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Abstract. Knowledge Graphs (KGs) play a key role in many artifi-
cial intelligence applications. Large KGs are often constructed through a
noisy automatic knowledge extraction process. Noise detection is, there-
fore, an important task for having high-quality KGs. We argue that the
current noise detection approaches only focus on a specific type of noise
(i.e., fact checking) whereas knowledge extraction methods result in more
than one type of noise. To this end, we propose a classification of noise
found in automatically-constructed KGs, and an approach for noise de-
tection focused on specific types of noise.

1 Introduction

Knowledge Graphs (KGs) are key components of most modern artificial intelli-
gence and cognitive applications. These KGs are largely constructed from textual
corpora using automatic information extraction techniques. Such techniques in-
troduce noise in the KGs and noise detection and removal become essential steps.

Most of the current noise detection in knowledge graphs is done with human
supervision. For instance, large KGs such as YAGO2, DBpedia, or Wikidata
use human contributors to verify the correctness of a given fact. This is a time-
consuming task and requires a lot of human effort for large KGs. Although
crowd-sourcing could be a solution for public general-domain KGs, it may not
be a viable solution for enterprise KGs, due to both privacy issues as well as
the need to rapidly create KGs from a large number of distinct corpora and in
specific domains that require deep expertise. Thus, there is a need for automatic
techniques for detecting noise in KGs.

Current automatic noise detection techniques are focused on factual correct-
ness of triples. In this paper, we discuss the need for different types of noise in
KGs and how to detect those specific types of noise.
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2 Related Work

Knowledge Graph Refinement [1], more concretely, noise detection is an impor-
tant concern of industrial KGs. Noise detection is discussed mainly under two
tasks in the literature: Fact Checking (or Factual correctness) and Triple Classi-
fication. In fact checking [2], the correctness of a statement is verified by finding
external sources that confirm it. DeFacto [2] looks up the Web to find statements
expressed in natural language in web pages while Liu et al. [3] do so by finding
consensus in other external knowledge graphs. Triple classification [4] is a binary
classification task to predict correctness of facts using graph embeddings. Given
two entities, e1 and e2 and a relation R, a function g(e1,R,e2) is defined in a way
that a triple is true only if its value is above a given threshold [4]. In both these
tasks, the main focus is on differentiating factual true triples in a single step.
We argue that this can be divided into several sub-tasks by analyzing different
types of noise. Our hypothesis is that by defining methods for detecting specific
types of noise, we could improve the overall KG noise detection results.

3 Types of Noise

Based on the analysis of the output of a commercial information extraction
framework, which parses text corpora and produces triples, we defined the cat-
egories in Fig. 1. Out of these, we identify Factual True triples as the most
relevant and Inconsistent, Generic, Factual False categories as noise.

Fig. 1: Types of Noise

Inconsistent triples contradict the domain model they represent. As such,
these triples are completely implausible and meaningless. For instance, (Barack
Obama, siblingOf, White House), is not plausible. If siblingOf relation is specified
formally to have a range of Person and if Person and Building are disjoint, that
leads to a logical inconsistency. Nevertheless, those granular axioms are not
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always present for such reasoning and data profiling can be used to identify
common patterns in data that can provide heuristics of inconsistencies.

Generic triples do not mention specific entities and have less information
value. For example, (family, residesIn, New York). Nevertheless, if both enti-
ties are generic such triples can provide schema-level information, for example,
(family, residesIn, city). Finally, factually false triples are the ones that contain
incorrect information. For example, (Boston, capitalOf, USA) is factually false.

4 Noise Detection Workflow

Fig. 2: Noise Detection Workflow

We propose to filter inconsistent and generic triples prior to fact checking as
illustrated in the Fig. 2. This section describes approaches for detecting incon-
sistent and generic triples using the knowledge in external KGs.

Inconsistent triple checking is performed by mapping both entities as well as
relations to external KGs and considering both ontological axioms that define
formal conceptulizations (e.g., domain and range of properties or disjoint types)
and common patterns in data. A relation mapping is one-to-one if both rela-
tions in information extraction and properties in KG have same granularity, for
example, siblingOf to dbo:sibling. Otherwise, the mapping is conditional based
on the domain class, for example, partOfMany maps to dbo:country in dbo:City
class and dbo:album in dbo:Single class.

Generic triple detection is performed using part-of-speech tagging using NLP
tools. We use the intuition that when the subject or the object is not a proper
noun, it typically refers to a generic entity rather than a specific one. If either
the subject or the object is generic, we label the triple generic. For determining
factual correctness, we use a similar approach to fact checking by looking for evi-
dences that confirm a given triple in an external KG using entity disambiguation
and relation mapping described in Algorithm 1.

Fact checking is performed by finding evidences confirming a given triple
in external knowledge graphs similar to the approaches in Section 2. We con-
ducted preliminary experiments to evaluate the algorithms using 2,342 manually-
labelled triples. Each triple was labelled with its type (i.e., Inconsistent, Generic,
or Factual) and its truth value (i.e., True, False, or True in the past) by human
annotators. The results are presented in Table 1.
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Algorithm 1: Inconsistent triple detection
Data: A set of triples, T(subject,relation,object)
Result: The set of triples with labels, L(t ∈ T ,l ∈ {consistent, inconsistent})

1 L← ∅;
2 relationMap← ∅;
3 distinctRelations← getDistinctRelations(T );
4 foreach relation ∈ distinctRelations do
5 K ← getTopKtriples(T, relation);
6 propMap← getKGProperty(K.subjects,K.objects);
7 relationMap.put(relation, propMap);

8 end
9 foreach t ∈ T do

10 sType← getType(t.subject);
11 oType← getType(t.object);
12 prop← relationMap.get(t.relation).get(sType);
13 if (ontoInconsistency(sType, prop, oType)) then
14 L.add(t, inconsistent);
15 else
16 patternScore← getScore(sType, prop, oType);
17 if patternScore>threshold then
18 L.add(t, consistent);
19 else
20 L.add(t, inconsistent);

21 end

Table 1: Experimental Results

Category Configuration Precision Recall

Inconsistent triple detection 86.84% 62.26%

Generic triple detection
Standford NLP 85.65% 100%
Open NLP 78.16% 100%
Combined 98.25% 100%

5 Ongoing and Future Work

Our intuition is that the more-specific noise detection will improve the overall
quality of KGs. One challenge for evaluating this hypothesis is the lack of a large
gold standard with noise types. We plan to create one using crowd-sourcing.

Further, we also plan to test another alternative approach based on graph
embeddings to demote triples that are inconsistent with other triples. For this,
we learn representations for entities and relations by constructing functions that
represent interactions between related entities.
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