
drift is also challenging, because the performance’s decrease of the learner is
more pronounced than the other types of drifts.
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Fig. 1. Gradual Continuous Local Drift:a concept1, b-d instance space affected by the
drift and e concept2
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Fig. 2. Gradual Continuous Global Drift: a concept1, b concept evolution and c
concept2

3 Related work

The diversity [15] among the ensemble can be fulfilled by applying various
techniques such as: block-based data, weighting-data or filtering data, in order
to differently train base learners (see Fig.3). Accordingly, the objective in this
investigation is to highlight the advantages and drawbacks of each diversity
techniques in handling complex drift (see Table 1).

3.1 Block-based Technique

According to the block-based technique, the training set is presented as blocks
or chunks of data at a time. Generally, these blocks are of equal size and the
construction, evaluation, or updating of base learners is done when all instances
from a new block are available. Very often, ensemble learners periodically eval-
uate their components and substitute the weakest one with a new (candidate)
learner after each data block [20] [16] [6]. This technique preserves the adapt-
ability of the ensemble in such way that learners, which were trained in recent
blocks, are the most suitable for representing the current concept.

The block-based ensembles are suitable for handling gradual drifts. Generally,
during these drifts, the change between consecutive data blocks is not quite
pronounced; thus, it can be only noticeable in long period. The interesting point
in the block-based ensembles is that they can enclose different learners that are
trained in different period of time. Hence, by aggregating the outputs of these
base classifiers, the ensemble can offer accurate reactions to such gradual drifts.

In contrast, the main drawback of block-based ensembles is the difficulty of
tuning off the block size to offer a compromise between fast reactions to drifts
and high accuracy. If the block size is too large, they may slowly react to abrupt
drift; whereas small size can damage the performance of the ensemble in stable
periods.

3.2 Weighting-data Technique

In this technique, the base learners are trained according to weighted in-
stances from the training set. A popular instance weighting process is presented



in the Online Bagging ensemble [19]. For ease of understanding, the weighting
process is based on re-using instances for training individual classifiers. Namely,
if we consider that each base classifier Ci is trained from a subset Mi from the
global training set; then the instancei will be presented k times in Mi; where
the weight k is drawn from a Poisson(1) distribution.

Data Stream

Ensemble ClassifierC1 C 2 C3

C1 C 2 C3

C1 C 2 C3

(a) Block-based

(b) Weighting-data

(c) Filtering-data

3 times
1 time 2 times

Fig. 3. Different diversity techniques among the ensemble

Online Bagging has inspired many researchers in the field of drift tracking
[3] [17] [13]. This approach can be of great interest for:

– Class imbalance: where some classes are severely underrepresented in the
dataset

– Local drift: where changes occur in only some regions of the instance space.

Generally, the weighting process intensifies the re-use of underrepresented class
data and helps to deal with the scarcity of instances that represent the local
drift. However, the instance duplication may impact the ability of the ensemble
in handling global drift. During global drift, the change affects a large amount of
data; thus when re-using data for constructing base classifiers, the performance’s
decrease is accentuated and the recovery from the drift may be delayed.



3.3 Filtering-data Technique

This technique is based on selecting data from the training set according to
a specific criterion, for example similarity in the feature space. Such technique
allows to select subsets of attributes that provide partitions of the training set
containing maximally similar instances, i.e., instances belonging to the same
regions of feature space. Thanks to this technique, base learners are trained
according to different subspaces to get benefit from different characteristics of
the overall feature space.

In contrast with conventional approaches which detect drift in the overall
distribution without specifying which feature has changed, ensemble learners
based on filtered data can exactly specify the drifting feature. This is a desired
property for detecting novel class emergence or existing class fusion in unlabeled
data. However, these approaches may present difficulty in handling local drifts
if they do not define an efficient filtering criterion. It is worth to underline that
during local drift, only some regions of the feature space are affected by the
drift. Hence, only the base classifier which is trained on changing region is the
most accurate to handle the drift. However, when aggregating the final decision
of this classifier with the remained classifiers, trained from unchanged regions,
the performance recovery may be delayed.

Table 1. Summary of the advantages (+) and drawbacks (-) of diversity techniques
for handling complex drift

Complex Drift
Gradual Continuous Gradual Probabilistic Abrupt

Local Global Local Global Local Global

Block-based + + + + - -

Weighting-data + - + - + -

Filtering-data - + - + - +

4 The proposed approach

The intuition behind EnsembleEDIST2 is to combine the three diversity tech-
niques (Block-based, Weighting-data and Filtering data) in order to take benefit
from their advantages and avoid their drawbacks.

The contributions of EnsembleEDIST2 for efficiently handling complex con-
cept drifts are as follows, it:

– Explicitly handles drift through a drift detection method EDIST2 [14] (sub-
Section4.1)

– Makes use of data-block with variable size for updating the ensemble’s mem-
bers (subSection4.2)



– Defines a new filtering criterion for selecting the most representative data of
the new concept (subSection4.3)

– Applies a new weighting process in order to create diversified ensemble’s
members (subSection4.4)
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4.1 Drift monitoring process in EnsembleEDIST2

EnsembleEDIST2 is an ensemble classifier designed to explicitly handle drifts.
It makes use of EDIST2 [14], as drift detection mechanism, in order to monitor
the ensemble’s performance and detect changes (see Fig4).

EDIST2 monitors the prediction feedback provided by the ensemble. More
precisely, EDIST2 studies the distance between two consecutive errors of clas-
sification. Notice that the distance is represented by the number of instances
between two consecutive errors of classification. Accordingly, when the data dis-
tribution becomes non-stationary, the ensemble will commit much more errors
and the distance between these errors will decrease.

In EDIST2, the concept drift is tracked through two data windows, a ’global’
one and a ’current’ one. The global window WG is a self-adaptive window which
is continuously incremented if no drift occurs and decremented otherwise; and
the current window W0 which represents the batch of current collected instances.

In EDIST2, we want to estimate the error distance distribution ofWG andW0

and make a comparison between the averages of their error distance distributions



in order to check a difference. As stated before, a significant decrease in the error
distance implies a change in the data distribution and suggests that the learning
model is no longer appropriate.

EDIST2 makes use of a statistical hypothesis test in order to compareWG and
W0 error distance distributions and check whether the averages differ by more
than the threshold ε. It is worth underlining that there is no a priori definition of
the threshold ε, in the sense that it does not require any a priori adjusting related
to the expected speed or severity of the change. ε is autonomously adapted
according to a statistical hypothesis test (for more details please refer ti [14]).

The intuition behind EDIST2 is to monitor µd which represents difference
between WG and W0 averages and accordingly three thresholds are defined:

– In-Control level : µd ≤ ε ; within this level, we confirm that there is no change
between the two distributions, so we enlarge WG by adding W0 ’s instances.
Accordingly, all the ensemble members are incremented according to data
samples in WG and W0.

– Warning level : µd > ε ; within this level, the instances are stored in an warn-
ing chunk Wwarning. Accordingly, all the ensemble members are incremented
according to weighted data from Wwarning. (The weighting process will be
explained in subSection4.4)

– Drift level : µd > ε + σd; within this level, the drift is confirmed and WG

is decremented by only containing the instances stored since the warning
level,i.e., in Wwarning. Additionally, a new base classifier is created from
scratch and trained according to data samples in Wwarning, then the oldest
classifier is removed from the ensemble.

4.2 EnsembleEDIST2’s diversity by variable-sized block technique

In EnsembleEDIST2, the size of data-block is not defined according to the
number of instances, as it is the case of conventional block-based ensembles, but
according to the number of errors committed during the learning process. More
precisely, the data-block W0, in EnsembleEDIST2, is constructed by collecting
the instances that exist between N0 errors.

As depicted in Fig.5 , when the drift is abrupt, the ensemble commits N0

errors in short drifting time. However, when the drift is gradual, the ensemble
commits N0 errors in relatively longer drifting time. Hence, according to this
strategy, the block size is variable and adjusted according to drift characteristics.

It is worth to underline that EnsembleEDIST2 can offer a compromise be-
tween fast reaction to abrupt drift and stable behavior regarding gradual drift.
This is a desirable property for handling complex drift which may present dif-
ferent characteristics in the same time, and accordingly EnsembleEDIST2 can
avoid the problem of tuning off the size of data-block as it is the case of most
block-based approaches.
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Fig. 5. Variable data-block technique in EnsembleEDIST2

4.3 EnsembleEDIST2’s diversity by new filtering-data criterion

Differently from conventional filtering-data ensembles, which filter data ac-
cording to similarity in the feature space, EnsembleEDIST2 defines a new filter-
ing criterion. It filters the instances that trigger the warning level. More precisely,
each time the ensemble reaches the warning level, the instances are gathered in
a warning chunk Wwarning in order to re-use them for training the ensemble’s
members (see Fig.6.a). This is an interesting point when dealing with local drift
because drifting data are scarce and not continuously provided. It is possible
that a certain amount of drifting data can be found in zones (1), (2), (3) and
(4) but not quite sufficient to reach the drift level. Accordingly, by considering
these data for updating the ensemble’s members, EnsembleEDIST2 can ensure
a rapid recovery from local drift.

In contrast, conventional filtering-data ensembles are unable the define in
which zone the drift has occurred, thus, they may update the ensemble’s mem-
bers with data filtered from unchanged feature space; which in turn may delay
the performance correctness.

4.4 EnsembleEDIST2’s diversity by new weighting-data process

The focus in EnsembleEDIST2 is to maximize the use of data present in
Wwarning for accurately updating the ensemble. More precisely, the data in
Wwarning are weighted according to the same weighting process used in On-
line bagging [19]. Namely, each instancei from Wwarning is re-used k times for
training the base classifier Ci , where the weight k is drawn from a Poisson(1)
distribution (see Appendix7).

Generally, the weighting process in EnsembleEDIST2 offers twofold advan-
tages. First, it intensifies the re-use of underrepresented class data and helps to



deal with scarcity of instances that represent the local drift. Second, it permits
faster recovery from global drift than conventional weighting-data ensembles. As
it is known, during global drift, the change affects a large amount of data. Hence,
differently from conventional weighting-data ensembles, which apply the weight-
ing process to all the data sets; EnsembleEDIST2 only weights the instances
present in Wwarning (see Fig.6.b). Accordingly, it can avoid to accentuate the
decrease of the ensemble’s performance during global drift, and ensure a fast
recovery.
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Fig. 6. (a) Filtering-data technique and (b) Weighting-data technique in Ensem-
bleEDIST2

5 Experiments and performance analysis

5.1 Experimental evaluation

Synthetic Datasets In this investigation, we are studying six different sce-
narios of complex concept drift as depicted in Table 2 . All synthetic datasets
contain 100, 000 instances and one concept drift where the starting and the end-
ing time are predefined. For gradual drift, the drifting time lasts 30, 000 instances
(it begins at tstart=40,000 and ends at tend = 70, 000). For abrupt drift, the drift
occurs at t = 50, 000.



Table 2. Different types of Complex Drift handled in this investigation

Complex Drift Characteristics
Synthetic Datasets

Speed Nature Severity

Gradual
Continuous

Local Hyperplane [10]
Global RBF [2]

Probabilistic
Local SEA Gradual [24]
Global STAGGER Gradual [23]

Abrupt
Local SEA Abrupt [24]
Global STAGGER Abrupt [23]

Real Datasets

Electricity Dataset (48,312 instances, 8 attributes, 2 classes) is a real world
dataset from the Australian New South Wales Electricity Market [9]. In this
electricity market, the prices are not fixed and may be affected by demand and
supply. The dataset covers a period of two years and the instances are recorded
every half an hour. The classification task is to predict a rise (UP) or a fall
(DOWN) in the electricity price. Three numerical features are used to define the
feature space: the electricity demand in current region, the electricity demand
in the adjacent regions and the schedule of electricity transfer between the two
regions.

This dataset may present several scenarios of complex drift. For instance, a
gradual continuous drift may occur when the users progressively change their
consumption habits during a long time period. Likewise, an abrupt drift may
occur when the electricity prices suddenly increase due to unexpected events
(e.g., political crises or natural disasters). Moreover, the drift can be local if
it impacts only one feature (e.g., the electricity demand in current region); or
global if it impacts all the features.

Spam Dataset (9,324 instances, 500 attributes, 2 classes) is a real world dataset
containing email messages from the Spam Assassin Collection Project [11]. The
classification task is to predict if a mail is a spam or legitimate. The data set
contains 20% of spam mailing. The feature space is defined by a set of numerical
features such as the number of receptors, textual attributes describing the mail
contain and sender characteristics...

This dataset may present several scenarios of complex drift. For instance,
a gradual drift may occur when the user progressively changes his preferences.
However, an abrupt drift may occur when the spammer rapidly changes the mail
content to trick the spam filter rules. It is worth to underline that the drift can
also be continuous when the spammer starts to change the spam content; but
the filter continues to correctly detect them. In the other side, the drift can be
probabilistic when the spammer starts to change the spam content; but the filter
fails in detecting some of them.



Evaluation criteria When dealing with evolving data streams, the objective
is to study the evolution of the EnsembleEDIST2 performance over time and see
how quick the adaptation to drift is. According to Gama et al. [8] the prequential
accuracy is a suitable metric to evaluate the learner performance in presence of
concept drift. It proceeds as follows: each instance is firstly used for testing then
for training. Hence, the accuracy is incrementally updated using the maximum
available data; and the model is continuously tested on instances that it has not
already seen (for more details please refer to [8]).

Parameter Settings All the tested approaches were implemented in the java
programming language by extending the Massive Online Analysis (MOA) soft-
ware [2]. MOA is an online learning framework for evolving data streams and
supports a collection of machine learning methods.

For comparison, we have selected well known ensemble approaches according
to each category:

– Block-based ensemble: AUE (Accuracy Updated Ensemble) [5], AWE (Accu-
racy Weighted Ensemble) [16] and LearnNSE [20] with block size equal to
500 instances.

– Weighting-data ensemble: LeveragingBag [3] and OzaBag [19]

– Filtering-data ensemble: LimAttClass [1]

For all these approaches, the ensemble’s size was fixed to 10 and the Hoeffding
Tree (HT) [7] was used as base learning algorithm.

It is worth to notice that EnsembleEDIST2 makes use of two parameters: N0

which is the number of error in W0 and m which is the number of base classifiers
among the ensemble. In this investigation, we respectively set N0 = 30 and
m = 3 according to empirically studies done in subSections 5.2 and 5.2.

5.2 Comparative study and interpretation

Impact of N0 on EnsembleEDIST2 performance EnsembleEDIST2 makes
use of the parameter N0 in order to define the minimum number of error occurred
in W0. Recall that W0 represents the batch of current collected instances. This
batch is constructed by collecting the instances that exist between N0 errors.

It is interesting to study the impact of N0 on the accuracy according to
different scenarios of complex drift. For this purpose, we have done the following
experiments: for each scenario of complex drift, the accuracy of EnsembleEDIST2
is presented by varying N0 values (see Table 3).

Based on these results, we can conclude that the performance of Ensem-
bleEDIST2 in handling different scenarios of complex drifts is weakly sensitive
to N0. Hence, we have decided to use N0 = 30 as it has achieved the best
accuracy rate in most cases.



Table 3. Prequential accuracy for different values of N0 in EnsembleEDIST2

Complex drift
Gradual Continuous Gradual Probabilistic Abrupt

Local Global Local Global Local Global

Synthetic database Hyperplane RBF SEA Gradual STAGGER Gradual SEA Abrupt STAGGER Abrupt

N0 = 30 98,6 95,9 97,2 91,6 97,9 99,6

N0 = 60 98,2 95,9 97,2 91,5 98,1 99,6

N0 = 90 98,2 95,6 97,1 91,6 97,5 99,6

N0 = 120 98,3 95,9 97,1 91,6 98,2 99,6

N0 = 150 98,3 95,6 97,1 91,7 97,5 99,6

Impact of ensemble size on EnsembleEDIST2 performance Ensem-
bleEDIST2 makes use of the parameter m in order to define the number of
classifiers in the ensemble. Accordingly, it is interesting to study the impact of
m on ensemble’s performance according to different scenarios of complex drift.

According to Table4, it is noticeable that the size of EnsembleEDIST2 does
not impact significantly the performance in handling different scenarios of com-
plex drift. Hence, we have decided to use m = 3 as it achieved the best accuracy
rate in most cases and it allows to limit the computational complexity of the
ensemble.

Table 4. Accuracy of EnsembleEDIST2 with different number of base classifiers

Complex drift
Gradual Continuous Gradual Probabilistic Abrupt

Local Global Local Global Local Global

Synthetic database Hyperplane RBF SEA Gradual STAGGER Gradual SEA Abrupt STAGGER Abrupt

m = 3 98,6 95,9 97,2 91,6 97,9 99,6

m = 5 98,6 95,9 97,1 91,6 98 99,6

m = 10 98.4 95,8 97,2 91,1 97,6 99,6

Accuracy of EnsembleEDIST2 Vs other ensembles Table5 summarizes
the average of prequential accuracy during the drifting phase. The objective of
this experiment is to study the ensemble performance in the presence of different
scenarios of complex drift. Firstly, it is noticeable that EnsembleEDIST2 has
achieved better results than block-based ensembles in handling different types
of abrupt drift. During abrupt drift (independently of being local of global),
the change is rapid; thus AUE, AWE and LearnNSE present difficulty in tuning
off the block size to offer a compromise between fast reaction to drift and high
accuracy. However, EnsembleEDIST2 is able to autonomously train ensemble



members with variable amount of data at each time process, thus it can efficiently
handle abrupt drift.

Secondly, it is noticeable that EnsembleEDIST2 outperforms weighting-data
ensembles in handling different categories of global drift. During global drift
(either continuous, probabilistic or abrupt), the change affects a large amount
of data; thus when LeveragingBag and OzaBag intensify the re-use of data for
training ensemble members, the performance’s decrease is accentuated. In con-
trast, EnsembleEDIST2 duplicates only a set of filtered instances for training
the ensemble members, that is why it is more accurate in handling global drift.

Thirdly, it is noticeable that EnsembleEDIST2 outperforms the filtering-data
ensembles in handling different categories of local drift. During local drift (either
continuous, probabilistic or abrupt), the change affects a little amount of data;
thus the choice of the filtering criterion is a essential point for efficiently handling
local drift. EnsembleEDIST2 defines a new filtering criterion, which is based on
selecting the data that triggered the warning level. These data are the most
representative of the new concept, thus when training the ensemble’s members
accordingly, it makes it more efficient for handling local drift.

EnsembleEDIST2 has also been tested through real world data sets which
represent different scenarios of drift. It is worth underlining that the size of
these data sets is relatively small comparing to the synthetic ones. Despite the
different features of each real data set, encouraging results have been found
where EnsembleEDIST2 has achieved the best accuracy in all the datasets (see
Table6).

To sum, it is worth to underline that the combination of the three diversity
techniques in EnsembleEDIST2 is beneficial for handling different scenarios of
complex drift in the same time.

Table 5. Accuracy of EnsembleEDIST2 Vs. other ensembles in synthetic datasets

Complex Drift Gradual Continuous Gradual Probabilistic Abrupt
Local Global Local Global Local Global

Synthetic Dataset Hyperplane RBF SEA Gradual STAGGER Gradual SEA Abrupt STAGGER Abrupt

EnsembleEDIST2 98,604 95,982 97,211 91,609 98,196 99,605

Block-based
AUE 94,187 95,611 94,547 90,381 95,234 98,367
AWE 94,054 95,018 94,563 90,551 95,23 98,367

LearnNSE 96,369 95,44 94,372 85,873 95,079 39,049

Weighting-data
LeveragingBag 98,6 95,8 97,1 89,1 98,2 94,3

OzaBag 98,195 93,533 96,982 69,21 98,132 96,64

Filtering-data LimAttClass 91,281 94,186 91,126 86,553 91,226 94,893



Table 6. Accuracy of EnsembleEDIST2 Vs. other ensembles in real datasets

Real Dataset Electricity Spam

EnsembleEDIST2 84,8 89,2

Block-based
AUE 69,35 79,34
AWE 72,09 60,25

LearnNSE 72,07 60,33

Weighting-data
LeveragingBag 83.8 88,2

OzaBag 82,3 82,7

Filtering-data LimAttClass 82,6 63,9

6 Conclusion

In this paper, we have presented a new study of the role of diversity among
the ensemble. More precisely, we have highlighted the advantages and the limits
of three widely used diversity techniques (block-based data, weighting-data and
filtering data) in handling complex drift.

Additionally, we have presented a new ensemble approach, namely Ensem-
bleEDIST2, which combines these three diversity techniques. The intuition be-
hind this approach is to explicitly handle drifts by using the drift detection mech-
anism EDIST2. Accordingly, the ensemble performance is monitored through a
self-adaptive window. Hence, EnsembleEDIST2 can avoid the problem of tuning
off the size of the batch data as it is the case of most block-based ensemble
approaches, which is a desirable property for handling abrupt drifts. Secondly, it
defines a new filtering criterion, which is based on selecting the data that trigger
the warning level. Thanks to this property, EnsembleEDIST2 is more efficient for
handling local drifts then conventional filtering-data ensembles, which are only
based on filtering data according to similarity on feature space. Then, differently
from the conventional weighting-data ensembles which apply the weighting pro-
cess to all the data stream; EnsembleEDIST2 only intensifies the re-use of most
representative data of the new concept, which is a desirable property for handling
global drifts.

EnsembleEDIST2 has been tested different scenarios of complex drift. En-
couraging results were found, comparing to similar approaches, where Ensem-
bleEDIST2 has achieved the best accuracy rate in all datasets; and presented a
stable behavior in handling different scenarios of complex drift.

It worth to underline that in the present investigation, the ensemble size, i.e.,
the number of ensemble members, was fixed. Hence it is interesting, for future
work, to perform a strategy for dynamically adapting the ensemble size. The
focus is that, during stable period, the ensemble size is maintained fixed; whereas
during the drifting phase the size is autonomously adapted. This may ameliorate
the performance and reduce the computational cost among the ensemble.
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7 EnsembleEDIST2 pseudo code

Algorithm EnsembleEDIST2
Input: (x, y): Data Stream

N0: number of error to construct the window
m: number of base classifier

Output: Trained ensemble classifier E
1. for each base classifier Ci from E
2. InitializeClassifier(Ci)
3. end for
4. WG←CollectInstances(E,N0)
5. Wwarning←ø
6. repeat
7. W0←CollectInstances(E,N0)
8. Level←DetectedLevel(WG,W0)
9. switch (Level)
10. case 1: Incontrol
11. WG ←WG ∪W0

12. UpdateParameters(WG,W0)
13. Increment all ensemble’s members of E according to instances in

WG

14. end case 1
case 2: Warning

15. Wwarning ←Wwarning ∪W0

16. UpdateParameters(Wwarning,W0)
17. WeightingDataProcess(E,Wwarning)
18. end case 2

case 3: Drift
19. Create a new base classifier Cnew trained on instances inWwarning

20. E ← E ∪ Cnew
21. Remove the oldest classifier from E
22. WG←Wwarning

23. Wwarning←ø
24. end case 3
25. end switch
26.until The end of the data streams

Algorithm DetectedLevel(WG,W0)
Input: WG: Global data window characterized by:

NG: error number
µG: error distance mean
σG:error distance standard deviation

W0: Current data window characterized by:

N0: error number,



µ0: error distance mean,
σ0:error distance standard deviation

Output: Level: detection level
1. µd←µG-µ0

2. σd←
√

σ2
G

NG
+

σ2
0

N0

3. ε←t1−α ∗ σd
4. if (µd > ε+ σd)
5. Level←Drift
6. else if (µd > ε)
7. Level←Warning
8. else Level←Incontrol
9. end if
10. end if
11. return (Level)

Algorithm CollectInstances(E,N0)
Input: (x, y): Data Stream

N0: number of error to construct the window
C: trained ensemble classifier E

Output: W : Data window characterized by:
N : error number
µ: error distance mean
σ:error distance standard deviation

1. W←ø
2. N←0
3. µ←0
4. σ←0
5. repeat for each instance xi
6. Prediction← unweightedMajorityV ote(E, xi)
7. if (Prediction = false)
8. di←computeDistance()
9. µ← N

N+1µ+ di
N+1

10. σ←
√

N−1
N σ2 + (di−µ)2

N+1

11. N←N + 1
12. end if
13. W←W ∪ {xi}
14. until (N = N0)
15. return (W )

Algorithm UpdateParameters(WG,W0)
Input: WG: Global data window characterized by:

NG: error number



µG: error distance mean
σG:error distance standard deviation

W0: Current data window characterized by:
N0: error number,
µ0: error distance mean,
σ0:error distance standard deviation

Output: Updated parameters of WG

1. µG← 1
NG+N0

(NG.µG+N0.µ0) σG←
√

NGσ2
G+N0σ2

0

NG+N0
+ NGN0

(NG+N0)2
(µG − µ0)2

2. NG←NG +N0

Algorithm WeightingDataProcess(E,Wwarning)
Input: E: Ensemble Classifier

Wwarning: Window of data
Output: E: Updated ensemble classifier
1. for each instance xi from Wwarning

2. for each base classifier Ci from E
3. k ← poisson(1)
4. do k times
5. TrainClassifier(Ci, xi)
6. end do
7. end for
8. end for
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