
Yasper 1.0: Towards an RSP-QL Engine

Riccardo Tommasini1 and Emanuele Della Valle1

Politecnico di Milano, DEIB, Milan, Italy
{riccardo.tommasini,emanuele.dellavalle}@polimi.it

Abstract. In the Stream Reasoning (SR) research, working prototypes
often came along with foundational investigations. For RDF Stream Pro-
cessing (RSP) in particular, RSP engines empirically proved the ap-
proach feasibility and paved the road to application design and com-
parative analyses. Observing these real systems highlighted their het-
erogeneity and fosters new foundational achievements: RSP-QL, i.e. a
reference a model that explains, unifies and can be used for correctness
checking and optimization of RSP approaches. In this paper, we present
Yasper 1.0 a brand new RSP engine that implements RSP-QL semantics
and, we hope, will foster new empirical research on RSP.

1 Introduction

Since 2008, the Stream Reasoning (SR) community proposed SPARQL exten-
sions to address the problem of continuous processing streams of RDF data
(RSP) [4]. C-SPARQL, CEQLS and SPARQLstream emerged among many pro-
posals for RSP and also thanks to the availability of working prototypes.

These prototypes, called RSP Engines, enabled to design stream reasoning
applications, i.e. they empirically proved SR feasibility. They paved the road to
comparative researches and benchmarks [5](cfr. § 2). Last but not least, RSP
engines fostered more foundational research. Indeed, Dell’Aglio et al. [3] ob-
served heterogeneities of existing prototypes and proposed RSP-QL, i.e. a unify-
ing model for continuous SPARQL extensions. The application scope of RSP-QL
comprises, but is not limited to, correctness checking, query planning and opti-
mization. Although RSP-QL is more than a query language, the community is
designing a syntax [2]1. We agree with this decision and we are also convinced
that an RSP engine will encourage RSP-QL adoption and foster empirical anal-
ysis as it happened with the aforementioned approaches.

In this paper, we present Yasper 1.0 (Yet Another RSP Engine), a brand
new RSP engine that implements RSP-QL semantics. Yasper can answer queries
using the syntax proposed in [2] and incorporates some lessons learned as well
as new ideas on RSP, which can be studied empirically. Yasper is released open-
source2 under Apache 2.0 License and we welcome researchers and practitioners
to test, study, benchmark and enhance it.

1 https://github.com/streamreasoning/rsp-ql
2 https://github.com/streamreasoning/yasper



2 R. Tommasini and Emanuele Della Valle.

2 Background

In this section, we summarize the notions of RSP-QL [3] that are required to
understand how Yasper works.

An RDF Stream is a sequence of pairs (Oi, ti), where ti is a non-decreasing
timestamp and Oi is either an RDF Graph or an RDF Triple.

The time-based sliding window operator W is a Stream-to-Relation (S2R)
operator [1]. It is defined as a triple (α, β, t0) that, starting at the timestamp t0,
defines a series of windows of width (α) and that slide of (β).

A Time-Varying Graph is a function that takes a time instant as input and
produces as output RDF Graph which is called Instantaneous RDF Graph. The
application of W on a RDF Stream S produces a Time-Varying Graph TVGW,S

that for any given time instant t at which W is defined outputs an Instantaneous
RDF Graph, which is the result of coalescing all the RDF Graphs or triples that
the current window contains3.

An streaming dataset (SDS) is an extension of SPARQL dataset4 that is
composed by: an optional default graph A0, n (n ≥ 0) named Time-Varying
Graphs, and m (m ≥ 0) named sliding windows over k (k ≤ m) data streams.

An RSP-QL query is continuously evaluated against an SDS by an RSP en-
gine. The set ET of all the instants at which the evaluation occurs is determined
by the reporting policy of the RSP engine that executes the query. RSP-QL
defines a reporting policy for an RSP as a combination of one or more of the
following strategies: CC Content Change – the engine reports if the content of
the current window changes–, WC Window Close – the engine reports if the
current window closes –, NC Non-empty Content – the engine reports if the the
current window is not empty –, and P Periodic – the engine reports periodically.

The evaluation of a RSP-QL query outputs an instantaneous multiset of
solution mappings for each evaluation time instant in ”ET”. Relation-to-Stream
(R2S) [1] operators are required to transform the instantaneous multiset into
a stream. RSP-QL comprises the following R2S operators: the RStream that
emits each solution mappings; the IStream that emits the difference between
the current solution mappings and previous ones, and; the DStream that emits
the difference between the previous solution mappings and the current ones.

3 Yet Another RDF Stream Processing Engine

In this section, we introduce Yasper’s architecture and how it implements RSP-
QL concepts. Figure 1 shows the following Yasper’s modules: Streams, Window-
ing, SDS, Querying and Reasoning. Modules that expose Yasper as a REST
service are available5 but not discussed.

The Stream module, Fig 1 (a), contains the classes to represent a Stream,
which is identified by an URI and its content. A StreamItem is identified by

3 The current window identified by W with the oldest closing time instant at t
4 https://www.w3.org/TR/rdf-sparql-query/#specifyingDataset
5 https://github.com/streamreasoning/rspservices



Yasper 1.0: Towards an RSP-QL Engine 3

Fig. 1: Yasper’s Modules: (a) Streams, (b) Windowing, (c) SDS, (d) Querying
and (e) Reasoning. Only relevant architectural details are represented.

the triple < ti, te, O > where ti is the time when s entered the system (Inges-
tion Time); te is the time when s occurred (Event Time) and O is a generic
representation of the data in s, i.e. for RSP either a RDF Graph or a Triple6.

The Windowing module, Fig 1 (b), is based on Esper7, i.e. an open-source
Data Stream Management Systems that relies on the Event Processing Lan-
guage (EPL) and special objects called listeners that continuously receive the
EPL queries outputs. Each EPL statement together with a dedicated listener
represents a (named) time-based sliding window operator (henceforth referred
as just window operator) on a RDF stream. The windowing is performed by
means of temporal annotations of the StreamItems. Yasper works by default
using Event Time, but it can be configured to work with Ingestion Time8.

An Esper-based window operator maintains one time-varying graph. A win-
dow operator has two alternative ways to deliver content to Time-Varying Graph:
(i) as a Snapshot – i.e. the window operator pushes to the Time-Varying Graph
the whole window content – or (ii) as Deltas – i.e. window operator pushes to
the Time-Varying Graph only the differences between the current window and
the previous one in terms of additions and deletions. By default Yasper works in
Snapshot mode, but it can be configured to work with Deltas. In both the ways,
the Time-Varying Graphs reactively generates a Instantaneous RDF Graph any
time the engine reports. Yasper reports the results on window close (WC) with-
out empty content (NC).

Since the set ET is determined reading the StreamItems, at each evaluation
time instant we can identify an Instantaneous SDS to evaluate a RSP-QL query
against. A streaming dataset SDS, Fig 1 (c), can be reactively consolidated into
a set of (named) Instantaneous Graphs9 at the time t at which a Time-Varying

6 We implement O using Apache Jena 3.
7 www.espertech.com
8 Event Time does not guarantee total ordering of StreamItems
9 Slowly evolving RDF graph are represented as a (named) Time-Varying Graph too.



4 R. Tommasini and Emanuele Della Valle.

REGISTER STREAM <example> AS CONSTRUCT ISTREAM {? s ?p ?o}
FROMNAMEDWINDOW : win1 [RANGE 5 s , SLIDE 2 s ] ON STREAM : stream1
FROMNAMEDWINDOW : win2 [RANGE 5 s , SLIDE 5 s ] ON STREAM : stream2
WHERE { WINDOW ?w1 {? s ?p ?o}

WINDOW ?w2 {? s ?p ?o} FILTER (?w1 != ?w2) }

Listing 1.1: An example of RSP-QL Query.

Graph is updated. We implemented the SDS and this mechanism by extending
Apache Jena 3 in-memory dataset.

The Querying module, Fig 1 (d), contains the elements for query instantiation
and continuous execution. At this stage of development, Yasper accepts SELECT
and CONSTRUCT queries written in RSP-QL syntax (e.g. Listing 1.1). More-
over, as the reader can observe in Listing 1.1, Yasper supports multi-streams
query, despite [3] does not discuss how to handle them. The following Relation-
To-Stream (R2S) operators are available R-, I- and DStream.

Finally, the reasoning module, Fig 1 (e), allows to answer RSP-QL queries
under OWL entailment by means of Jena Rule reasoner. In the future we want
to integrate RDFox, Ontop and DL reasoners e.g. Pellet or Hermit.

4 Conclusion

In this paper, we presented Yasper, an RSP engine for RSP-QL queries. Yasper
adopts a generic stream representation, it can work with event time or inges-
tion time and it implements multi-stream queries evaluation. At the moment of
writing, Yasper supports SELECT and CONSTRUCT queries. ASK support is
a work in progress, while DESCRIBE requires further investigations for RSP.
We plan to support all the reporting Policies in Yasper, either by configuration
or as an extension of the proposed syntax.

Finally, we plan to perform an empirical evaluation [5] that compares Yasper
architectural configurations and the existing RSP engine implementations.

References

1. Arasu, A., Babu, S., Widom, J.: The CQL continuous query language: semantic
foundations and query execution. VLDB J. 15(2), 121–142 (2006)

2. Dell’Aglio, D., Calbimonte, J., Della Valle, E., Corcho, Ó.: Towards a unified lan-
guage for RDF stream query processing. In: ESWC 2015 Satellite Events Portorož,
Slovenia, May 31 - June 4, 2015, Revised Selected Papers. pp. 353–363 (2015)

3. Dell’Aglio, D., Della Valle, E., Calbimonte, J., Corcho, Ó.: RSP-QL semantics: A
unifying query model to explain heterogeneity of RDF stream processing systems.
Int. J. Semantic Web Inf. Syst. 10(4), 17–44 (2014)

4. DellAglio, D., Della Valle, E., van Harmelen, F., Bernstein, A.: Stream reasoning:
A survey and outlook. Data Science (Preprint), 1–24

5. Tommasini, R., Della Valle, E., Balduini, M., Dell’Aglio, D.: Heaven: A framework
for systematic comparative research approach for RSP engines. In: The 13th Inter-
national ESWC, Heraklion, Crete, Greece, 2016, Proceedings. pp. 250–265 (2016)


