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Abstract. Microblogging and social news web sites like Twitter are
largely used as an important source of up-to-date information. Conse-
quently, organizations and firms have interest in using those platforms
to di↵use their own news and updates. The dynamics of information or
rumor spread in online social networks depends mainly on network char-
acteristics and is currently a critical topic in Social Network Analysis
(SNA). The di↵usion through ‘retweets’ of such information occurs in a
time lapse immediately after the publication of the original tweet, and
it is internal to some hashtag-based ‘channel’. In this study, the retweet
count of a given tweet is assumed as an index of its di↵usion. For analyz-
ing the statistical features of viral tweets, we have selected five tweets.
Our model is based on the hypothesis that it is highly probable that a
user decides to retweet a tweet if he/she is following either the tweet
author, or another retweeter of the tweet. Therefore, we choose as main
features of a tweet its number of retweets and the number of followers of
retweeting users.
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1 Introduction

Social platforms involve billions of people all around the world, attracting users
from several social groups, regardless of age, gender, education, or nationality.
These systems blur the distinction between the private and working spheres,
and users are known to use such systems both at home and on the work place,
both professionally and with recreational goals. In particular, microblogging and
social news web sites like Twitter are largely used as an important source of up-
to-date information. On the other hand, firms and agencies are interested in
using those platforms to di↵use their own news and updates, related to specific
campaigns or for their daily operation.

In Social Network Analysis (SNA), the study of information spreading pro-
cesses is a critical topic [1]. In fact, understanding the dynamics of information



or rumor spread in social networks is very important for many di↵erent purposes,
such as marketing campaigns, political influence, news di↵usion and so on. The
way a piece of information reaches people and how much time it takes to do it
depend mainly on network characteristics, on the influence of the source of infor-
mation, and on the meaning of the information content, which deserves a special
attention and may depends on the context. Examine such information content is
out of the scope of this paper, and has to be analyzed, for example, with Speech
Act Theory, which studies linguistic expressions that aim at performing some
functions.

Thus, information spreading is based on the analysis of the underlying so-
cial graph and its users’ motives and patterns of participation. At its core, SNA
is the process for studying social networks and understanding the behaviors of
their members. Graph theory provides the basic foundations for representing and
studying a social network. In fact, each member of the social network can be
mapped onto a node of a graph and each relationship between two members onto
an edge that connects two nodes. In real life, it is very common to find exam-
ples of social networks: groups of friends, a company’s employees, contributors
with di↵erent aims, etc. In fact, SNA is currently used in many research fields
including anthropology, biology, economics, geography, information science, or-
ganizational studies, political science, social psychology.

One of the most important application of SNA is to find subgroups of strongly
interconnected users, i.e., to perform community detection [13]. Many users can
be considered a community if the existing connections, internal to the commu-
nity, are many more than the ones with outside users (this situation is similar to
a dense graph). Detecting the presence of a community allows analysts to rec-
ognize the paths followed by information for reaching the network users, on the
basis of di↵erent metrics. For example, Degree Centrality measures the capability
to spread information directly to other users. Instead, Betweenness Centrality is
gauge of how much a user could be able to di↵use information from a community
to another, especially if he/she belongs to many communities. Finally, Closeness
Centrality provides information about how far a user is from all other members
of the community; thus, it provides information about the probability of his/her
own posts to reach all those fellow members.

Other important kinds of analysis regard the behavior of a certain user [19],
who can be classified for example as “active” (when he produces contents, sends
videos and photos, comments posts of other users, reports original texts and
documents) or “passive” (when he is only a consumer of other users’ contents,
limiting himself to liking or unliking those contents). But it is also important
to study the dynamics of a social network structure during time [3], to discover
for example its lead users, who can be distinguished as the best connected and
stable nodes in the social graph.

In the following sections, the paper will first discuss the state of the art
about the analysis of rumor spreading, also in relation to the nature of the
underlying social network; then it will present some theoretical tools to analyze
the phenomenon of viral information spreading; afterwords, it will describe the



methodology of analysis and finally it will provide some experimental results,
obtained by comparing the mathematical model with some real world cases of
viral tweets.

2 Related work

Several models have been developed in order to study the phenomenon of in-
formation spreading, but there is not an unique standard option, due to the
heterogeneity of social networks [23], from real-world ones to online social net-
works, such as micro-blogging services or forums. Despite those diversities, social
networks share common features that are taken as basis for further analysis. First
of all, a network is often viewed as a graph G = (V,E), where V is a discrete
finite set of nodes (or vertices) that represents the people or users involved, and
E is a binary relation on V , that represents relationships among users. The
neighborhood of a node is the set of other nodes directly connected to him/her.

Depending on network, the topological characteristics of the graph change;
several models have been investigated to match the correct shape of a network,
such as complete graph [24], hypercubes [11], random graphs [25] and evolv-
ing random graphs [5], preferential attachment graphs [2, 9], power-law degree
graphs [14] and so on. Complete graphs are graphs where all nodes are connected
to each others, i.e., where each individual has a complete view of the social net-
work and can communicate with all other users. Hypercube graphs are graphs
whose nodes and edges are the vertices and edges of a n-dimensional hypercube.
Random graphs refer to the Erdős-Rényi model, i.e., graphs where edges appear
independently with a certain probability p, thus connecting nodes randomly.
Such random graphs were discovered to not e↵ectively model social networks,
while evolving random graphs, i.e. random graphs which changes as functions
of time, show more realistic behaviors. Finally, preferential attachment graphs
and power-law degree graphs are variants of evolving random graphs, and are
currently studied in SNA, mainly because they produce scale-free networks. As
a matter of fact, real social networks have often the shape of scale-free networks,
i.e., their degree distribution follows a power-law.

In literature, rumor spreading on a graph (thus, a social network) has been
studied by means of two types of distributed mechanisms [20, 21]: the push
protocol and the flooding protocol. Both protocols are synchronous, i.e., time
steps, or rounds, are used to describe the behavior of a node, and the piece of
information or rumor originates by a single source node. In the flooding protocol,
starting from the source at the first time step, each node forwards the information
to all nodes in its neighborhood. In the push protocol, instead, at every time step,
each informed node in the social network chooses uniformly at random another
node, and shares with it the piece of information. Behavior of such protocols are
widely investigated for several types of graphs [17], and their performance, time
of completion [4,6] or other measures, such as conductance [15], are well-known.
In [5], a formal argument is provided, for demonstrating the robustness of the



push protocol also against network changes, using the model of edge-markovian
dynamic graphs.

The actual challenge is to understand when and how such protocols, or their
variants, are suitable in order to describe information spreading in a certain
social network with its own topological model. Answers to such problem dif-
fer according to social network characteristics and platforms, taking account of
the peculiar communication patterns of certain online social networks, e.g., the
Twitter retweet mechanism [22,28], or the way Facebook users share posts [10].
In particular, in [18] the simplicial model is applied to the study of higher dimen-
sional social groups, where opinion leaders play an important role in information
spreading. Members of such groups are characterized by: sharing a world-view
and a sense of identity; open in-group communication climate; and a shared life
story. All these features can be mapped to various Facebook types of informa-
tion and activities: overlapping profile data and liked pages; multiple interactions
through messages and comments; tags in common pictures and participation to
events.

Another, recent, approach is the study of network metrics, such as degree
centrality, closeness centrality, and betweenness centrality, by means of Semantic
SNA [7,8]. This approach takes into account contents of topics, in order to obtain
di↵erent understanding of the information flow in a social network.

The study of information di↵usion often gave rise to other inherent questions,
such as how a topic becomes popular and which methods can make it viral [30].
Those matters are analyzed by means of statistical models that aim to predict
the future impact of a new information released within the social network. Cur-
rently, “little is known about factors that could a↵ect the dissemination of a single
piece of information” [27], and several predictive models have been proposed.
Each model have to face two main issues: the impact of the topology of the
underlying social network—with all the related formalizations—, the influence
of the individual behavior of users and, finally, the communication patterns of
the community (online or not).

A common approach is to assign a score to such features [26,29,31]. In some
networks, the underlying graph model is very important because di↵usion is
subordinated to connection among users, for example if the piece of information
is visible only to a user’s neighborhood. In other networks, messages or posts
are public, and this fact overcome topological limits, bypassing relationship to
address wide audience. Moreover, the propagation speed depends on the context
in which the piece of information is introduced. All those considerations are
useful to gain the correct score of a feature, and then the scores are put together
to obtain an estimation of the di↵usion probability of a single topic.

3 Background and Notations

In this section we define and formalize some main features of tweets, in order to
model the information di↵usion phenomenon of Twitter. Tweets representation
as key-value dictionary (in particular, JSON objects) can be obtained by using



the Twitter APIs. The information contained in these objects may vary from
user personal details to the text of the message, or the number of times the
tweet was retweeted.

In this study, tweets information are grouped under so-called ‘channels’, i.e.
lists of tweets identified by the presence of the same hashtag in their text, or
the same keyword. The di↵usion of such information occurs in a time lapse
immediately after the publication of the tweet, and it is internal to the channel.
This di↵usion consists in the re-publication of the same content of the original
tweet, possibly commented. Such a practice is called ‘retweet’ and it is widely
employed by Twitter users. We assume the retweet count of a given tweet as an
index of its di↵usion inside the online social network, and, in particular, inside
its channel. Extremely popular tweets are retweeted thousand times, but inside a
channel, a tweet can become popular with few dozens of retweets. Deciding how
many retweets make a tweet ‘viral’ depends on the underlying social network
and on the topic of the tweet, and is out of the scope of this paper. Any user
who reads a tweet, in a channel or on its Twitter feed, can retweet that tweet.
We assume as a hypothesis that is highly probable that a user decides to retweet
a tweet if he/she is following either the tweet author or another retweeter of the
tweet. Therefore, we choose as main features of a tweet its number of retweets
and the number of followers of retweeting users.

In the following, some useful definitions are given, which will be used in the
rest of the paper. Definitions are taken from [12], where details and properties
on Beta and mixed distributions are largely explained.

Definition 1 (Beta Distribution). The Beta distribution is a continuous
probability distribution, which has two positive parameters ↵,� 2 R+ and that
takes values in the [0, 1] interval. Its probability density function is

f(x) =
x

↵�1(1� x)��1

B(↵,�)
(1)

where B(↵,�) defined below is called Beta function, and it acts as a normaliza-
tion constant.

B(↵,�) =

Z 1

0

x

↵�1(1� x)��1
dx =

� (↵)� (�)

� (↵+ �)
. (2)

� (z) denotes the Euler’s Gamma function. A random variable X beta-distributed
is denoted by X ⇠ Beta(↵,�).

Definition 2 (Beta-binomial Distribution). The Beta-binomial distribu-
tion of parameters n 2 N and ↵,� 2 R+ is a compound distribution of the
binomial and the beta distributions, where the parameter p of the binomial dis-
tribution is drawn from a beta distribution. Hence, the beta-binomial distribution
is a discrete distribution with probability mass function

'(k) =

✓
n

k

◆
B(↵+ k,� + n� k)

B(↵,�)
. (3)



The proposed model consists in the assumption that each user who reads a
given tweet can retweet that tweet independently with probability p 2 [0, 1], or
not, with probability q = 1 � p. As a central design decision, we assume that
this probability p is not a constant, but it has a Beta distribution. The Beta
distribution is used because of its peculiarities. As a matter of fact, by varying
the parameters ↵ and �, the distribution adopts di↵erent shapes. Hence, it is
suitable for describing various and distinct phenomena. Because we do not have
any information which helps in defining the distribution of p a-priori, the Beta
distribution acts as an indicator that models the behavior of the random variable.

Fixed a tweet T , for each of the N
T

Twitter users who retweeted T (including
the author of the tweet), we consider two parameters, namely n

i

and x

i

, where
i = 1, . . . , N

T

denotes the user. The n
i

parameter is the followers count of the i-th
user who retweeted T . It can be observed directly on Twitter. The x

i

parameter
is the number of users who follow i and who also retweeted T .

As an observation, x
i

is a known numeric value, but under the assumption of
the proposed model, is a random variable X

i

⇠ Beta-Bin(n
i

,↵

T

,�

T

) following
the Beta-binomial distribution. The parameters ↵

T

and �

T

are unknown and
one of the targets of this work is to find a way to estimate them.

3.1 Maximum Likelihood Estimation

The parameters ↵
T

and �

T

of our problem are estimated by using the Maximum
Likelihood Estimation (MLE ) method. As a matter of fact, given a random
variable X distributed with a certain law f(·), which belongs to a family pa-
rameterized by unknown parameters ✓, the MLE is a method for estimating
such parameters. There are other statistical methods useful in this case, cited,
e.g., in [16], such as the method of moments. Not all methods are suitable for
investigating the Beta-binomial distribution parameters.

The MLE, in details, starts from a given sample of N independent and iden-
tically distributed (iid) observations (x1, x2, . . . , xN

) of X, of which the joint
probability density function f(x1, . . . , xN

, ✓) is unknown. Hence, it is desirable
to estimate the joint density f(x1, . . . , xN

|✓) of the observations, parameter-
ized by ✓. Because the observations are iid, such a joint density is equal to
f(x1|✓)f(x2|✓) · · · f(xN

|✓). Then, we can obtain some prediction ✓̂ of the pa-
rameter ✓. The cost of a prediction ✓̂ is called loss function and is denoted
by L(✓̂, ✓). Thus, the optimum value for ✓ is obtained by minimizing the loss
function.

✓̂OPT = argmin
✓̂

E
⇣
L(✓̂,⌦)|X = (x1, x2, . . . , xN

)
⌘
. (4)

The equation above can be rewritten as

✓̂OPT = argmax
✓

f(✓|x1, x2, . . . , xN

). (5)

Following Bayes Theorem and the Law of Total Probability, it is su�cient to
maximize the joint function f(x1, . . . , xN

|✓)f(✓) = f(x1|✓)f(x2|✓) · · · f(xN

|✓)f(✓).



The estimation
✓̂MAP = argmax

✓

f(x1, x2, . . . , xN

|✓). (6)

is called Maximum A Posteriori (MAP).

Definition 3 (Likelihood). The likelihood is defined as follows

L(✓;x1, . . . , xN

) =
NY

i=1

f(x
i

|✓) (7)

where ✓ is an array of parameters, f(·|✓) is a family of probability density func-
tions, and (x1, x2, . . . , xN

) is a sample of N iid observations under the law f(·).

Following the equation (6), the MLE consists in maximizing the likelihood
function (7) evaluated in (x1, x2, . . . , xN

):

✓̂MLE = argmax
✓

L(✓;x1, . . . , xN

). (8)

Hence, in the following section, the likelihood of the observed number of
retweets is computed, using the Beta-binomial distribution and the MLE method
to find the missing parameters.

4 Experimental Results

In the proposed model, we fix a tweet T . Then, the parameter ✓ of the equa-
tion (8) is the pair (↵

T

,�

T

) that represents the parameter of the Beta dis-
tribution. As a matter of fact, for each observation x

i

, the parameter n
i

of the
Beta-binomial is also known. Since the iid observations are occurrence of a Beta-
binomial random variables, the likelihood has the following equation:

L(↵,�) =
NY

i=1

✓
n

i

x

i

◆
B(↵+ x

i

,� + n

i

� x

i

)

B(↵,�)
(9)

where the subscript T is omitted for the sake of clarity. Let l(↵,�) = logL(↵,�)
be the log-likelihood. Hence,

l(↵,�) =
NX

i=1


log

✓
n

i

x

i

◆
+ logB(↵+ x

i

,� + n

i

� x

i

)� logB(↵,�)

�

=
NX

i=1

log

✓
n

i

x

i

◆
�N logB(↵,�) +

NX

i=1

logB(↵+ x

i

, n

i

� x

i

+ �).

(10)

Recalling the property of the � function:

log� (x+ y) = log� (x)�
y�1X

k=0

log(x� k) (11)



and by the equation (2) which defines the Beta function,

l(↵,�) = K �N (log� (↵) + log� (�)� log� (↵,�))

+
NX

i=1

(log� (↵+ x

i

) + log� (� + n

i

� x

i

)� log� (↵+ � + n

i

))

= K +
NX

i=1

"
xi�1X

k=0

log(↵+ k) +
ni�xi�1X

k=0

log(� + k)

�
ni�1X

k=0

log(↵+ � + k)

#

(12)

where K =
P

N

i=1 log
�
ni

xi

�
because it is constant with respect to ↵ and �. Denoted

with #A the cardinality of the set A, the log-likelihood can be rewritten as
follows.

l(↵,�) = K +
1X

k=0

log(↵+ k)#{i|x
i

> k}+
1X

k=0

log(� + k)#{i|n
i

� x

i

> k}

�
1X

k=0

log(↵+ � + k)#{i|n
i

> k}.

(13)

It is worth noting that each summation contains a finite number of addend,
because the sets {i|x

i

> k}, {i|n
i

� x

i

> k} and {i|n
i

> k} are definitely empty.
Using the log-likelihood form of the equation (13), we obtain

@l(↵,�)

@↵

=
1X

k=0

#{i|x
i

> k}
↵+ k

�
1X

k=0

#{i|n
i

> k}
↵+ � + k

(14)

@l(↵,�)

@�

=
1X

k=0

#{i|n
i

� x

i

> k}
� + k

�
1X

k=0

#{i|n
i

> k}
↵+ � + k

. (15)

For maximizing the log-likelihood, and finding the MLE of ↵ and �, the following
non-linear system has to be solved

8
>>>><

>>>>:

1X

k=0

#{i|x
i

> k}
↵+ k

=
1X

k=0

#{i|n
i

> k}
↵+ � + k

1X

k=0

#{i|n
i

� x

i

> k}
� + k

=
1X

k=0

#{i|n
i

> k}
↵+ � + k

(16)

In order to test the model, five viral tweets were selected. Their data were
obtained by using Twitter APIs. Four tweets were chosen among the most pop-
ular tweets of a trend topic of the 2016, namely ‘blizzard2016’. Such tweets have
a high number of retweets and have an high rating within the channel. The



Table 1. Total number NTi of retweets, and ↵Ti , �Ti values of tweets T1, . . . , T5.

i NTi ↵Ti �Ti

1 185564 0.45071028 26.14814566
2 16990 0.54793266 173.70447388
3 11271 0.20797788 32.33433353
4 9707 0.75284294 366.08739169
5 47 0.14291630 42.61378355

Table 2. Perturbations of tweet T5.

Perturbation ↵̃T5 �̃T5 err↵ err�

di + Ui 1.34595852 376.71443709 1.20304222 334.10065354
round(di + Ui) 0.39128181 94.79466674 0.24836551 52.18088319

di ⇤Mi 0.31015776 126.54103851 0.16724146 83.92725496
round(di ⇤Mi) 0.25690555 105.04234006 0.11398925 62.42855651

last tweet belongs to the ‘macron’ channel, which become popular after French
elections in 2017. It has a very low number of retweets if compared to the others.

The datasets are indexed by the Twitter user id i for each of the retweeters
of the fixed tweet T , and they contains the followers count n

i

and the number of
followers of i who retweet T , i.e. x

i

. It is worth noting that many users have a
high number of followers, but the number of retweeters is often very low or zero.
As a matter of fact, the summation of x

i

for i = 1, . . . , N
T

must be greater or
equal the total number of retweet N

T

of the tweet T .
The datasets were used for evaluating the summations in (16). Fixed the

tweet T

i

, the solutions ↵

Ti and �

Ti of the system were obtained by using the
Newton-Raphson (NR) method for finding roots of non-linear equations. The
solutions have precision of 10�12. The NR method was used due to its velocity
in convergence, that is quadratic. Moreover, an analytical expression for the
derivative of the system (16) is easily obtainable, so the NR method was suitable
for e↵ectively calculating the solutions.

In Table 4, the results of the parameters estimation is shown for each tweet.
The resulting parameters vary significantly from tweet to tweet, especially �

Ti .
The only notable characteristics of such results is that 0 < ↵

Ti < 1 and that
�

Ti >> ↵

Ti . In Figure 4, the plot of the Beta distributions of parameters ↵

Ti

and �

Ti for i = 1, . . . , 5 is shown. Because ↵

Ti < 1 and �

Ti � 1, all lines have
the same shape: skewed, decreasing and convex. As shown in the figure, the
probability p of retweeting a content from a friend (i.e., a user you follow) tends
to be very low, as expected.

Nevertheless, the model has to be refined to correctly gain a score for the
retweeting probability, because the estimated solutions are very diverse among
each others. Moreover, the problem itself is ill-conditioned: little variations on
data may change significantly the results. In Table 4, some examples of artificial
perturbation were given. We denote with d

i

both the followers and retweets



Fig. 1. Plot of the Beta distributions of parameters ↵Ti and �Ti for i = 1, . . . , 5.

counts. The first perturbation was obtained by adding to d

i

the occurrence of a
uniform random variable between 0 and 1: U

i

⇠ U(0, 1). The second is the first
rounded to the closest integer, because n

i

and x

i

are integers by the definition
of the problem. The third perturbation was obtained by multiplying to d

i

the
occurrence of a uniform random variable M

i

⇠ U(0, 1) (scaling the values of
each d

i

). As the second, the forth perturbation is the rounded value of the third.

Table 4 shows also the errors err
↵

= |↵
T5 � ↵̃

T5 | and err
�

=
����

T5 � �̃

T5

��� in
estimating the perturbed parameters.

5 Conclusions

In this paper, a model for predicting the retweet probability of a given tweet T
was proposed. First, a discussion on the state of the art in SNA and the analysis
of rumor spreading was given, in order to highlight problems and developments.
The key issue addressed in this paper is the searching for the score of a feature,
in particular, the retweet count of a viral tweet.

We assume that a user who reads a tweet can retweet it with a probabil-
ity p, which is unknown. Each user retweets a tweet independently from the



other users. Thus, a binomial probability distribution is suitable to model the
phenomenon. As another assumption, we state that p is the occurrence of a
Beta-distributed random variable. Such an assumption is crucial because the
Beta distribution density function has a shape that varies according to two pa-
rameters: ↵ and �. Hence, the model states that the number of retweeters among
a user list of followers is a Beta-binomial random variable of parameters n, ↵
and �, where n is the number of followers. Since ↵ and � are unknown, we use
MLE to gain an estimation of such parameters. Applying MLE to the model, we
obtain a non-linear system that has to be solved to find ↵ and �. Theoretical
analytical methods are too di�cult or fail in solving exactly that system, so the
well-known Newton-Raphson method was used.

Results are shown in the last section. We found that the problem is ill-
conditioned and the experiments gain very di↵erent values of ↵ and �. But, as
a notable result, the obtained Beta distributions candidate to be that of the p

probability of retweet have all the same shape, since ↵ < 1 and � � 1.
In conclusion, the proposed model shows some limitations (it was not possible

to obtain unique ↵ and �), but give some information about the shape of the
target probability. Further developments have to be made in order to improve
the precision of the model, mainly by considering other features of the tweets,
or by relaxing the hypothesis that a follower is more likely to retweet his/her
friends tweet than others.
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