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Abstract. We address the problem of answering Web ontology queries
efficiently. An ontology is formalized as a Deductive Ontology Base (DOB),
a deductive database that comprises the ontology’s inference axioms
and facts, and we present a cost-based query optimization technique
for DOB. A hybrid cost model is proposed to estimate the cost and car-
dinality of basic and inferred facts. Cardinality and cost of inferred facts
are estimated using an adaptive sampling technique, while techniques
of traditional relational cost models are used for estimating the cost of
basic facts and conjunctive ontology queries. Finally, we implement a
dynamic-programming optimization algorithm to identify query evalua-
tion plans that minimize the number of intermediate inferred facts. We
modeled a subset of the Web ontology language OWL Lite as a DOB,
and performed an experimental study to analyze the predictive capacity
of our cost model and the benefits of the query optimization technique.
Our study has been conducted over synthetic and real-world OWL on-
tologies, and shows that the techniques are accurate and improve query
performance.

1 Introduction

Ontology systems usually provide reasoning and retrieval services that identify
the basic facts that satisfy a requirement, and derive implicit knowledge using the
ontology’s inference axioms. In the context of the Semantic Web, the number of
inferred facts can be extremely large. On one hand, the amount of basic ontology
facts (domain concepts and Web source annotations) can be considerable, and
on the other hand, Open World reasoning in Web ontologies may yield a large
space of choices. Therefore, efficient evaluation strategies are needed in Web
ontology’s inference engines.

In our approach, ontologies are formalized as a deductive database called
a Deductive Ontology Base (DOB). The extensional database comprises all the
ontology language’s statements that represent the explicit ontology knowledge.
The intensional database corresponds to the set of deductive rules which define
the semantics of the ontology language. We provide a cost-based optimization
technique for Web ontologies represented as a DOB.
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Traditional query optimization techniques for deductive databases systems
include join-ordering strategies, and techniques that combine a bottom-up eva-
luation with top-down propagation of query variable bindings in the spirit of the
Magic-Sets algorithm [17]. Join-ordering strategies may be heuristic-based or
cost-based; some cost-based approaches depend on the estimation of the join se-
lectivity; others rely on the fan-out of a literal [22]. Cost-based query optimization
has been successfully used by relational database management systems; however,
these optimizers are not able to estimate the cost or cardinality of data that do
not exist a priori, which is the case of intensional predicates in a DOB.

We propose a hybrid cost model that combines two techniques for cardinality
and cost estimation: (1) the sampling technique proposed in [10, 11] is applied
for the estimation of the evaluation cost and cardinality of intensional predicates,
and (2) a cost model à la System R cost model is used for the estimation of the
cost and cardinality of extensional predicates and the cost of conjunctive queries.

Three evaluation strategies are considered for ”joining” predicates in con-
junctive queries. They are based on the Nested-Loop, Block Nested-Loop, and
Hash Join operators of relational databases [16]. To identify a good evaluation
plan, we provide a dynamic-programming optimization algorithm that orders
subgoals in a query, considering estimates of the subgoal’s evaluation cost.

We modeled a subset of the Web ontology language OWL Lite [12] as a DOB,
and performed experiments to study the predictive capacity of the cost model
and the benefits of the ontology query optimization techniques. The study has
been conducted over synthetic and real-world OWL ontologies. Preliminary re-
sults show that the cost-model estimates are pretty accurate and that optimized
queries are significantly less expensive than non-optimized ones.

Our current formalism does not represent the OWL built-in constructor Com-
plementOf. We stress that in practice this is not a severe limitation. For example,
this operator is not used in any of the three real-world ontologies that we have
studied in our experiments; and in the survey reported in [23], only 21 ontologies
out of 688 contain this constructor.

Our work differs from other systems in the Semantic Web that combine a
Description Logics (DL) reasoner with a relational DBMS in order to solve the
scalability problems for reasoning with individuals [3, 6, 7, 15]. Clearly, all of
these systems use the query optimization component embedded in the relational
DBMS; however, they do not develop cost-based optimization for the implicit
knowledge, that is, there is no estimation of the cost of data not known a priori.

Other systems use Logic Programming (LP) to reason on large-scale ontolo-
gies. This is the case of the projects described in [5, 8, 13] . In Description Logic
Programs (DLP) [5], the expressive intersection between DL and LP without
function symbols is defined. DL queries are reduced to LP queries and efficient
LP algorithms are explored. The project described in [8, 13] reduces a SHIQ
knowledge base to a Disjunctive Datalog program. Both projects apply Magic-
Sets rewriting techniques but to the best of our knowledge, no cost-based opti-
mization techniques have been developed. The OWL Lite− species of the OWL
language proposed in [2] is based in the DLP project; it corresponds to the por-
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tion of the OWL Lite language that can be translated to Datalog. All of these
systems develop LP reasoning with individuals, whereas in the DOB model we
develop Datalog reasoning with both, domain concepts and individuals.

In [4], an efficient bottom-up evaluation strategy for HEX-programs based
on the theory of splitting sets is described. In the context of the Semantic Web,
these non-monotonic logic programs contain higher-order atoms and external
atoms that may represent RDF and OWL knowledge. However, their approach
does not include determining the best evaluation strategy according to a certain
cost metric.

In the next section we describe our DOB formalism. Following this, we de-
scribe the DOB-S System architecture, Then, we model a subset of OWL Lite
as a DOB and present a motivating example. Next, we develop our hybrid cost
model and query optimization algorithm. We describe our experimental study
and, finally, we point out our conclusions and future work.

2 The Deductive Ontology Base (DOB)

In general, an ontology knowledge base can be defined as:

Definition 1 (Ontology Knowledge Base) An ontology knowledge base
O is a pair O = 〈F , I〉, where F is the set of ontology facts that represent the
explicit ontology structure (domain) and source annotations (individuals), and
I is the set of axioms that allow the inference of new ontology facts regarding
both domain and individuals.

We will model O as a deductive database which we call a Deductive Ontology
Base (DOB). A DOB is composed of an Extensional Ontology Base (EOB) and
an Intensional Ontology Base (IOB). Formally, a DOB is defined as:

Definition 2 (DOB) Given an ontology knowledge base O = 〈F , I〉, a DOB
is a deductive database composed of a set of built-in EOB ground predicates
representing F and a set of IOB built-in predicates representing I, i.e. that
define the semantics of the EOB built-in predicates.

IOB predicates and DOB queries are defined as follows:

Definition 3 (Intensional Predicate) Given a DOB composed of an EOB
and an IOB, an Intensional Predicate is a rule R:H(X) ← ∃Y B(X,Y ),
where H is the head, B is the body that corresponds to a conjunction of pre-
dicates, and X and Y are called distinguished variables and non-distinguished
variables, respectively. H belongs to the IOB. Predicates in B can belong to the
EOB or to the IOB (no negations are allowed).

Definition 4 (DOB Query) A DOB query is defined as a rule q : Q(X) ←
∃Y B(X,Y ), where B is the query’s goal.

Next, we provide the definitions related to query-answering for DOBs.
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Definition 5 (Valuation) Given a set of variables V and a set of constants C,
a mapping or valuation γ is a function γ : V → C.

Definition 6 (Valid Instantiation) Given a Deductive Ontology Base O, a
set of constants C in O, a set of variables V, a rule R, and an interpretation I
of O that corresponds to its Minimal Perfect Model [1], a valuation γ is a valid
instantiation of R if and only if, γ(R) evaluates to true in I.

Definition 7 (Intermediate Inferred Facts) Given a Deductive Ontology Base
O, and a query q : Q(X) ← ∃Y B(X,Y )). A proof tree for q wrt O is defined as
follows:
– Each node in the tree is labeled by a predicate in O.
– Each leaf in the tree is labeled by a predicate in O’s EOB.
– The root of the tree is labeled by Q
– For each internal node N including the root, if N is labeled by a predicate

A defined by the rule R, A(X) ← ∃Y C(X,Y )), where C(X,Y )) is the con-
junction of the predicates C1, ..., Cn, then, for each valid instantiation of R,
γ, the node N has a sub-tree whose root is γ(A(X)) and its children are
respectively labeled γ(C1),..., γ(Cn).

The valuations needed to define all the valid instantiations in the proof tree co-
rrespond to the Intermediate Inferred Facts of q.

The number of intermediate inferred facts measures the evaluation cost of
the query Q. Additionally, since the valid instantiations of Q in the proof tree
correspond to the answers of the query, the cardinality of Q corresponds to the
number of such instantiations.

Note that the sets of EOB and IOB built-in predicates of a DOB define an
ontology framework, so our model is not tied to any particular ontology language.
To illustrate the use of our approach we focus on OWL Lite ontologies.

3 The DOB-S System’s Architecture

DOB-S is a system that allows an agent to pose efficient conjunctive queries to
ontologies. The system’s architecture can be seen in Figure 1.

A subset of a given OWL ontology is translated into a DOB using an OWL
Lite to DOB translator. EOB and IOB predicates are stored as a deductive
database. Next, an analyzer generates the ontology’s statistics: for each EOB
predicate, the analyzer computes the number of facts or valid instantiations
in the DOB (cardinality), and the number of different values for each of its
arguments (nKeys); for each IOB predicate, an adaptive sampling algorithm
[10] is applied to compute cardinality and cost estimates.

When an agent formulates a conjunctive query, the DOB-S system’s opti-
mizer generates an efficient query evaluation plan. A dynamic-programming
optimizer is based in a hybrid cost model: it uses the ontology’s EOB and
IOB statistics, and estimates the cost of a query according the different evalua-
tion strategies implemented. Finally, an execution engine evaluates the query
plan and produces a query answer.
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Fig. 1. DOB-S System Architecture

4 OWL Lite DOB

An OWL Lite ontology contains: (1) a set of axioms that provides information
about classes and properties, and (2) a set of facts that represents individuals in
the ontology, the classes they belong to, and the properties they participate in.

Restrictions allow the construction of class definitions by restricting the va-
lues of their properties and their cardinality. Classes may also be defined through
the intersection of other classes. Object properties represent binary relationships
between individuals; datatype properties correspond to relationships between in-
dividuals and data values belonging to primitive datatypes.

The subset of OWL Lite represented as a DOB does not include domain
and range class intersection. The someValuesFrom restriction is not included as it
involves an existential quantifier and cannot be translated to Datalog. Primitive
datatypes are not handled; therefore, we do not represent ranges for Datatype
properties1.
1 EquivalentClasses, EquivalentProperties, and allDifferent axioms, and the
cardinality restriction are not represented as they are syntactic sugar for other
language constructs.
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4.1 OWL Lite DOB Syntax

Our formalism, DOB, provides a set of EOB built-in predicates that represents
all the axioms and restrictions of an OWL Lite subset.

EOB predicates are ground, i.e., no variables are allowed as arguments. A set
of IOB built-in predicates represents the semantics of the EOB predicates. We
have followed the OWL Web Ontology Language Overview presented in [12].

Table 1 illustrates the EOB and IOB built-in predicates for an OWL Lite
subset2. Note that some predicates refer to domain concepts (e.g. isClass,

areClasses), and some to individuals (e.g. is isIndividual, areIndividuals).

EOB PREDICATE DESCRIPTION
isOntology(O) An ontology has an Uri O
isImpOntology(O1,O2) Ontology O1 imports ontology O2
isClass(C,O) C is a class in ontology O
isOProperty(P,D,R) P is an object property with domain D and range R
isDProperty(P,D) P is a datatype property with domain D
isTransitive(P) P is a transitive property
subClassOf(C1,C2) C1 is subclass of C2
AllValuesFrom(C,P,D) C has property P with all values in D
isIndividual(I,C) I is an individual belonging to class C
isStatement(I,P,J) I is an individual that has property P with value J
IOB PREDICATE DESCRIPTION
areSubClasses(C1,C2) C1 are the direct and indirect subclasses of C2
areImpOntologies(O1,O2) O1 import the ontologies O2 directly and indirectly
areClasses(C,O) C are all the classes of an ontology and its imported ontologies O
areIndividuals(I,C) I are the individuals of a class and all of its direct and indirect

superclasses C; or
I are the individuals that participate in a property and belong to
its domain or range C, or are values of a property with all values in C

Table 1. Some built-in EOB and IOB Predicates for a subset of OWL Lite

OWL ABSTRACT SYNTAX EOB PREDICATES
Ontology(O) isOntology(O)
Individual(O1 value(owl : imports O2)) impOntology(O1, O2)
Ontology(O), Class(C partial isClass(C,O)
Class(A partial C) subClassOf(A,C)
Class(C1 partial restriction(P allV aluesFrom(C2))) allValuesFrom(C1,P,C2)
Class(A partial C1 . . . Cn) subClassOf(A,C1),...,

subClassOf(A,Cn)
ObjectProperty(P domain(D)), isOProperty(P,D,R)
ObjectProperty(P range(R))
DatatypeProperty(P domain(D)) isDProperty(P,D)
Property(P Transitive) isTransitive(P)
Individual(I type(C)) isIndividual(I,C)
Individual(I value(P J)) isStatement(I,P,J)

Table 2. Mapping OWL Lite subset to EOB Predicates

2 We assume that the class owl:Thing is the default value for the domain and range
of a property.
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OWL LITE INFERENCE RULES IOB RULE DEFINITIONS
If subClassOf(C1,C2) and subClassOf(C2,C3) areSubClasses(C1,C2):-subClassOf(C1,C2).
then subClassOf(C1,C3) areSubClasses(C1,C2):-subClassOf(C1,C3),

areSubClasses(C3,C2).
If impOntology(O1,O2) and impOntology(O2,O3) areImpOntologies(O1,O2):-impOntology(O1,O2).
then impOntology(O1,O3) areImpOntologies(O1,O2):-impOntology(O1,O3),

areImpOntologies(O3,O2).
If isClass(C1,O2) and impOntology(O1,O2) areClasses(C,O):-isClass(C,O).
then isClass(C1,O1) areClasses(C,O1):-isClass(C,O2),

areImpOntologies(O1,O2).
If isSubClassOf(C1,C2) and isIndividual(I,C1) areIndividuals(I,C):-isIndividual(I,C).
then isIndividual(I,C2) areIndividuals(I,C2):-isIndividual(I,C1),

areSubClasses(C1,C2).
If isStatement(I,P,J) and isOProperty(P,C,R) areIndividuals(I,C):-isOProperty(P,C,R),
then isIndividual(I,C) areStatements(I,P,J).
If isStatement(I,P,J) and isOProperty(P,D,C) areIndividuals(J,C): isOProperty(P,D,C),
then isIndividual(J,C) areStatements(I,P,J).
If isStatement(I,P,J) and isDProperty(P,C) areIndividuals(I,C):-isDProperty(P,C),
then isIndividual(I,C) areStatements(I,P,J).
If AllValues(C1,P,C) and isStatement(I,P,J) areIndividuals(J,C):-isIndividual(I,C1),
and isIndividual(I,C1) then isIndividual(J,C) allValuesFrom(C1,P,C),

areStatements(I,P,J).
Table 3. Mapping OWL Lite subset Inference Rules to IOB Predicates

4.2 OWL Lite DOB Semantics

A model-theoretic semantics for an OWL Lite (subset) DOB is as follows:

Definition 8 (Interpretation) An Interpretation I = (∆I ,PI , .I) consists
of:

– A non-empty interpretation domain ∆I corresponding to the union of the
sets of valid URIs of ontologies, classes, object and datatype properties, and
individuals. These sets are pairwise disjoint.

– A set of interpretations PI , of the EOB and IOB built-in predicates in Table
1.

– An interpretation function .I which maps each n-ary built-in predicate pI ∈
PI to an n-ary relation

∏n
i=1 ∆I .

Definition 9 (Satisfiability) Given an OWL Lite DOB D, an interpretation
I, and a predicate p ∈ D, I |= p iff:

– p is an EOB predicate p(t1, ..., tn) and (t1, ..., tn) ∈ pI .
– p is an IOB predicate R:H(X) ← ∃Y B(X,Y ), and whenever I satisfies each

predicate in the body B, I also satisfies the predicate in the head H.

Definition 10 (Model) Given an OWL Lite DOB D and an interpretation I,
I is a model of D iff for every predicate p ∈ D, I |= p.

4.3 Translation of OWL Lite to OWL Lite DOB

A definition of a translation map from OWL Lite to OWL Lite DOB is the
following:
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Definition 11 (Translation) Given an OWL Lite theory O and an OWL Lite
DOB theory D, an OWL Lite to DOB Translation T is a function T : O →
D.

Given an OWL Lite ontology O, an OWL Lite DOB ontology D is defined as
follows:

– (Base Case) If o is an axiom or fact belonging to the sets of axioms or facts of
O, then an EOB predicate T (o) is defined according to the EOB mappings
in Table 2.

– If o is an OWL Lite inference rule, then an IOB predicate T (o) is defined
according to the IOB mappings in Table 3.

The translation ensures that the following theorem holds:

Theorem 1 Let O and D be OWL Lite and OWL Lite DOB theories respec-
tively, and T be an OWL Lite to DOB Translation such that, T (O) = D, then
D |= O.

5 A Motivating Example

Consider a ’cars and dealers’ domain ontology carsOnt and Web source on-
tologies source1 and source2. Source source1 publishes information about all
types of vehicles and dealers, whereas source2 is specialized in SUVs.

The OWL Lite ontologies can be seen in Table 4.

Ontology carsOnt Ontology source1 Ontology source2
Class vehicle partial Thing) imports carsOnt imports carsOnt
SubClassOf(suv,vehicle) individual(s123 type(suv))
SubClassOf(car,vehicle)
Property(price domain(vehicle))
Class dealer partial Thing)
Property(sells domain(dealer))
Property(sells range(vehicle))
Property(traction domain(suv))
Property(model domain(vahicle))

Table 4. Example OWL Lite ontology

A portion of the example’s EOB can be seen in Table 5.

EOB PREDICATES
isOntology(carsOnt) isOntology(source1) isOntology(source2)
impOntology(source1,carsOnt) impOntology(source2,carsOnt) isClass(vehicle,carsOnt)
isClass(vehicle,carsOnt) isClass(dealer,carsOnt) subClassOf(car,vehicle)
subClassOf(suv,vehicle) isOProperty(sells,dealer,vehicle) isDProperty(model,vehicle)
isDProperty(price,vehicle) isDProperty(traction,suv) isIndividual(s123,suv)

Table 5. Example DOB ontology
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To illustrate a rule evaluation, we will take a query q that asks for the Web
sources that publish information about ’traction’:

q(O):-areClasses(C,O),isDProperty(traction,C).

The answer to this query corresponds to all the ontologies with classes characte-
rized by the property traction, i.e., ontologies source1, source2 and carsOnt.

If we invert the ordering of the first two predicates in q, we will have an
equivalent query q’:

q’(O):-isDProperty(traction,C),areClasses(C,O).

The cost or total number of inferred facts for q is larger than the cost for
q’. In q, the number of instantiations or cardinality for the first intensional
predicate areClasses(C,O) is twelve, four for each ontology, as source1 and
source2 inherit the classes in carsOnt. The cost of inferring these facts is de-
pendent on the cost of evaluating the areClasses rule. In q’, for the first subgoal
isDProperty(traction,C), we have one instantiation: isDProperty(traction,suv).
Again, the cost of inferring this fact depends on the cost of the isDProperty pred-
icate.

Note that statistics on the size and argument values of the EOB isDProperty

predicate can be computed, whereas statistics for the IOB areClasses predi-
cate will have to be estimated as data is not known a priori. Once the cost of
each query predicate is determined, we may apply a cost-based join-ordering
optimization strategy.

6 DOB Hybrid Cost Model

The process of answering a query relies on inferring facts from the predicates
in the DOB. Our cost metric is focused on the number of intermediate facts
that need to be inferred in order to answer the query. The objective is to find
an order of the predicates in the body of the query, such that the number of
intermediate inferred facts is reduced. We will apply a join-ordering optimization
strategy à la System R using Datalog-relational equivalences [1]. To estimate the
cardinality and evaluation cost of the intensional predicates, we have applied
an adaptive sampling technique. Thus, we propose a hybrid cost model which
combines adaptive sampling and traditional relational cost models.

6.1 Adaptive Sampling Technique

We have developed a sampling technique that is based on the adaptive sampling
method proposed by Lipton, Naughton, and Schneider [10, 11]. This technique
assumes that there is a population P of all the different valid instantiations of a
predicate P , and that P is divided into n partitions according to the n possible
instantiations of one or more arguments of P . Each element in P is related to
its evaluation cost and cardinality, and the population P is characterized by the
statistics mean and variance.
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The objective of the sampling is to identify a sample of the population P,
called EP, such that the mean and variance of the cardinality (resp. evaluation
cost) of EP are valid to within a predetermined accuracy and confidence level.

To estimate the mean of the cardinality (resp. cost) of EP, say Y , within Y
d

with probability p, where 0 ≤ p < 1 and d > 0, the sampling method assumes
an urn model.

The urn has n balls from which m samplings are repeatedly taken, until the
sum z of the cardinalities (resp. costs) of the samples is greater than α × ( S

Y ),
where α = d×(d+1)

(1−
√

p)
. The estimated mean of the cardinality (resp. cost) is: Y = z

m .

The values d and 1

(1−
√

p)
are associated with the relative error and the con-

fidence level, and S and Y represent the cardinality (resp. cost) variance and
mean of P. Since statistics of P are unknown, the upper bound α× S

Y is replaced
by α× b(n).

To approximate b(n) for cost and cardinality estimates, we apply Double
Sampling [9]. In the first stage we randomly evaluate k samples and take the
maximum value among them:

b(n) = maxk
i=1(card(Pi)) (resp. b(n) = maxk

i=1(cost(Pi))), where 1 ≤ k ≤ n

It has been shown that a few samples are necessary in order for the distri-
bution of the sum to begin to look normal. Thus, the factor 1/(1−√p) may be
improved by central limit theorem [11]. This improvement allows us to achieve
accurate estimations and lower bounds.

Estimating cardinality. Given an intensional predicate P , the cardinality of
P corresponds to the number of the valid instantiations of P (Definition 6). In
our previous example, the number of ontology values obtained in the answer of
the query is estimated using this metric.

To estimate the cardinality of P , we execute the adaptive sampling algorithm
explained before, by selecting any argument of P , and partitioning P according
to the chosen argument. The cardinality estimation will be card(P ) = Y × n,
where n is the number of partitions, i.e. the number of different instantiations
for the chosen argument.

Note that once the cardinality of the non-instantiated P is estimated, we can
estimate the cardinality of the instantiated predicate by using the selectivity
value(s) of the instantiated argument(s).

Estimating cost. The cost of P measures the number of intermediate inferred
facts (Definition 7). For instance, to estimate the cost of a predicate P (X, Y ),
we consider the different instantiation patterns that the predicate can have,
i.e., we independently estimate the cost for P (Xb, Y b), P (Xb, Y f ), P (Xf , Y b) and
P (Xf , Y f ), where b and f indicate that the argument is bound and free, respec-
tively.

The computation of several cost estimates is necessary because in Datalog
top-down evaluation [1], the cost of an instantiated intensional predicate cannot
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be accurately estimated from the cost of a non-instantiated predicate (using
selectivity values). Instantiated arguments will propagate in the IOB rule’s body
through sideways-passing, and cost varies according to the binding patterns.
For example, the cost of areClasses(C1b,C2f) may be smaller than the cost of
areClasses(C1f,C2b), i.e., the bound argument C1 ”pushes” instantiations in the
definition of the rule:

areSubClasses(C1,C2):-isSubClass(C1,C3),areSubClasses(C3,C2).

making its body predicates more selective.
For P (Xb, Y b), P (Xb, Y f ) and P (Xf , Y b), we partition P according to the

bound arguments. In these cases we are estimating the cost of one partition.
Therefore, cost(P ) = Y×n

n = Y .
Finally, to estimate the cost of P (Xf , Y f ), we choose an argument of P and

partition P according to the chosen argument. To reduce the cost of comput-
ing the estimate, we choose the most selective argument. The cost estimate is
cost(P ) = Y × n.

Determining the number of partitions n. For both, cost and cardinality
estimates, we need to determine the number of possible instantiations, n, of
the chosen argument. This value depends on the semantics of the particular
predicate. For instance, for an interpretation I, areClasses(Class, Ont)I ⊆ C ×
O, where C is the set of valid class URIs and O is the set of valid ontology
URIs. |C| corresponds to the number of EOB predicates isClass(Class, Ont),
i.e. |C|=Card(isClass(Class, Ont)). Similarly, |O|=Card(isOntology(Ont)); these
cardinalities have been computed previously. We assume that the values are
uniformly distributed.

6.2 System R Technique

To estimate the cardinality and cost of two or more predicates, we use the cost
model proposed in System R. The cardinality of the conjunction of predicates
P1,P2 is described by the following expression:

card(P1, P2) = card(P1)× card(P2)× reductionFactor(P1, P2)

reductionFactor(P1, P2) reflects the impact of the sideways passing variables in
reducing the cardinality of the result. This value is computed assuming that
sideways passing variables are independent and each is uniformly distributed
[18]. For cost estimation, we consider three evaluation strategies:

1. Nested-Loop Join
Following a Nested-Loop Join evaluation strategy, for each valid instantiation
in P1, we retrieve a valid instantiation in P2 with a matching ”join” argument
value:

cost(P1, P2) = cost(P1) + card(P1)× costinst(P2)

costinst(P2) corresponds to the estimate of the cost of the predicate P2

where the ”join” arguments are instantiated in P2, i.e., all the sideways
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passing variables from P1 to P2 are bound in P2. These binding patterns
were considered during the sampling-based estimation of the cost of P2.

2. Block Nested-Loop Join
Predicate P1 is evaluated into blocks of fixed size, and then each block is
”joined” with P2.

cost(P1, P2) = cost(P1) + $ card(P1)
BlockSize

% × cost(P2)

3. Hash Join
A hash table is built for each predicate according to their join argument.
The valid instantiations of predicates P1 and P2 with the same hash key will
be joined together:

cost(P1, P2) = cost(P1) + cost(P2)

Although the sampling technique is appropiate for estimating a single pred-
icate, it may be inefficient for estimating the size of a conjunction of more than
two predicates.

The sampling algorithm in [10] suggests that for a conjunction of 2 predi-
cates, P,Q, if the size of P is n, the query is n-partitionable, that is, for each
valid instantiation p in P , the corresponding partition of Q is all the valid in-
stantiations q in Q such that q ”joins” p. Therefore, when the size of the first
predicate in a query is small, our sample size may be larger. This problem can
be extended to conjunctive queries with several subgoals, so when the number of
intermediate results is small, sampling time may be as large as evaluation time.

6.3 Query Optimization

In Figure 2 we present the algorithm used to optimize the body of a query. The
proposed optimization algorithm extends the System R dynamic-programming
algorithm by identifying orderings of the n EOB and IOB predicates in a query.
During each iteration of the algorithm, the best intermediate sub-plans are cho-
sen based on cost and cardinality. In the last iteration, final plans are constructed
and the best plan is selected in terms of the cost metric.

During each iteration i between 2 and n-1, different orderings of the predi-
cates are analyzed. Two subplans are considered equivalents if and only if, they
are composed by the same predicates. A subplan SPi is better than a subplan
SPj if and only if, the cost and cardinality of SPj are greater than cost and
cardinality of SPi. If SPi cost is greater than SPj cost, but SPj cardinality is
greater than SPi cardinality, i.e. they are un-comparable, then the equivalence
class is annotated with the two subplans.

7 Experimental Results

An experimental study was conducted for synthetic and real-world ontologies.
Experiments on synthetic ontologies were executed on a SunBlade 150 (650MHz)
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Algorithm Dynamic Programming
INPUT: Predicate: a set of predicates, P1,...,Pn.
OUTPUT: OrderedPredicate: an ordering of Predicate

1. SubPaths=Predicate;
2. For i=1 to n

(a) For each solution Subj in SubPaths
i. For each predicate Pz in Predicate

– If there are sideways passing variables from Subj to Pz ,
then add Sub= Subj ,Pz to NewSubPaths

(b) Remove from NewSubPaths any subpath Subk iff there is another subpath Subl in
NewSubPaths, such that, Subl and Subk are equivalent, and Subl is better than Subk.

(c) SubPaths=NewSubPaths
(d) Reset NewSubPaths

3. Return the path in SubPaths with lowest cost.

Fig. 2. Query Optimization Algorithm

with 1GB RAM; experiments on real-world ontologies were executed on a Sun-
Fire V440 (1281MHz) with 4GB RAM. Our system was implemented in SWI-
Prolog 5.6.1.

We have studied three real-world ontologies: Travel [19], EHR RM [21], and
Galen [14].

Our cost metrics are the number of intermediate facts for synthetic and
real-world ontologies, and the evaluation time for real-world ontologies. In our
experiments, the sampling parameters d (the error), p (the confidence level), and
k (the size of the sample for the first stage) were set to 0.2, 0.7 and 7, respec-
tively. Also, these experiments only considered the Nested-Loop Join evaluation
strategy.

Our study consisted of the following:

– Cost Model Predictive Capability: In Figure 3a, we report the correlation
among the estimated values and the actual cost for synthetic ontologies.
Synthetic ontologies were randomly generated following a uniform distribu-
tion. We generated ten ontology documents and three chain and star queries
with three subgoals for each ontology; the cost of each ordering was esti-
mated with our cost model, and each ordering was then evaluated against
the ontology; this gives us a total of six hundred queries. The correlation is
0.92.
In Figure 3b, we report the same correlation for the real-world ontology
Galen. Correlation values are 0.86 for Travel, 0.54 for EHR RM, and 0.62
for Galen.

– Cost improvements: We also conducted experiments to study cost improve-
ment using the optimizer. For each query, we evaluated all its orderings, then
we ran the optimizer and evaluated the optimized query. Figure 3c reports
the ratio of the cost of the optimal ordering to the cost of the worst ordering,
costOptimalOrdering
costWorstOrdering , for queries against synthetic ontologies. In Figure 3d, we

report this metric for Galen. Both in synthetic and real-world ontologies,
this ratio is less than 10% for most of the queries. We also computed the
proportion of the optimal ordering cost with respect to the median ordering
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Fig. 3. (a) Correlation of estimated cost to actual cost (log. scale) - Synt. ontologies; (b)
Correlation of estimated cost to actual cost (log. scale) - GALEN; (c) #Pred. optimal
ordering vs. #Pred. worst ordering - Synt. Ontologies; (d) #Pred. optimal ordering vs.
#Pred. worst ordering - GALEN

cost. The results for synthetic ontologies show that the optimal ordering cost
is less than 40% of the median for fifteen of twenty queries; this result can
be observed in Figure 4a.

Correlation results show that estimates produced by our cost model are quite
accurate. The lower correlation results for the EHR RM and Galen ontologies
are related to the uniform distribution assumption of our cost model.

Additionally, the results show a significant improvement in the evaluation
cost for the optimized queries with respect to the worst-case and median-case
query orderings. This property holds for synthetic and real-world ontologies.
However, for synthetic ontologies we notice that for star-shaped queries, the
difference between the median cost and the optimal cost is very small; this
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indicates that the form of the query may influence the cost improvement achieved
by the optimizer.
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Fig. 4. (a) #Pred. optimal ordering vs. #Pred. median ordering - Synt. Ontologies;
(b) Sampling Conjunctions - Query Eval. time and Sample Eval. time vs. # Inf. Pred.

Finally, we would like to point out that we also studied the use of an adaptive
sampling technique for the cost estimation of the conjunction of two or more
predicates (instead of System R cost model). Although, the sampling technique
gives a better correlation result than the combination of sampling and System
R cost model, the time required to compute the cost estimation may be as large
as the time needed to evaluate the query. In 4b we can observe that the time
difference is marginal.

8 Conclusions and Future Work

We have developed a cost model that combines System R and adaptive sampling
techniques. Adaptive sampling is used to estimate data that do not exist a priori,
data related to the cardinality and cost of intensional rules in the DOB. The
experimental results show that our proposed techniques produce in general a
significant improvement in the evaluation cost for the optimized query.

Currently we are concluding an experimental study that considers the three
evaluation strategies: Nested-Loop, Block Nested-Loop, and Hash Join; query
plans now include orderings with different combinations of these evaluation op-
erators. Initial results show correlation values among estimated and actual cost
of approximately 0.8 for real-world ontologies. We also plan to apply similar op-
timization techniques for conjunctive queries to DL ontologies. Initially, we will
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work on ABox queries extending the the techniques proposed in [20]. In a next
stage, we will consider mixed TBox and ABox conjunctive queries.
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