Ontology testing based on requirements
formalization in collaborative development
environments

Alba Fernandez-Izquierdo

Ontology Engineering Group, Universidad Politécnica de Madrid
albafernandez@fi.upm.es

Abstract. In the last years, ontologies are commonly developed in col-
laborative environments where there are several experts involved in the
development process. When the ontology engineers deliver an ontology
the users expect a complete ontology which fulfils all the requirements
they ask for. However, in most cases the ontology engineers cannot prove
this completeness, as they did not carry out any testing process. Adopt-
ing testing as an activity in ontology development will lead to an im-
provement on the quality of ontologies regarding its completeness, as
they are going to be tested before its publication. In the PhD proposed,
we introduce an ontology testing framework whose aim is to assure both
ontology engineers and users the completeness of an ontology.

1 Problem statement

The increasing uptake of semantic technologies and ontologies has led during the
past years to the study of collaborative ontology engineering [7], where ontology
engineers can be working together with different domain experts in a distributed
environment to build an ontology. These domain experts may have their own
interests about which knowledge needs to be modelled in the ontology.

This situation leads to the fact that an ontology engineer needs to represent
in one ontology several ontological requirements gathered from different sources
and which may represent different interests. The ontology engineer should guar-
antee that all these requirements are satisfied. Besides this, the alignment with
standardized ontologies, such as SNOMED, is also becoming a popular request
from domain experts. Because of this, it is useful for ontology engineers to have
a testing process which supports the verification and validation of the ontology
regarding the requirements the domain experts ask for.

Up to now, the majority of traditional methodologies for ontology develop-
ment [2] consider a centralized scenario where the ontology is created by a few
experts. Even if they consider ontology testing, it is set in a non-collaborative
environment and oriented to ontology engineers without taking into account
domain experts. In the last years, approaches for ontology development which
consider collaborative scenarios (e.g., [12], [11]) and which take into considera-
tion the validation of requirements (e.g., [3]) have been introduced, but none of

them provides a testing framework. Apart from these methodologies some ontol-
ogy testing approaches [1][5] also exist, but they consider a centralized ontology
development and do not support all the aspects needed for a testing framework,
i.e., methodological background, tests generation and test execution.

The main idea of the proposed work is to provide an ontology testing frame-
work which can be integrated in collaborative ontology development to validate
and verify an ontology regarding its requirements. The resulting product resul-
tant can be used by ontology engineers and domain experts to assure ontologies
completeness. To accomplish this goal, we propose to formalize the ontological
requirements into SPARQL queries and to store them in RDF files with meta-
data.

2 Relevancy

Nowadays, in software engineering it is inconceivable to deliver a software with-
out its pertinent tests which guarantee its correct behaviour; ontology engineer-
ing should follow the same principle. Ontology engineers should have artefacts
associated to their delivered ontologies which guarantee ontology quality, e.g.
evaluation reports and documentation.

In this PhD we focus on ontology testing as a process needed by ontology
engineers to verify and validate requirements, which are essential for ontology de-
velopment as they represent the reason the ontology is constructed. This testing
process can be used by ontology engineers to know if the ontology is complete
regarding the users’ requirements, and also by users to know if the ontology
represents their interests.

3 Related work

Several approaches which defend the importance of the validation of ontological
requirements have been developed. Each of these approaches focuses on some
testing aspects: methodological background, test design and implementation, or
traceability between the ontology and the tests. Their main limitation lies in the
fact that, even if they acknowledge the need for evaluation, none of them covers
in detail all the tasks of the testing process.

Regarding the methodological background of ontology testing, Vrandevcic
and Gangemi [16] introduce the notion of testing ontologies borrowing ideas
from software engineering and unit testing. They explore different options for
testing, e.g. testing with the axioms and negations or formalizing competency
questions [6]. A more recent work was the one presented by Peroni [3] who
describes SAMOD, an agile and collaborative methodology for ontology devel-
opment which uses tests to validate the ontology. SAMOD proposes some steps
and principles to define test cases from the ontological requirements. These ap-
proaches are focused on methodology, however, they do not mention how to
design and implement the tests or how to maintain traceability.

Regarding the test design and implementation, Keet and Lawrynowicz [9]
proposed a test-driven development of ontologies, where the competency ques-
tions are formalized into axioms and added to the ontology if they are not
present. In their work they focus on how the tests should be defined depending
on the axiom to be added. Dealing with the same testing aspect, the Ontolo-
gyTest tool [5] allows a user to define and execute a set of tests to check functional
requirements over an ontology. These tests are stored in an XML file for future
reuse. Another approach to define and implement test cases is the one presented
by Ren et al. [13] which uses Competency-Question-driven authoring. In this
work the authors use natural language processing and patterns to analyse the
competency questions and automatically obtain SPARQL queries to test the on-
tology. Even these approaches are focused on design and implementation, they
neither mention how to maintain traceability between the tests and the ontology
nor describe a methodology to support their implementation.

Finally, Blomqvist et al. [1] present an agile approach which includes a
methodological background for testing and introduce in rough outlines several
types of tests. The paper distinguishes three types of tests focused on testing
over instances of the ontology: competency question verification, inference ver-
ification and error provocation. The first two are concerned with verifying the
correct implementation of a requirement and the third is intended to expose
faults. All the tests are stored in a different OWL ontology with information
about the requirement, e.g., type of test or expected output. By saving these
test suites in an ontology it allows the user to reuse them and to maintain trace-
ability between the requirements and all the associated information. However,
this methodology does not explain how to design the tests it describes.

Even if all the mentioned works introduce testing through requirements, none
of them proposes a complete testing process which could cover formally all the
mentioned testing aspects, i.e. methodology, test design and implementation,
and traceability. In addition to this, it is also necessary to consider that ontology
development is increasingly becoming a collaborative process with different roles
involved, and ontology testing approaches should provide support for it.

4 Research questions

The main research question of this PhD proposal directly derives from the prob-
lem statement and can be declared as follows:

— Does the formalization of ontological requirements improve the quality of
ontologies?

Important corresponding sub-questions are:

— Does the formalization of ontological requirements into a set of SPARQL
queries and their storage in the machine-processable RDF format improve the
validation of the ontologies reducing the coverage analysis time and errors?

— Does having the formalization of ontological requirements into a set of SPARQL
queries before the implementation of the ontologies improve the development
regarding the reduction of development time and errors?

5 Hypotheses

The hypotheses associated to the research questions are the following:

— Having the ontological requirements formalized into a set of SPARQL queries
and stored in RDF files reduce the time and errors in ontology validation
compared to manual ontological requirements validation.

— Hawving the ontological requirements formalized into a set of SPARQL queries
and stored in RDF files before the ontology implementation reduces the time
of the implementation of each requirement in comparison with the traditional
ontology development.

6 Approach

As mentioned, the PhD thesis aims to provide an approach for ontology testing
to verify and validate the ontology regarding its requirements. We first offer a
general approach which includes the phases that should be carried out in any
ontology testing process. Besides these general phases, we introduce an ontology
testing framework and several development scenarios where it can be integrated.

6.1 Generic phases in ontology testing

This subsection introduces the phases proposed to be carried out in any ontology
testing process. In the literature [10][5] the testing process is usually divided
into two phases, i.e., test implementation and test execution, even if there are
no formal descriptions of each one. In this approach we describe the goals of
these phases and also propose a new one, test design, in order to facilitate the
reuse of tests over the same or other ontologies. The phases proposed here can be
adopted by any ontology testing process regardless of the ontology development
methodology in which this testing activity is integrated.

— Test design. During this phase a first draft of the test cases is designed,
providing an overview of the questions the ontology should be able to answer.
These test cases may not include technical information, e.g., URIs of the
ontology, so they can be reused by other ontologies.

— Test implementation. The tests have to be completed regarding the tech-
nical information of the ontology to which the requirements belong. This
information needs to be given to the responsible of creating the tests cases.

— Test execution. Once the tests cases are completed, the ontology engineers
can check the test cases to validate the completeness of the ontology.

6.2 Ontology testing framework

Exploiting the testing phases introduced in the previous subsection we propose
an ontology testing framework which can be integrated as an activity in any
ontology development methodology.

Ontology testing roles. This framework considers the involvement of three
roles in the testing process. The two first roles are the most popular ones identi-
fied in recent ontology development methodologies [14], i.e., Domain expert and
Ontology engineer. The third role is the Ontology tester. Each role has specific
responsibilities and consequently will have specific associated tasks.

— Domain expert. She is the individual responsible of giving the information
needed to model the domain and identifying the ontological requirements.

— Ontology engineer. She is the individual who has to implement the ontology
following the requirements and constraints identified by the domain experts.

— Ontology tester. She is the individual responsible of creating the tests. The
same person can play the role of ontology tester and ontology engineer, both
need knowledge about ontologies.

Ontology testing phases. In order to guide the testing process, we propose a
description of the tasks of each testing phase and how they have to be carried
out. Figure 1 summarizes the phases and each input and output.

— Test design. During this phase the ontological requirements, which will be
written in the form of competency questions and stored in an ORSD (Ontol-
ogy Requirements Specification Document)[15], are formalized into SPARQL
queries by the ontology testers to avoid the ambiguities inherent to natural
language. The test cases are defined in the RDF language and include the
SPARQL queries and metadata to provide traceability between the require-
ments and the ontology. The test cases are stored in files with the aim of
using them also as regression tests or to share them.

— Test implementation. During this phase the test cases are completed regard-
ing the ontology technical information, such as URIs. This technical infor-
mation is given to the ontology tester in the form of a glossary of terms [4].
The tests cases are published online to allow reuse between other developers.

— Test execution. During this phase the SPARQL queries of each test case are
executed over the ontology.

6.3 Scenarios for applying the ontology testing framework:
Test-driven development of ontologies

This ontology testing framework can be integrated in different scenarios. Con-
cretely, we integrate it in test-driven development of ontologies (TDD), which
is an agile approach already introduced by Keet and Lawrynowicz [9] based on
software engineering [17]. TDD can be summarised as: (1) Write a test based on
a requirement, (2) Run all tests to check that the new test fails, (3) Update the
ontology to pass the test, (4) Run the test to verify it passes, (5) Refactor the
ontology, and (6) Run all tests to verify the completeness of the ontology.

In this scenario the test design and implementation are carried out before
the representation of the associated requirement in the ontology with the aim
of guiding the ontology development. The first execution of the tests is also

Test : Test Test

design implementation execution
S S L2 . 2
© RDF flle with RDF filewith | :
Ethe first draft of ! testcases ready ! Test results
testcases : i tobeexecuted !

Fig. 1: Ontology testing framework phases with their inputs and outputs

performed before the ontology implementation, to assure that the requirements
formalized are not implemented yet in the ontology and, consequently, not re-
dundant. Figure 2 represents the tasks needed to be carried out by each role for
developing each ontological requirement following test-driven development.

Since TDD is an agile approach, the ontologies are developed incrementally
by iterations according to the domain experts needs. The proposed ontology
testing framework supports this scenario, because the tests cases can be incre-
mentally generated in an RDF file allowing for regression testing.

Alternative scenarios. Other scenarios can be considered for applying this
testing process. Examples of them are ontology certification, where the tests
are used at the end of the development process to certify the alignment with
an external ontology, or traditional ontology development, where the tests are
generated and executed at the end of the development process to validate it.

Test design (optional) Template catalog
SPARQL
A Ontological
Py Pas: requirement
o implemented
1[. Test First test fecond test mp
Esicksy mplementatiol execution }‘? executiﬂr?':ass»o

Ontology
tester

\ J
T T
=5 Specify Fail Fail
g8 ontological ‘ e LJ Ontology ‘
g¢e —> - Glossary impl .
53 requirement ‘ of Terms implementatiol
= in ORSD.

Domain
expert

() Identify
" requirement

Fig. 2: Tasks and roles involved in the implementation of a requirement

7 Evaluation plan

The proposed approach will be evaluated through an experiment with users in
four different ontology development scenarios:

— Scenario 1: The ontology engineer will implement the ontology based on the
requirements in natural language and validate manually its completeness.

— Scenario 2: The ontology engineer will implement the ontology based on
the requirements in natural language. After this, the test cases written in
the RDF language need to be generated to validate the ontology.

— Scenario 3: The ontology engineer will implement the ontology using the
requirements in natural language and the test cases in RDF. These test cases
in RDF are used after the ontology implementation to validate the ontology.

— Scenario 4: The ontology engineer will generate the test cases in RDF from
the natural language requirements. Then she will implement the ontology
using them. These test cases are used to validate the ontology implemented.

We plan to extract from the experiment:

— The implementation time of each requirement in the different scenarios to
analyse the impact of having formalized tests in the ontology development.

— The implementation time of each test case in Scenarios 2 and 4, to analyse if
it is easy to formalize the requirements before the ontology implementation.

— The test results in Scenarios 2, 3 and 4, to analyse if the developers can
improve the efficiency of the validation of the ontology with the tests.

— The validation results in Scenario 1 to analyse if the developers can obtain
better results with automatic tests than with manual tests.

With this information we expect to validate the hypothesis stated in Section
5 proving that this ontology testing framework reduces errors regarding the
validation of the ontology and also reduces implementation time of the ontologies
by integrating test-driven development with ontology development.

8 Reflections

The importance of requirements is emphasized in the majority of ontology de-
velopment methodologies, even if it is not considered an independent activity.
We expect that adopting ontology testing as an activity in ontology development
will improve the quality of ontologies regarding its completeness.

Furthermore, as in software engineering there are testing standards, e.g.
ISO/IEC/IEEE 29119 [8], we think that having a testing framework which pro-
vides methodological and technological support could motivate the creation of
standardized representations of tests in ontology engineering. This standardiza-
tion could allow the reuse of tests over ontologies, the import of already published
tests or the guarantee that the ontologies satisfy a minimum of completeness.

Finally, we think that the RDF language is enough to describe the metadata
we consider necessary to provide traceability and understanding, but in future
works we will analyse if adding semantics using the OWL language can benefit
the tests.

Acknowledgements: I would like to acknowledge my advisor Rail Garcia-
Castro. This work has been partially supported by the VICINITY H2020 project
(688467).

References

10.

11.

12.

13.

14.

15.

16.

17.

Eva Blomqvist, Azam Seil Sepour, and Valentina Presutti. Ontology testing-
methodology and tool. In International Conference on Knowledge Engineering
and Knowledge Management, pages 216-226. Springer, 2012.

. Oscar Corcho, Mariano Fernandez-Lopez, and Asunciéon Gémez-Pérez. Method-

ologies, tools and languages for building ontologies. Where is their meeting point?
Data € knowledge engineering, 46(1):41-64, 2003.

DISI DASPLab. A Simplified Agile Methodology for Ontology Development.
In OWL: Ezperiences and Directions—Reasoner Fvaluation: OWLED-ORE 2016,
Bologna, Italy, November 20, 2016, Revised Selected Papers, volume 10161, page 55.
Springer, 2017.

Mariano Fernandez-Lépez, Asuncién Gémez-Pérez, and Natalia Juristo. Methon-
tology: from ontological art towards ontological engineering. 1997.

Sara Garcia-Ramos, Abraham Otero, and Mariano Fernandez-Lépez. Ontologytest:
A tool to evaluate ontologies through tests defined by the user. In International
Work-Conference on Artificial Neural Networks, pages 91-98. Springer, 2009.
Michael Griininger and Mark S Fox. Methodology for the Design and Evaluation
of Ontologies. 1995.

Clyde W Holsapple and Kshiti D Joshi. A collaborative approach to ontology
design. Communications of the ACM, 45(2):42-47, 2002.

ISO/IEC/IEEE. Software and systems engineering - software testing - Part 3: Test
documentation, 2013.

C Maria Keet and Agnieszka Lawrynowicz. Test-driven development of ontologies.
In International Semantic Web Conference, pages 642—-657. Springer, 2016.
Agnieszka Lawrynowicz and C Maria Keet. The TDDonto tool for Test-Driven
Development of DL Knowledge bases. In Description Logics, 2016.

Raul Palma, Peter Haase, Oscar Corcho, Asuncién Gémez-Pérez, and Qiu Ji. An
editorial workflow approach for collaborative ontology development. ASWC, 8:227—
241, 2008.

H Sofia Pinto, Steffen Staab, and Christoph Tempich. DILIGENT: Towards a
fine-grained methodology for distributed, loosely-controlled and evolving engineer-
ing of ontologies. In Proceedings of the 16th European Conference on Artificial
Intelligence, pages 393-397. I0S Press, 2004.

Yuan Ren, Artemis Parvizi, Chris Mellish, Jeff Z Pan, Kees Van Deemter, and
Robert Stevens. Towards competency question-driven ontology authoring. In Eu-
ropean Semantic Web Conference, pages 752-767. Springer, 2014.

Elena Simperl and Markus Luczak-Résch. Collaborative ontology engineering: a
survey. The Knowledge Engineering Review, 29(01):101-131, 2014.

Mari Carmen Sudrez-Figueroa, Asuncién Goémez-Pérez, and Boris Villazdn-
Terrazas. How to write and use the ontology requirements specification document.
In OTM Confederated International Conferences” On the Move to Meaningful In-
ternet Systems”, pages 966-982. Springer, 2009.

Denny Vrandeci¢ and Aldo Gangemi. Unit tests for ontologies. In OTM Confed-
erated International Conferences” On the Move to Meaningful Internet Systems”,
pages 1012-1020. Springer, 2006.

Laurie Williams, E Michael Maximilien, and Mladen Vouk. Test-driven develop-
ment as a defect-reduction practice. In Software Reliability Engineering, 2003.
ISSRE 2003. 14th International Symposium on, pages 34—45. IEEE, 2003.

