
Ranking, Aggregation, and Reachability in
Faceted Search with SemFacet?

Evgeny Kharlamov1 Luca Giacomelli2 Evgeny Sherkhonov1

Bernardo Cuenca Grau1 Egor V. Kostylev1 Ian Horrocks1

1University of Oxford, UK 2Sapienza University of Rome, Italy

1 Introduction
Motivation. Faceted search is a prominent search paradigm that became the standard in
many Web applications including online shopping and real-estate portals, where users
can progressively narrow down the search results by applying filters, called facets [9]
which are organised in faceted interfaces. Faceted search has also been proposed in the
Semantic Web context for exploring and querying RDF graphs and a number of RDF-
based faceted search systems have been developed (see [3,7,4,5,2,6] for an overview).

One of the main challenges that hampers usability of faceted search systems is in-
formation overload [9]: when the size of the faceted interface becomes comparable to
the size of data over which the search is performed. The overload is already a challenge
in the case of the classical faceted search and it becomes even stronger when faceted
search is applied to RDF data. Indeed, observe that in both classical and RDF settings
the search is over annotated entities, at the same time, in the latter case the number of
annotations and possible values is typically much larger: any predicate occurring in an
RDF data set can give a facet during a search, and any entity or value that it points to in
the RDF data can become a value in this facet. At the same time, in the classical case
the list of possible facets is typically predefined and controlled.

Moreover, differently from the classical case, in the RDF settings entities are also
interconnected. Thus, in an RDF driven faceted interface one has to nest facets in order
to reflect this interconnections. In Figure 1, left, one can see a possible way to nest
facets which is implemented in our SemFacet system. This not only raises a non-trivial
problem of how to arrange nested facets within an interface in an intuitive and user
oriented way, but also leads to an unavoidable overload of the interface with various
paths of nested facets. Thus, faceted navigation over RDF requires from users to be
experts in the structure of the underlying RDF graph in order to be able to find the
required facet which can be deeply nested.

In order to see why it might be hard to find a required nested facet, consider in
Figure 2 an example RDF data. Assume that one is looking for a smartphone with
the price within £500–£900 and the processor that is manufactured by a company with
headquarters in Asia. One can see in Figure 2 that Samsung S8 is such a smartphone. At
the same time, finding this smartphone via a faceted interface requires one to traverse
the data via 4 nested facets (Figure 1, left).

SemFacet System. In our RDF-based faceted search system SemFacet we propose to
address the information overload by

– ranking facets and their values and thus offering to users top-k most prominent
facets and values;

? This work was supported by the Royal Society under a University Research Fellowship and
the EPSRC under an IAA award and the projects DBOnto, MaSI3, ED3, and VADA.

ANY

Processor

Laptop
SmartPhone

Searchphone

type

hasPart

keywords

facet predicate

Samsung Galaxy S8
Galaxy S8 is a phone that offers an exceptional
experience for any user. The large screen is a real
turning point in flagship phone design and should usher
in the end of large bezels, and the camera and slick
performance work brilliantly under the finger.

answer
withHQ

producedBy
ANY

ANY

facet values

price

inCountry

ANY

inContinent

ANY

North America
Asia

1.600500 900

Search Task:
Find smartphones
▪ whose processor
▪ is manufactured by a

company
▪ with headquarters in Asia
▪ and whose price is within

£500-£900
0

ANY

Processor

Laptop
SmartPhone

Searchphone

San Diego
Suwon

type

hasPart

withHQ

producedBy

Reachable facets

refocussed answer

maxprice

0 1.600

aggregate facets

refocusing

enter facet

ANY

Exycon 8 Processor
Galaxy S8 is built around the new Exynos 8895,
featuring new custom CPU cores, new Mali GPU, and
with the whole thing fabricated via a cutting-edge 10nm
process intended to maximize performance and power
efficiency.

ANY

500 900

(8.270)

(5.850)

(2.490)

(1.800)

(630)

(8)

(5)

Search Task:
Show me processors of smartphones
▪ whose processor
▪ is manufactured by a company
▪ with headquarters in Asia
▪ and whose max price among

providers is £500-£900

inContinent
Asia
N. America

(1)

(3)

Fig. 1. Left: SemFacet with deep nesting over RDF data; Right: SemFacet enhanced with rank-
ing, aggregation, and reachability

– minimising the number of values within a facet by first grouping them according to
the corresponding entities and then aggregating them with the standard aggregate
functions max, min, count, sum, avg;

– shortcutting paths of nested facets with the help of a reachability operator.

Observe in Figure 1, right, the SemFacet interface where all these three features
are incorporated. The facets and values are now ranked and only the top 10 of them
are displayed. The users can choose whether to look for a maximal price of entities by
activating aggregate functions within facets with numerical values. In the screenshot
the user selected max and thus the system is searching for smartphones whose maximal
price across providers is within the range £500–£900. Finally, the users can enter the
name of a desired predicate instead of choosing a facet value in order to ask the system
to find a shortcut (a reachable facet). In the screenshot the user entered inContinent
instead of selecting SanDiego or Suwon.

Demo Overview. The goal of the demo is to show the attendees how our novel features,
that is, ranking, aggregation, and shortcutting, make hard faceted search—over RDF
datasets that are highly interconnected and with many data values—easier. In order to
experience the impact of these features the attendees will be able to explore the demo
dataset using two versions of our SemFacet systems: with and without the features.

2 SemFacet System
We first give an overview of SemFacet with the focus on its novel components and then
present technical details behind ranking, aggregation, and shortcuts.

System Overview. SemFacet is implemented in Java and available under an academic
license [1]. In Figure 2 there is the architecture of SemFacet where the arrows denote
the data flow between the systems’ components.

On the client side, SemFacet has an HTML 5 based GUI consisting of three main
parts: a free text search box for keywords, a hierarchically organised faceted interface,
and a scrollable panel containing snippet-shaped answers. User keywords are sent by
the client to the server, evaluated and this gives the initial faceted interface. User se-
lections in the faceted interface are compiled into a SPARQL query using the SPARQL
query constructor and then sent to the server for evaluation. The snippet composer and
facet composer receive information about facets and answers that should be displayed
to the user and update the currently displayed interface and query answers. The sys-
tem updates the faceted interface incrementally: only the parts of the interface that are
affected by users’ actions are updated, which allows for a significantly faster response

2

4

:SamsungS8

800 900

:Exynos

290 270

:Samsung :Suwon :S .Korea

:AsiaSmartphone Processor Company

:HP Elite X3

730

:Snapdragon

300280

:Qualcomm :SanDiego :USA

:NorthAmerica

type

type

type

type

type

type

price price

hasPart producedBy withHQ inCountry

inContinent

price price

price

hasPart producedBy

priceprice

withHQ inCountry

inContinent

Fig. 2. Example RDF graph about products

Let O = [F1, . . . , Fn] be a possible ordering of S. Our function f computes the
score of O by combining the following three characteristics of O:

(1) selectivity of facets in O,
(2) diversity of facets in O, and
(3) nesting depth of facets in O.

In particular, for (1) we prefer those facets that are more selective, i.e., ticking
values in the facet narrow down the search result more rapidly than doing so
in other facets. For (2), we prefer those facets that lead to results which are
not covered by selecting other facets. Finally, for (3), we prefer facets that allow
deeper nesting thus allowing explore the graph structure of the underlying data.
We now define the functions corresponding each of (1)-(3) and then combine
them into the final scoring function f .

Let F denote a facet, A the set of current answers, r(F) ✓ A the set of
answers obtained by selecting any value in F , and d > 0 a predefined threshold
parameter for nesting depth. To account for (1), we compute the selectivity score
of F given A as follows:

sel(F, A) = 1 � log|A| |r(F)|.

In particular, the less search results is obtained by applying F , the higher the
selectivity score of F is. To account for (2), we consider a variation of the Set-
Cover ranking [5] to compute the overlap score of Fi 2 O w.r.t. O as follows:

overlap(Fi, O) =
1

n ⇥ |r(Fi)|
nX

j=1

| r(Fi) \
j[

m=1,m 6=i

r(Fm)|

In particular, a high overlap score of facet Fi means that selecting values in it
leads to results that are not present in the first highly ranked facets. Thus, highly
positioned facets (according to the overlap score) provide more diverse results.
To account for (3), we compute the depth score depth(F, d) of F given d as the

RDF Data, Rules

Client

ServerSnippet
Generator

Search
Engine

Aggregation
Handler

Ranking
Handler

Range
Handler

Shortcuts
Handler

Facet Generator

SPARQL Q.
Constructor

Facet
Composer

RDFox: Storage and Query Execution

Processor

Laptop
SmartPhone

type

hasPart

(8.270)

(5.850)

(2.490)

Exycon 8 Processor
Galaxy S8 is built around the new Exynos 8895,
featuring new custom CPU cores, new Mali GPU, and
with the whole thing fabricated via a cutting-edge 10nm
process intended to maximize performance and power
efficiency.

Snippet
Composer

phonephone

Fig. 2. Left: Example RDF graph about products; Right: Architecture of SemFacet

time. The user is able to do refocusing. This feature of SemFacet can be observed in
Figure 1, right, where the user can click on a box in the hasPart facet to change the
answers from phones to their parts, that is, from Samsung S8 to its processor Exycon 8.

On the server side, the system relies on an in-memory triple store RDFox [8] to
store the inverted index, input RDF data, query answers, and all necessary auxiliary
information such as materialisation rules which we discuss later in this section. One of
the server components is an inverted index based full-text search engine; in order to
ensure a better integration between full-text and faceted search and thus achieve good
efficiency of SemFacet we implemented our own search engine. Another backend com-
ponent is snippet composer that for given answer entities retrieves their textual descrip-
tions, images, and links. The next component is facet generator that constructs faceted
interfaces in response to user actions. This component is backed by four handlers: ag-
gregation, shortcuts, ranking, and ranges. The range handler computes and stores left
and right bounds for the range sliders for numerical facet values, like the price-slider
in Figure 1, that correspond to the lower and upper bounds of possible values for this
property name in the underlying RDF data.

Ranking facets. Whenever SemFacet updates the interface it should decide in which
order to present relevant facets. This is done in two steps. First, we compute the set
S of all relevant facets that should be displayed in the same level of nesting. Assume
that S has n facets. Then, for each of n! possible orderings of S we find the optimal
order using our scoring function f and SemFacet displays the facets from S (or some
of them) according to this order. Our function f computes the score of a given ordering
of facet by combining the following three characteristics of the order: (1) selectivity
of its facets, (2) diversity of its facets, and (3) nesting depth of its facets. In particular,
for (1) we prefer those facets that are more selective, i.e., ticking values in the facet
narrow down the search result more rapidly than doing so in other facets. For (2), we
prefer those facets that lead to results which are not covered by selecting other facets.
Finally, for (3), we prefer facets that allow deeper nesting thus allowing explore the
graph structure of the underlying data. We now define the functions corresponding each
of (1)-(3) and then combine them into the final scoring function f .

Ranking facet values. Besides ranking of facets, it is important to rank facet values
as well. We adopt the count-based ranking (see also [10]): facet values that lead to a
larger number of results are ranked higher. Although the computation of counts is con-
ceptually trivial, the main challenge is in their update. Indeed, the integers associated
to each facet value in the interface must be updated every time the user interacts with
the faceted interface without affecting the performance of the system. Additional chal-
lenges come from (i) graph structure of the data and (ii) interplay of conjunctive and
disjunctive interpretation of facet values. In our experience, implementing the straight-

3

forward approach to updating counts leads to a significant increase of the user interface
response time. To mitigate this problem, we adopted a multi-threading solution: each
thread receives a set of facet values for which counts need to be updated and, addition-
ally, the load among the threads is balanced. For instance, we avoid the situation when
one thread is busy with updating counts for values with a high number of results only,
while another gets away with updating counts for values with a low number of results.
This approach led to a significant response time decrease.

Aggregation. Recall that every interface update performed by the user (i.e., refocusing,
selection of a facet or a facet value) results in formulating a corresponding SPARQL
query on the fly that is then issued to RDFox. Then the interface is updated (i.e., with
search results and available facets at this point) depending on the result of this query.
When aggregate facets are considered, it is possible to follow the same approach and
formulate aggregate SPARQL queries. However, we decided to do materialisation of
aggregate information at loading time instead since (1) RDFox, our back-end system,
supports efficient materialisation of aggregate information and, more importantly, (2)
non-aggregate SPARQL queries are usually faster to answer which is essential for re-
sponsive user interface updates.

Reachability. SemFacet provides the shortcut functionality described in Section 1. In
the user interface, SemFacet offers a search box within each facet that allows users to
search for reachable facets. As the user has typed in a facet name F in the box, the
system checks if such a facet is reachable from the current facet. For this we perform
breadth-first search to find all reachable nodes with an outgoing property F and we
store corresponding witnessing paths. These paths are important in constructing the
corresponding SPARQL query for fetching possible facet values for F and for further
facet navigation. For a faster response time, we predefine a parameter B and check
facet reachability up to length B instead. In our example, in Figure 1 (right) the user
can search for the inContinent facet, which in this case is reachable within 2 steps, and
then select ‘Asia’, thus selecting processors produced by an asian company.

References

1. SemFacet Project Page. http://www.cs.ox.ac.uk/isg/tools/SemFacet/
2. Arenas, M., Cuenca Grau, B., Kharlamov, E., Marciuska, S., Zheleznyakov, D.: Towards

Semantic Faceted Search. In: Proc. of WWW (Companion Volume). pp. 219–220 (2014)
3. Arenas, M., Cuenca Grau, B., Kharlamov, E., Marciuška, Š., Zheleznyakov, D.: Faceted

search over RDF-based knowledge graphs. J. Web Semantics 37, 55–74 (2016)
4. Arenas, M., Cuenca Grau, B., Kharlamov, E., Marciuška, Š., Zheleznyakov, D.: Enabling

Faceted Search over OWL 2 with SemFacet. In: Proc. of OWLED. pp. 121–132 (2014)
5. Arenas, M., Cuenca Grau, B., Kharlamov, E., Marciuška, Š., Zheleznyakov, D., Jiménez-

Ruiz, E.: SemFacet: Semantic Faceted Search over Yago. In: Proc. of WWW (Companion
Volume). pp. 123–126 (2014)

6. Cuenca Grau, B., Kharlamov, E., Marciuška, Š., Zheleznyakov, D., Zhou, Y.: Querying Life
Science Ontologies with SemFacet. In: Proc. of SWAT4LS (2014)

7. Grau, B.C., Kharlamov, E., Marciuska, S., Zheleznyakov, D., Arenas, M.: Semfacet: Faceted
search over ontology enhanced knowledge graphs. In: ISWC Posters & Demos (2016)

8. Motik, B., Nenov, Y., Piro, R., Horrocks, I., Olteanu, D.: Parallel Materialisation of Datalog
Programs in Centralised, Main-Memory RDF Systems. In: Proc. of AAAI (2014)

9. Tunkelang, D.: Faceted Search. Synthesis Lectures on Information Concepts, Retrieval, and
Services, Morgan & Claypool Publishers (2009)

10. Wagner, A.J.: Faceted semantic search, technical report. Tech. rep.

4

http://www.cs.ox.ac.uk/isg/tools/SemFacet/

	Ranking, Aggregation, and Reachability in Faceted Search with SemFacet

