Prolog Execution Engines for Description Logic
Reasoners

Gergely Lukacsy, Zsolt Nagy, Péter Szeredi

Budapest University of Technology and Economics
Department of Computer Science and Information Theory
{lukacsy, zsnagy, szeredi}@cs.bme.hu

Introduction. The goal of this poster is to present some Prolog-based [3] al-
ternatives for Description Logic ABox-reasoning. We believe that Prolog can be
used well for extending DL formalisms with rules. The top-down executional
mechanism of Prolog suits the ABox-reasoning task by ignoring irrelevant data,
and it is also worth to mention that the Prolog community has been developping
Prolog for more than 30 years, providing a highly optimized logic programming
environment. In our approaches, both the ABox-reasoning code and the attached
rules can be executed in a Prolog framework. Queries are answered using the
PTTP (Prolog Technology Theorem Proving) [4] approach. The aim of these rea-
soning algorithms is to efficiently answer instance-check and instance-retrieval
queries when sizeable amounts of data are stored in the ABox. We describe two
approaches of transforming a DL knowledge-base to Prolog clauses.

Soundness and completeness of both approaches are based on resolution and
the PTTP technique. In the implementation of the ideas, procedural elements of
Prolog such as the cut for filtering multiple solutions out are used for optimizing
the code.

The Restricted Approach. [2] This approach provides ABox-reasoning ser-
vices over an empty TBox. Let an extensionally reduced ABox A be given with
the property that A is satisfiable!. The goal is to determine all the instances of
an ALC query-concept C, or as a special case, determine if an individual o is an
instance of the query-concept C. Reasoning is split into two parts: first a Prolog
execution plan is produced, then the plan is executed on the ABox.

More specifically, we first transform the ALC query-concept into a union of
tree-concepts. A tree-concept is an ALC concept formed using the intersection,
existential restriction and atomic negation constructors only. Each tree-concept
is transformed into a piece of Prolog-code individually. Prolog clauses belonging
to each tree-concept have to be executed in a common namespace. We refer the
reader to [2] on the details of the transformation.

The Intermediate Approach. [1] This approach provides ABox reasoning
services over an extensionally reduced ALC knowledge-base containing an ABox
and a restricted TBox. We exclude subsumption axioms C' C D from the TBox

! We do not deal with ABoxes containing contradictions. When reading the assertions,
we do not allow both A(i) and —A(i) to be simultaneously asserted for any A or i.

© Copyright 2006 for the individual papers by the individual authors. Copying permitted
for private and scientific purposes. Re-publication of material in this volume requires

permission of the copyright owners.

109

where VR.FE is a subconcept of the negation normal form of C' or 3R.E is a
subconcept of the negation normal form of D. This restriction is due to the
fact that the current reasoning algorithm cannot handle Horn-clauses containing
Skolem-functions. Let a TBox 7 conforming to the restrictions above and an
extensionally reduced ABox A be given. The content of 7 is transformed to
Prolog rules and the content of A is transformed to Prolog facts.

Comparison of the approaches. We have designed and experimented with
a case-study on fault-tolerant behavior of systems. Using this case study, we
compared the performance of the two approaches.

We summarize the basic differences between the two approaches in Table 1.

The Restricted approach presented in [2] focuses on ABox-reasoning over an
empty TBox. Here, it is also possible to add non-DL Horn-clauses to the trans-
formed set of clauses. These Horn-clauses make it possible for the knowledge-
engineer to describe terminological knowledge regarding the instances of the
knowledge-base. The main advantage of this approach is its performance and
scalability.

On the other hand, the Intermediate approach [1] is able to provide ABox-
inference services over a non-empty terminology box. The main advantage of this
technique is that it provides reasoning services over a knowledge-base containing
(a) a slightly restricted ALC TBox, (b) terminology level knowledge represented
using Horn-clauses and (c) ABox-instances and relations. The content of the
knowledge-base is transformed into Horn-clauses which are executed in Prolog
using the PTTP technique. Execution is currently done by using our own PTTP
Horn-clause interpreter. Preprocessing optimizations do not appear in this work,
the solution is derived from the PTTP inference engine only. Although this
approach is capable of solving ABox-inference problems over a non-empty TBox,
we still refer to it as the Intermediate Approach, since we plan getting rid of the
restrictions involving the TBox and the interpreted execution.

Table 1. Comparison of the two reasoning approaches.

Approach Restricted Intermediate
Expressive power| ALC ABox, no TBox | ALC ABox and restricted TBox
Preprocessing all ABox-independent steps none

Execution plan runnable Prolog program interpreted PTTP clauses

Summary, future work. We believe that Prolog-based ABox-reasoning can
be well combined with Prolog rules and we found or initial results encouraging.
In the future, we would like to combine the advantages of the two approaches
and form an approach capable of efficiently handling ABox-reasoning over an
arbitrary TBox and ABox.

110

References

1. Zsolt Nagy, Gergely Lukécsy, and Péter Szeredi. Description logic reasoning using
the PTTP approach. to appear in the proceedings of d12006. international descrip-
tion logic workshop, windermere, england., 2006.

2. Zsolt Nagy, Gergely Lukacsy, and Péter Szeredi. Translating description logic queries
to Prolog. In PADL, volume 3819 of Lecture Notes in Computer Science, pages 168—
182, 2006.

3. U. Nilsson and J. Maluszynski, editors. Logic, Programming and Prolog. John Wiley
and Sons Ltd., 1990.

4. M. Stickel. A Prolog technology theorem prover: A new exposition and implemen-
tation in Prolog, Technical Note 464, SRI international, 1989.

111

