
Policy-based reasoning for
smart web service interaction!

Marco Alberti1, Federico Chesani2, Marco Gavanelli1, Evelina Lamma1,
Paola Mello2, Marco Montali2, and Paolo Torroni2

1 ENDIF, Università di Ferrara
{marco.alberti|marco.gavanelli|evelina.lamma}@unife.it

2 DEIS, Università di Bologna
{fchesani|pmello|mmontali|ptorroni}@deis.unibo.it

Abstract. We present a vision of smart, goal-oriented web services that
reason about other services’ policies and evaluate the possibility of fu-
ture interactions. To achieve our vision, we propose a proof theoretic
approach. We assume web services whose interface behaviour is speci-
fied in terms of reactive rules. Such rules can be made public, in order
for other web services to answer the following question: “is it possible
to inter-operate with a given web service and achieve a given goal?” In
this article we focus on the underlying reasoning process, and we pro-
pose a declarative and operational abductive logic programming-based
framework, called WAVe.

1 Introduction

Service Oriented Computing (SOC) is rapidly emerging as a new programming
paradigm, propelled by the wide availability of network infrastructures, such as
the Internet, and by the success of its predecessor, Object Oriented programming
paradigm. Web service-based technologies are an implementation of SOC, aimed
at overcoming the intrinsic difficulties of integrating different platforms, oper-
ating systems, languages, etc., into new applications. It is then in the spirit of
SOC to take off-the-shelf solutions, like web services, and compose them into new
applications. Service composition is very attractive for its support to rapid pro-
totyping and possibility to create complex applications from simple elements.
It is the philosophy followed, e.g., by BPEL [1]: composing new applications
through existing web services.

On the upside, the recent popularity of these new technologies developed into
a growing presence of web services, made available through the Internet, and we
can foresee a steady increase of such services also for the near future. On the
downside, the lifetime of software developed with the classical methodologies of
composition of existing services at design-time gets shorter and shorter. It quickly
! We thank the anonymous referees for their valuable feedback and pointers. This

work has been partially supported by the MIUR PRIN 2005 project Specification
and verification of agent interaction protocols.

87

© Copyright 2006 for the individual papers by the individual authors. Copying permitted

for private and scientific purposes. Re-publication of material in this volume requires

permission of the copyright owners.

becomes a suboptimal choice, blind to the exploitation of new opportunities. In
highly competitive markets, this can be a severe drawback.

If we adopt the SOC programming paradigm, how to exploit the potential of
a growing base of web services becomes one of our strategic issue. In a domain
in which being more competitive means knowing more and using all available
information at best, how shall we cope with the proliferation of new services?
How shall we decide to use a web service rather than another one? when new
ones becomes available, shall we go for them? are there new opportunities that
were not there before? It is a necessary, never-ending, heavy and thus potentially
very costly decision process, but it could also be very rewarding, if we had the
proper tools.

A partial answer to these questions is given by service discovery. As new
services become available, they are published, for instance by registration on
some yellow-pages server; existing services can then become aware of the new
ones and exploit them. This solves part of the problem: as through discovery
we only know that there are some some services, which possibly follow some
standards, but understanding whether interacting with them will be profitable
or detrimental, is far from being a trivial question. For one, it is not possible
to think to try and invoke all newly discovered services and analyze the results.
Beside being highly error-prone, such a method would require expensive rollbacks
that are often unaffordable at run-time. Thus, alternative approaches have to be
developed. This is what we intend to address in this article.

The focus of this article is the following problem: how to dynamically under-
stand if two web services can inter-operate, without them having a-priori knowl-
edge of each other’s capabilities, but by reasoning about policies exchanged at
run-time.

We present a vision of smart, goal-oriented web services that reason about
other services’ specifications, with the aim to separate out those that can lead
to a fruitful interaction, without resorting to trial and error. We envisage a two-
phase discovery activity on the side of web services. First, web services collect
information about other web services, and try and understand by reasoning
which ones can lead to a fruitful interaction. This activity is carried out off-line,
beforehand. Then they use the available information to interact with each other.
It is the same philosophy of search engines: before, collect information through
web spiders, then use it when requested by the user.

In this article we focus on the reasoning involved in the off-line phase, as-
suming that a new web service has been found, and we must decide about the
possibility to interact with it. We assume that each web service publishes, along-
side with its WSDL, its interface behaviour specifications. By reasoning on the
information available about other web services’ interface behaviour, each web
service can verify which goals can be reached by interaction.

To achieve our vision, we propose a proof theoretic approach, based on com-
putational logic – in fact, on abductive logic programming. In particular, we for-
malise policies for web services in a declarative language which is a modification
of the SCIFF language originally defined in the context of the UE IST-2001-

88

Knowledge

Reasoning

Rules

Interchange

Format

network

RIF
decoder/encoder

WAVe

RIF
decoder/encoder

WAVe

KBwsGws

policies

ICws KBws'Gws'

policies

ICws'

C C

Fig. 1. The architecture of WAVe

32530 project, to specify and verify social-level agent interaction. In this new
language, policies can be defined by way of social integrity constraints (ICs): a
sort of reactive rules used to generate and reason about expectations about pos-
sible evolutions of a given interaction setting. Based on the SCIFF framework
we propose a new declarative semantics and a new proof-procedure that com-
bines forward, reactive reasoning with backward, goal-oriented reasoning, and is
tailored to the discovery activity’s off-line phase’s verification problem. We have
called this new framework WAVe(Web-service Abductive Verification).

We start by showing the abstract architecture of WAVe. In Sec. 3 we intro-
duce a running on-line shopping scenario. In Sect. 4, we briefly introduce the
language used in the framework, and in Sect. 5 we show how the scenario can
be modeled in WAVe in terms of ICs. Sect. 6 presents the declarative and op-
erational semantics of WAVe, and Sect. 7 proposes the application of WAVe to
the verification problem in the reference scenario. A brief discussion follows.

2 The Architecture of WAVe

Fig. 1 depicts our general reference architecture. Arrows indicate the flow of poli-
cies between web services. The layered architecture of a web service, e.g. ws, has
WAVe at the top of the stack, performing reasoning based on its own knowledge
and on the policies obtained from other web services, e.g. ws′. The functionali-
ties of the various elements of the knowledge will be explained in Sect. 4. For the
moment, we say that policies are identified with the ICws component. The archi-
tecture is symmetric. We represented with thick borders the modules involved
in the operations carried out by ws, and its output. In order for ws′ to pass

89

ICws′ on to ws (and vice versa), a Rule Interchange Format (RIF) is adopted.
One possibility for such a RIF could be RuleML [2]. Finally, as a result of the
reasoning activity, ws produces an answer C to the question: “is it possible to
inter-operate with ws′ and achieve goal Gws?”

Fig. 1 does not show control elements, but only information flows. We assume
that suitable interaction protocols are defined to control the flow of information
(e.g. policies) between the web services. In particular, in a more comprehensive
setting, ws and ws′ could negotiate the exchange of policies in an incremental
way, or could use the result C of this reasoning activity to perform the second,
on-line phase of service interaction we mentioned in the introduction. All this is
outside of this picture, and of this article’s scope.

3 The alice & eShop Scenario

This scenario is inspired to the one described by the Working Group on Rule
Interchange Format [3]. A similar scenario is also in [4]. We consider two entities,
which we call alice and eShop.3 eShop is a web service which sells devices. alice
is another web service which instead needs to obtain a device, and which is
considering buying it from eShop. alice and eShop describe their behaviour
concerning sales/payment/... of items through policies, specified as rules, which
they publish using some RIF.

Before alice buys any item from eShop, alice checks whether her policies
and eShop’s policies are compatible, i.e., if they allow a successful transaction
regarding the sales. During this process, it turns out that eShop accepts credit
card payments, besides other payment methods, and that alice can only pay
by credit card; in this case, in order to proceed with the payment, she requires
evidence of the shop’s membership to some trusted “Better Business Bureau”
(BBB) association. We assume that the shop is able and ready to provide such
a piece of evidence. We can thus define eShop’s and alice’s policies as follows:

(shop1) if a customer wishes to buy an item, then (s)he should pay it either by
credit card, or by cash, or by cheque;

(shop2) if a customer wishes to buy an item, and (s)he has paid it either by
credit card, or by cash, or by cheque, then eShop will deliver the item;

(shop3) if a customer wishes to receive a certificate about eShop’s membership
to the BBB, then the shop will send it;

(alice1) if a shop requires that alice pays by credit card, alice expects that the
shop provides evidence of its membership to the BBB;

(alice2) if a shop requires that alice pays by credit card, and the shop has
provided evidence of its membership to the BBB, then alice will pay by
credit card;

In this example, we can identify two kinds of policy rules. shop1 and alice1
express requirements, i.e., what is needed in order to proceed with accomplishing
3 In this simplified scenario, we identify alice and eShop with their representative

software counterparts which will carry out transactions on their behalf.

90

some request. shop2, shop3 and alice2 represent the effect of requests, i.e., they
tell what has to be expected if some conditions hold and some request is received.

Using this scenario, we want to demonstrate the possibility of reaching an
agreement through rules exchange. Besides, we want to show how policies sup-
port backward and forward reasoning, in the following way. Backward, pro-active
reasoning starts from goals to produce (expectations about) actions or events
that should be generated in order to achieve the goals. Forward, reactive reason-
ing starts from events and is used to generate (expectations about) actions that
represent reactions to such events.

In this scenario, the goal of alice interacting with eShop is to obtain an
item from eShop. Actions are all the messages exchanged between the two web
services.

The steps that we envisage are as follows:

1. alice wants to obtain a device. She knows that she can have it if eShop
delivers it to her. Thus, she sends eShop a request, by which she wants to
know eShop’s policies regarding the delivery of that device;

2. eShop considers alice’s request, and composes a set of rules related to alice’s
request (its policies), possibly deriving/filtering them from a larger set. In
this example, the set contains shop1, shop2, and shop3. Once such a set is
put together, eShop communicates it to alice;

3. alice reasons on (1) her goal, (2) her own policies (alice1 and alice2), and (3)
eShop’s policies. Two are the possible outcomes:
– either alice infers that she and eShop can have a successful transaction

that satisfies each other’s policies and that achieves her goal,
– or alice infers that there is no such a possibility.

4. possibly, at a later point, alice and eShop may engage in a transaction which
(hopefully) makes alice achieve her goal.

Points (1) through (3) represent the off-line phase of service discovery/inter-
action, whereas point (4) represent the actual transaction occurring between
alice and eShop. The reasoning involved in (3) is the subject of this article.

4 The WAVe Framework

In WAVe, the observable behaviour of the web services is represented by events.
Since we focus on (explicit) interaction between web services, events always
represent exchanged messages.

WAVe considers two types of events: those that one can control and those
that one cannot. Typically, from the standpoint of a web service ws, an event
such as a message generated by ws himself will fall into the first category, a
message that ws is expecting from another fellow web service ws′ will fall instead
into the second one. We use two different functors to keep these two categories
of messages distinct from each other. Atoms denoted by functor H will stand
for events that a web service expects to be producing itself; atoms denoted by
functor E will stand for events that a web service is expecting, and over which

91

it does not have any control. Since WAVe is about reasoning on possible future
courses of events, both kinds of events represent hypotheses that a web service
can make on possibly happening events. The notation is: H(ws,ws′,M, T), for
messages (M) that a web service ws is expecting to send to ws′ at time T , and
E(ws′, ws,M, T) for messages (M) expected by ws from ws′ for time T .

Web service specifications in WAVe are relations among expected events, ex-
pressed by an Abductive Logic Program (ALP). In general, an ALP [5] is a triplet
〈P,A, IC〉, where P is a logic program, A is a set of predicates named abducibles,
and IC is a set of integrity constraints. Roughly speaking, the role of P is to
define predicates, the role of A is to fill-in the parts of P which are unknown,
and the role of IC is to constrain the ways elements of A are hypothesised, or
“abduced”. Reasoning in abductive logic programming is usually goal-directed
(being G a goal), and it accounts to finding a set of abduced hypotheses ∆ built
from predicates in A such that P ∪ ∆ |= G and P ∪ ∆ |= IC. In the past, a
number of proof-procedures have been proposed to compute ∆ (see Kakas and
Mancarella [6], Fung and Kowalski [7], Denecker and De Schreye [8], etc.).

Definition 1 (Web service interface behaviour specification). Given a
web service ws, its web service interface behaviour specification Pws is an ALP,
represented by the triplet

Pws ≡ 〈KBws, Ews, ICws〉

where:
– KBws is ws’s Knowledge Base,
– Ews is ws’s set of abducible predicates, and
– ICws is ws’s set of Integrity Constraints.

KBws is a set of clauses which declaratively specifies pieces of knowledge of
the web service. Note that the body of KBws’s clauses may contain E expecta-
tions about the behaviour of the web services, as defined above. KBws’s syntax
is summarised in Eq. (1).

KBws ::= [Clause]!
Clause ::= Atom ← Cond

Cond ::= ExtLiteral [∧ ExtLiteral]!
ExtLiteral ::= Atom | true | Expect | Constr

Expect ::= E(Atom,Atom,Atom, Atom)

(1)

Ews includes E expectations, H events, and predicates not defined in KBws.

ICws ::= [IC]!
IC ::= Body → Head

Body ::= (Event | Expect) [∧BodyLit]!
BodyLit ::= Event | Expect | Atom | Constr

Head ::= Disjunct [∨Disjunct]! | false
Disjunct ::= (Expect | Event | Constr)[∧ (Expect | Event | Constr)]!

Expect ::= E(Atom,Atom,Atom, Atom)
Event ::= H(Atom,Atom,Atom, Atom)

(2)

92

Integrity Constraints (ICs) are forward rules, of the form Body → Head (Eq.
(2)). The Body of ICs is a conjunction of literals and expected events; the Head
instead is a disjunction of conjunctions of expectations, events and literals, or
false. The syntax of ICws is a modification of that defined in [9]. In particular,
unlike SCIFF, WAVe treats H events as abducible predicates, and as such it
allows them to occur in the Head of integrity constraints; however, this initial
version of WAVe does not yet accommodate negative expectations nor negation
(¬). We intend to consider these two features in future extensions of WAVe.

Intuitively, the operational behaviour of integrity constraints is similar to
forward rules: whenever the body becomes true, the head is also made true.

5 Modeling in WAVe

In this section, we demonstrate web service policy modelling in WAVe by showing
the specification of alice and eShop. The first three rules represent eShop’s
policies.

E(eShop, alice, deliver(Item), Ts)

→E(alice, eShop, pay(Item, cc), Tcc) ∧ Tcc < Ts

∨E(alice, eShop, pay(Item, cash), Tca) ∧ Tca < Ts

∨E(alice, eShop, pay(Item, cheque), Tch) ∧ Tch < Ts

(shop1)

IC shop1 says that, if alice expects eShop to deliver an Item, then eShop
expects alice to pay by credit card, cash, or cheque, and that payment must be
made before delivery.4 In that case, the abducibles in the head are expectations,
because they represent actions that should be performed by alice: from eShop’s
viewpoint, they can only be expected.

E(eShop, alice, deliver(Item), Ts)

∧H(alice, eShop, pay(Item, How), Tp) ∧ Tp < Ts

∧How::[cc, cash, cheque])

→H(eShop, alice, deliver(Item), Ts).

(shop2)

IC shop2 says that, if alice expects eShop to deliver the Item, and alice has paid
for it, then eShop will actually deliver it to alice. In that case, the abducible
in the head is an event, because it represents an action that eShop should per-
form, and therefore it assumes that it will indeed happen (since it is its own
responsibility).

E(eShop, alice, give guarantee, Tg)

→H(eShop, alice, give guarantee, Tg).
(shop3)

IC shop3 says that if alice expects to receive a guarantee, then eShop will send
it. The following two rules represent alice’s policies.

E(alice, eShop, pay(Item, cc), Tp)

→E(eShop, alice, give guarantee, Tg) ∧ Tg < Tp.
(alice1)

4 The alternative in the head could alternatively be expressed via a variable with do-
main: E(alice, eShop, pay(Item, How), T)∧How::[cc, cash, cheque]∧T < Ts, where
“::” represents a domain constraint.

93

IC alice1 says that, if eShop expects alice to pay for an Item by credit card,
then alice expects that eShop will have provided a guarantee by the time she
pays.

E(alice, eShop, pay(Item, cc), Tp)

∧H(eShop, alice, give guarantee, Tg) ∧ Tg < Tp

→H(alice, eShop, pay(Item, cc), Tp).

(alice2)

IC alice2 says that, if eShop expects alice to pay for an Item by credit card,
and eShop has provided alice with a guarantee, then alice will pay the Item by
credit card. Finally, the following clause is part of KBalice

have(alice, Item, T)←
E(eShop, alice, deliver(Item), Td) ∧ Td ≤ T.

(alice3)

Clause alice3 says that, in order for alice to have an Item at time T , then alice
expects eShop to deliver the Item by time T .

6 Declarative and Operational Semantics

We have assumed that all web services have their own interface behaviour speci-
fied in the language of ICs. This behaviour could be thought of as an extension of
WSDL, that could be used by other fellow web services to reason about the spec-
ifications, or to check if inter-operability is possible. We are currently studying
an XML-like extension of RuleML [2] to represent ICs.

Another approach would be to obtain web services’ interface behaviour through
an appropriate request protocol, in which ICs are (interactively) exchanged so
that each web service may disclose ad hoc, customised information on demand.

In this work, we make the simplifying assumption that all information re-
garding the interface behaviour is provided at once. The web service will then
try and prove that a fruitful interaction is possible based on what it receives.

The web service initiating the interaction has a goal G, which is a given
state of affairs. A typical goal could be to access a resource, to retrieve some
information, or to obtain a service from another web service. G will often be an
expectation (of obtaining a service, accessing a resource, or gathering informa-
tion), but in general it can be any conjunction of expectations, CLP constraints,
and any other literals, in the syntax of ICws Head Disjuncts (Eq. 2).

The verification of a web service ws about the possibility to achieve a goal
G by interacting with another fellow web service ws′ makes use of KBws, ICws,
G, and of the information obtained about ws′’s policies, ICws′ (see Fig. 1). The
idea is to obtain, through abductive reasoning, a set of expectations about a
possible course of events that together with KBws entails ICws ∪ ICws′ and G.

Note that we do not assume that ws knows KBws′ , as the KB is not part
of the interface. However, in general integrity constraints can involve predicates
defined in the knowledge base. For example, they can contain predicates defining
parameters, deadlines, coefficients, etc., or other knowledge only available to ws′.
If the interface behaviour provided by ws′ involves predicates defined in KBws′ ,
unknown to ws, we have two alternatives:

94

– either ws′ provides ws with the necessary information, e.g. with (part of)
its KBws′ ;

– or ws will have to make assumptions about such unknown predicates.

We take the second option, and consider unknowns that are neither H events
nor E expectations as literals that can be abduced, and we keep them in a set
∆. We then have the following two equations that define the set of abductive
answers representing possible interaction between ws and ws′ achieving G:

KBws ∪HAP ∪EXP ∪∆ |= G (3)
KBws ∪HAP ∪EXP ∪∆ |= ICws ∪ ICws′ . (4)

where HAP is a conjunction of H atoms, EXP is a conjunction of E atoms,
and ∆ a conjunction of abducible atoms.

We ground the notion of entailment on a model theoretic semantics defined
for Abductive Disjunctive Logic Programs [10]. Different semantics have been
proposed for logic programs with disjunctions. Among them, answer set seman-
tics [11] adopts an exclusive interpretation of disjunction, whereas possible model
semantics [10] adopts an inclusive one (and recovers the former by additional con-
straints imposing mutual exclusion among the literals in the disjunctive head of
a clause).

In the possible model semantics, the disjunctive program generates several
(non-disjunctive) split programs, obtained by separating the disjuncts in the
head of rules. Given a disjunctive logic program P , a split program is defined as
a (ground) logic program obtained from P by replacing every (ground) rule

r : L1 ∨ · · · ∨ Ll ← Γ

from P with the rules in a non-empty subset of Splitr, where

Splitr = {Li ← Γ | i = 1, . . . , l}.

By definition, P has multiple split programs in general.

Example 1. The following program can be split into three split programs

E(p) ∨ H(p) ← E(p).
goal ← E(p).

where the first clause is respectively substituted by {E(p) ← E(p)}, {H(p) ←
E(p)} and {E(p) ← E(p),H(p) ← E(p)}.

A possible model for a disjunctive logic program P is then defined as an
answer set of a split program of P .

The inclusive interpretation of disjunctions adopted by the possible model
semantics fits better with our case, since more than one disjunct in the head of an
integrity constraint can be true at the same time, as in the following example.5

5 For the sake of simplicity, in this example and in the following one, we specify a
single argument for expectations and events.

95

Example 2. Let us consider the program:

E(p) ∨ H(p) ← true.
H(p) ← E(p).
goal ← E(p).

We would like to have an explanation for goal, where E(p) is assumed, and H(p)
is also true because of clause H(p) ← E(p). This is, instead, avoided by following
an answer set approach, which adopts an exclusive interpretation of disjunctions.

Furthermore, in [10] possible model semantics was also applied to provide a
model theoretic semantics for Abductive Extended Disjunctive Logic Programs
(AEDP), which is our case. Semantics is given to AEDP in terms of possible
belief sets. Given an AEDP Π = 〈P,A〉 (where P is a disjunctive logic program
and A is the set of abducible literals), a possible belief set S of Π is a possible
model of the disjunctive program P ∪ E, where P is extended with a set E of
abducible literals (E ⊆ A).

Definition 2 (Answer to a goal G). An answer E to a (ground) goal G is a
set E of abducible literals constituting the abductive portion of a possible belief
set S (i.e., E = S ∩A) that entails G.

We rely upon possible belief set semantics, but we adopt a new notion for
minimality with respect to abducible literals. In [10], a possible belief set S is
A-minimal if there is no possible belief set T such that T ∩A ⊂ S ∩A.

Example 3. Consider, again, the program of Example 1. The possible belief sets
are the belief sets of each of the split programs: the first gives {goal,E(p)},
and the others give {goal,E(p),H(p)}. Only the first explanation is A-minimal
under set inclusion, according to [10], but we cannot rely upon such definition
for minimality since we would discard explanations which are, instead, correct.

We restate, then, the notion of A-minimality as follows.

Definition 3 (A-minimal possible belief set). A possible belief set S is A-
minimal iff there is no possible belief set T for the same split program such that
T ∩A ⊂ S ∩A.

More intuitively, the notion of minimality with respect to hypotheses that
we introduce is checked by considering the same split program, and by checking
whether with a smaller set of abducibles the same consequences can be made
true, but in the same split program. For the case depicted in Example 3, then,
both the two possible belief sets are A-minimal, according to Definition 3.

Finally, we provide a model-theoretic notion of explanation to an observation,
in terms of answer to a goal, as follows.

Definition 4 (A-minimal answer to a goal). E is an A-minimal answer to
a goal G iff E = S ∩A for some possible A-minimal belief set S that entails G.

96

We can now proceed with defining what kind of interaction is possible/fruitful,
given two web services and a goal.

Definition 5 (Possible interaction about G). A possible interaction about a
goal G between two web services ws and ws′ is an A-minimal set HAP∪EXP∪∆
such that Eq. 3 and 4 hold.

Among all possible interactions about G, some of them are fruitful, and some
are not. An interaction only based on expectations which will not be matched
by corresponding events is not a fruitful one: for example, the goal of ws might
not have a corresponding event, thus the goal is not actually reached, but only
expected. Or, one of the web services could be waiting for a message from the
other fellow, which will never arrive, thus undermining the inter-operability.

We select, among the possible interactions, those whose history satisfies all
the expectations of both the web services. After the abductive phase, we have a
verification phase in which there are no abducibles, and in which the previously
abduced predicates H and E are now considered as defined by atoms in HAP
and EXP, and they have to match. If among the possible interactions there
exists one satisfying

HAP ∪EXP |= E(X, Y,Action, T) ↔ H(X, Y,Action, T) (5)

then ws has found a sequence of actions that obtains the goal G.

Definition 6 (Possible interaction achieving G). Given two web services,
ws and ws′, and a goal G, a possible interaction achieving G is a possible inter-
action about G satisfying Eq. 5.

Intuitively, the “→” implication in Eq. 5 is there to avoid situations in which
a web service waits forever for an event that the other web service will never
produce. The “←” implication is there to avoid that one web service sends
unexpected messages, which in the best case may not be understood (and in
the worst scenarios it may lead to faulty, unpredictable behaviour of the parties
involved).

6.1 Operational Semantics

The operational semantics is a modification of the SCIFF proof-procedure [12].
SCIFF is a transition system, whose state is given by the following tuple:

T ≡ 〈R,CS, PSIC,∆A,PEND,HAP,FULF,VIOL〉

The set of expectations EXP is partitioned into the fulfilled (FULF), violating
(VIOL), and pending (PEND) expectations. The other elements are: the re-
solvent (R), the abduced literals that are not expectations (∆A), the constraint
store (CS), a set of implications, inherited from the IFF [7], called partially solved
integrity constraints (PSIC), and the history of happened events (HAP).

97

A classical application of SCIFF is on-line checking of compliance of agent
interaction to protocols. in fact, SCIFF was initially developed to specify and
verify agent interaction protocols on-the-fly, under the assumption of open agent
environments adopted by other noteworthy agent research work [13]. SCIFF
processes events drawing from HAP and generates (abduces) expectations; then
it checks that all expectation are fulfilled by at least one happened event. The
declarative semantics of SCIFF contains in fact a requirement E(X) → H(X)
– differently from WAVe, which has a double implication (Eq. 5). In SCIFF, as
soon as new H events are processed, a transition fulfilment labels the relevant
matching expectations as fulfilled and moves them to the set FULF. At the end
of the derivation, if some expectation remains in the set PEND, a failure node
is generated, and other alternative branches will be explored in backtracking, if
there exist any.

WAVe extends SCIFF and abduces H events as well as expectations. The
events history is not taken as input, but all possible interactions are hypothesised.
Moreover, in WAVe events not matched by an expectation (which are perfectly
acceptable in the multi-agent scenario addressed by SCIFF) cannot be part of
a possible interaction achieving the goal.

The two phases in the declarative semantics (generation of possible interac-
tions and their test for conformance) are condensed into one single derivation
process, thanks to a new transition adopted in WAVe. The expected transition,
symmetrical to fulfilment, labels each H events with an expected flag as soon as
an expectation matching it is abduced. At the end of the derivation, H with
expected status = false will cause failure.

Otherwise, if the WAVe derivation in a program P for a goal G succeeds with
set of expectation EXP ∪HAP ∪∆, we write P -EXP∪HAP∪∆ G.

6.2 Soundness and completeness results

WAVe is a conservative modification of the SCIFF proof-procedure, which is
sound and complete under reasonable assumptions [14]. In the following, we
give the soundness and completeness statements, and briefly explain why the
soundness and completeness results proven for SCIFF also hold with the new
declarative and operational semantics of WAVe.

Theorem 1 (Soundness). If P -EXP∪HAP∪∆ G then EXP ∪HAP ∪∆ is a
possible interaction achieving G.

Theorem 2 (Completeness). If there exists a possible interaction EXP ∪
HAP ∪∆ achieving a goal G, then ∃EXP′ ∪HAP′ ∪∆′ ⊆ EXP ∪HAP ∪∆
such that P -EXP∪HAP∪∆ G.

Note that WAVe introduces two main additions to SCIFF. The first one is the
“→” implication of Eq. 5, which makes the declarative relation between events
and expectations symmetric. The operational semantics introduces a new tran-
sition, completely symmetric to that devoted to check fulfilment; the extension
of the proofs for this are therefore straightforward.

98

The second ‘important’ addition is the notion of A-minimality introduced in
the declarative semantics. By choosing A-minimal answers, therefore restricting
the set of models considered, we do not affect completeness, which still holds by
virtue of the completeness of SCIFF. Concerning soundness, instead, we have
to prove that, given a goal G, for each abductive WAVe computation:

KBws ∪ ICws ∪ ICws′ -HAP∪EXP∪∆ G (6)

the computed set HAP∪EXP∪∆ corresponds to a possible interaction achiev-
ing G. Again, the proof can exploit the soundness result of SCIFF [15], apart from
the A-minimality requirement introduced here. This further condition requires
to prove that the computed set E = HAP ∪ EXP ∪∆ for goal G corresponds
to an (A-minimal) possible interaction for G. First, it can easily be proven that
a WAVe computation corresponds to a (WAVe) computation into a single split
program obtained from the original one. Furthermore, it can be proven that
a WAVe computation corresponds to a (WAVe) computation into a renamed
split program obtained from the former by considering only the applied clauses
and the fired social integrity constraints, and by duplicating and properly re-
naming them as many times as each of them is applied or fires. Let us denote
P split = KBsplit

ws ∪ ICsplit
ws ∪ ICsplit

ws′ such a renamed split program.

Example 4. Let us consider the following program:

E(X) ∨ H(X) ← E(X).
goal ← E(p).
goal ← E(q).

This program has two different successful derivations for goal, originated,
respectively, by the following two renamed split programs:6

P split
1 P split

2

H(p) ← E(p).
goal ← E(p).

H(q) ← E(q).
goal ← E(q).

Thanks to the soundness of SCIFF we have that E is a possible interaction
for G, given the considered renamed split program. We still have to prove that
this set is A-minimal. This part can be proven by reductio ad absurdum. Suppose
there exists a smaller set E′ ⊂ E and that E′ is a possible interaction for G in
the renamed split program. Due to SCIFF completeness, then there also exists
a (WAVe) computation which computes a set E′′ ⊆ E′ for G. But this is not
possible, by the way the renamed split program has been built. Contradiction!

We will next demonstrate the operational functioning of verification in WAVe

in the alice & eShop scenario.

6 For the sake of keeping a lightweight notation, we do not show renamed variables.

99

7 Verification in WAVe

In the following, the sets EXPN
a and HAPN

a represent the evolution of alice’s
expectations and events as WAVe’s derivation progresses; N is an incremental
index. Let g be the following goal of alice’s:

g ← have(alice, device, 50). (goal)

Then, by unfolding of clause alice3,
EXP0

a = { E(eShop, alice, deliver(device), Ts) ∧ Ts < 50 } (by (alice3))
To this expectation, eShop will react by expecting a payment:

EXP1
a = { E(eShop, alice, deliver(device), Ts) ∧ Ts < 50

∧ (E(alice, eShop, pay(device, cc), Tcc) ∧ Tcc < Ts

∨E(alice, eShop, pay(device, cash), Tca) ∧ Tca < Ts

∨E(alice, eShop, pay(device, cheque), Tch) ∧ Tch < Ts) } (by (shop1))
Since the expectation containing the payment by cc is the only one which

generates an expectation matching a rule of alice ((alice1)), the first expectation
among the three payment alternatives is selected (the other branches eventually
fail by Eq. 5, because no matching H is abduced). This choice triggers (alice1):

EXP2
a = { E(eShop, alice, deliver(device), Ts) ∧ Ts < 50

∧ E(alice, eShop, pay(device, cc), Tcc) ∧ Tcc < Ts

∧ E(eShop, alice, give guarantee, Tg) ∧ Tg < Tcc } (by (alice1))
Then (shop3) fires, and abduces the happening of give guarantee event. We

then have:
EXP3

a = { E(eShop, alice, deliver(device), Ts) ∧ Ts < 50
∧ E(alice, eShop, pay(device, cc), Tcc) ∧ Tcc < Ts

∧ E(eShop, alice, give guarantee, Tg) ∧ Tg < Tcc } (by (alice1))
HAP3

a = { H(eShop, alice, give guarantee, Tg) ∧ Tg < Tcc } (by (shop3))
Given the guarantee, alice will pay by credit card (rule (alice2) fires):

EXP4
a = { E(eShop, alice, deliver(device), Ts) ∧ Ts < 50

∧ E(alice, eShop, pay(device, cc), Tcc) ∧ Tcc < Ts

∧ E(eShop, alice, give guarantee, Tg) ∧ Tg < Tcc }
HAP4

a = { H(eShop, alice, give guarantee, Tg) ∧ Tg < Tcc

∧ H(alice, eShop, pay(device, cc), Tcc) ∧ Tcc < Ts } (by (alice2))
Having received the payment, eShop’s policy would be to deliver the device:

EXP5
a = { E(eShop, alice, deliver(device), Ts) ∧ Ts < 50

∧ E(alice, eShop, pay(device, cc), Tcc) ∧ Tcc < Ts

∧ E(eShop, alice, give guarantee, Tg) ∧ Tg < Tcc }
HAP5

a = { H(eShop, alice, give guarantee, Tg) ∧ Tg < Tcc

∧ H(alice, eShop, pay(device, cc), Tcc) ∧ Tcc < Ts

∧ H(eShop, alice, deliver(device), Ts) ∧ Ts < 50 } (by (shop2))
Summarising, alice devised the following set of events, which should let her

achieve her goal (have the desired device) while respecting both of alice’s and
eShop’s policies.

Ca = { H(eShop, alice, give guarantee, Tg) ∧ Tg < Tp

∧ H(alice, eShop, pay(device, cc), Tp) ∧ Tp < Ts

∧ H(eShop, alice, deliver(device), Ts) ∧ Ts < 50) }

100

8 Discussion

WAVe is a framework intended for describing declaratively the behavioural in-
terface of web services, and for testing operationally the possibility of fruitful
interaction between them. WAVe answers the question “does there exist a viable
interaction, between two given web services, which achieves a given goal G?”
In case of success, WAVe produces a set of expectations about events. WAVe is
particularly suitable for highly dynamic environments, in which inter-operability
is an unknown that has to be checked.

WAVe uses and extends a technology initially developed for on-line compli-
ance verification of agent interaction to protocols [9]. SCIFF and the protocol
specification language based on social integrity constraints were motivated and
inspired by conspicuous work done in the context of agent interaction in open
societies, notably work by Singh [13] and colleagues. The extension of such a
work to the context of web services, centering around the concept of policies, as
proposed in this work, seems to be very promising. The idea of policies for web
services and policy-based reasoning is one that many other authors also adopt.
We will cite work by Finin and colleagues [16], and by Bradshaw and colleagues
[17], the first one with an emphasis on representation of actions, the latter on
the deontic semantic aspects of web service interaction. We acknowledge the im-
portance of action modelling and we point that the idea of expected behaviour
of web services can have a deontic reading. In fact, previous work on SCIFF has
been devoted to investigating and clarifying the interesting links between deontic
operators and expectation-based reasoning [18]. The distinguishing features of
WAVe, compare to most work of literature, are its logical underpinning and its
sound and complete operational characterisation. It is in our agenda to carry out
an extensive empiric evaluation of WAVe based on interesting cases and scenar-
ios such as those proposed in related work, and on the existing implementation
of the SCIFF framework.7

Another direction of current work relates to the actual use of the answers of
WAVe by web services after they manage a successful derivation. In principle,
the sequence of events produced by WAVe could be instantiated into a concrete
sequence of messages, which will guarantee the achievement of G, under ideal
external conditions. But this is true only if the policies disclosed by both web
services are a faithful representation of their actual behaviour. This may not
be the case, as for example policies may depend on sensible data, and web
services may be not allowed to disclose full information to the outside. In that
case nothing warrants that the course of action produced by WAVe will be
satisfactory for either web service. We might then have to resort to further steps.
For example both web services could “formally” agree that a certain course
of events in an acceptable option, possibly after another mutual verification
phase. This is subject of ongoing work. Finally, we are currently investigating
the exchange of policies between web services, for which a suitable interaction

7 See http://lia.deis.unibo.it/research/sciff.

101

protocol needs to be devised. We are thinking of specifying such a protocol for
exchanging the policies in the same language WAVe uses to specify policies.

References

1. Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu,
K., Roller, D., Smith, D., Thatte, S., Trickovic, I., Weerawarana, S.: Business
process execution language for web services version 1.1 (2003) http://www.ibm.
com/developerworks/library/ws-bpel/.

2. Adi, A., Stoutenburg, S., Tabet, S., eds.: Proc. 1st Int. Conference on Rules and
Rule Markup Languages for the Semantic Web, LNCS 3791, Springer Verlag (2005)

3. Working Group on Rule Interchange Format: Use cases and requirements. http:
//www.w3.org/2005/rules/wg/ucr/draft-20060323.html (2006)

4. Bry, F., Eckert, M.: Twelve theses on reactive rules for the web. In: Proceedings
of the Workshop on Reactivity on the Web, Munich, Germany (2006)

5. Kakas, A.C., Kowalski, R.A., Toni, F.: Abductive Logic Programming. Journal of
Logic and Computation 2 (1993) 719–770

6. Kakas, A.C., Mancarella, P.: On the relation between Truth Maintenance and
Abduction. In: Proc. 1st Pacific Rim International Conference on Artificial Intel-
ligence, Ohmsha Ltd. (1990) 438–443

7. Fung, T.H., Kowalski, R.A.: The IFF proof procedure for abductive logic program-
ming. Journal of Logic Programming 33 (1997) 151–165

8. Denecker, M., Schreye, D.D.: SLDNFA: an abductive procedure for abductive logic
programs. Journal of Logic Programming 34 (1998) 111–167

9. Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: The
SOCS computational logic approach for the specification and verification of agent
societies. In: Global Computing 2004, LNAI 3267, Springer-Verlag (2005) 324–339

10. Sakama, C., Inoue, K.: Abductive logic programming and disjunctive logic pro-
gramming: their relationship and transferability. Journal of Logic Programming
44 (2000) 75–100

11. Gelfond, M., Lifschitz, V.: Classical negation in logic programming and disjunctive
databases. New Generation Computing 9 (1991) 365–385

12. Alberti, M., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: The SCIFF abduc-
tive proof-procedure. In: AI*IA, LNAI 3673, Springer-Verlag (2005) 135–147

13. Singh, M.: Agent communication language: rethinking the principles. IEEE Com-
puter (1998) 40–47

14. Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Verifi-
able agent interaction in abductive logic programming: the SCIFF proof-procedure.
Technical Report DEIS-LIA-06-001, DEIS, University of Bologna (Italy) (2006)

15. Gavanelli, M., Lamma, E., Mello, P.: Proof of properties of the SCIFF proof-
procedure. Technical Report CS-2005-01, DI, Università di Ferrara (2005) Avail-
able at http://www.ing.unife.it/informatica/tr/CS-2005-01.pdf.

16. Kagal, L., Finin, T.W., Joshi, A.: A policy based approach to security for the
semantic web. In Proc. 2nd ISWC. LNCS 2870, Springer (2003) 402–418

17. Uszok, A., Bradshaw, J.M., Jeffers, R., Tate, A., Dalton, J.: Applying KAoS ser-
vices to ensure policy compliance for semantic web services workflow composition
and enactment. In Proc. 3rd ISWC. LNCS 3298, Springer (2004) 425–440

18. Alberti, M., Gavanelli, M., Lamma, E., Mello, P., Sartor, G., Torroni, P.: Mapping
deontic operators to abductive expectations. Computational and Mathematical
Organization Theory (2006) To appear.

102

