A RuleML Syntax for Answer-Set Programming*

Thomas Eiter, Giovambattista lanni, Roman Schindlauer, and Hans Tompits

Institut fiir Informationssysteme, Technische Universitit Wien
Favoritenstra3e 9-11, A-1040 Vienna, Austria
{eiter, ianni, roman, tompits}@kr .tuwien.ac.at

1 Introduction

The need for sharing knowledge on the Web—and in particular rules in a standardized
format—is an important issue. RuleML [1] has been the most prominent effort in this
direction so far. Nonetheless, it turns out that none of the variants available is suitable for
expressing nonmonotonic logic programs as used in the answer-set programming (ASP)
paradigm, in which the former are assigned with a declarative semantics, known as
answer-set semantics or stable-model semantics [3]. ASP in general is an important
declarative problem-solving paradigm, gaining increasing attention in the recent years
(see, e.g., [4]).

In this work, we present a new language variant in addition to the current RuleML
proposal for expressing an ASP core language. Then we provide an extension to this
core to accommodate different ASP dialects, substantially based on the notion of an
oracle atom. Oracle atoms are rooted in the notion of an external atom [2]. A working
translator from RuleML to ASP and vice versa is available. This way, RuleML specifi-
cations are made executable under the ASP semantics.

The framework we present here is supposed to be a starting point that should en-
courage both the Semantic Web and the ASP community to discuss and achieve a com-
prehensive RuleML interchange format for the ASP semantics. It is work in progress
which, as we believe, will attract other participants after initial dissemination.

2 Description of the Work

Our approach towards extending RuleML to answer-set programs consists of several
layers. First, we define a RuleML schema called aspbase, which encapsulates the syntax
of traditional ASP. We then present an extension (asporacle) to this schema, facilitating
the expression of a number of advanced constructs which are provided by current ASP
solvers, such as aggregates, built-ins or external atoms, by a general syntactical element.

Figure 1 shows how an ASP specification written in RuleML can be processed.
Translators rewrite an answer-set program in the general RuleML syntax into a tex-
tual representation suitable for a given reasoner. Each translator might accept a set of
specific syntactic features. It enforces a specific meaning to each particular feature by
rewriting it into the construct expected by the corresponding reasoner.

* This work was partially supported by the Austrian Science Fund (FWF) under grant P17212-
NO04, and by the European Commission through the IST Networks of Excellence REWERSE
(IST-2003-506779).

© Copyright 2006 for the individual papers by the individual authors. Copying permitted
for private and scientific purposes. Re-publication of material in this volume requires

permission of the copyright owners.

107



: translation stage
to legacy syntax : : :
:> ’ DLV-translator | :>
ASP program ’ SMODELS-translator |
in RuleML :> ’ HEX-translator | :>

:> ’ ...-translator | :> [:]

%ASP specific solver%

Fig. 1. ASP RuleML architecture

3 An Example

A complex construct like a cardinality constraint, featured by SMODELS, such as 1 {a, b, not ¢} 2.
can be modeled in our setting in the following way:

<Oracle>
<Rel>cardCons</Rel>
<Input>
<Data xsi:type="xs:integer">1</Data>
<Atom>
<Rel>a</Rel>
</Atom>
<Atom>
<Rel>b</Rel>
</Atom>
<Naf>
<Atom>
<Rel>c</Rel>
</Atom>
</Naf>
<Data xsi:type="xs:integer">2</Data>
</Input>
</Oracle>

For further examples of this language variant and the use of oracle atoms, we refer
the reader to http://www.kr.tuwien.ac.at/research/ruleml.

References

1. H. Boley, S. Tabet, and G. Wagner. Design Rationale for RuleML: A Markup Language for
Semantic Web Rules. In Proc. SWWS 2001, pages 381-401, 2001.

2. T. Eiter, G. lanni, R. Schindlauer, and H. Tompits. A Uniform Integration of Higher-Order
Reasoning and External Evaluations in Answer Set Programming. In Proc. 1JCAI 2005, pp.
90-96.

3. M. Gelfond and V. Lifschitz. Classical Negation in Logic Programs and Disjunctive
Databases. New Generation Computing, 9:365-385, 1991.

4. S. Woltran (ed.). Answer Set Programming: Model Applications and Proofs-of-Concept.
WASP, 2005. http://www.kr.tuwien.ac.at/projects/WASP/report.html.

108



