
Copyright held by the authors.

Abstract—This paper presents a hybrid genetic algorithm (GA)

with Wisdom of Artificial Crowds (WoAC) approach to solving an
NP-hard problem. This is a novel approach to solving Shortest
total-Path-length Spanning Tree (SPST) problems. In our tests
this approach achieved results up to 12% better than use of the
genetic algorithm alone.

Index Terms—genetic algorithm, shortest total path length
spanning tree, wisdom of artificial crowds

I. INTRODUCTION
HIS project addresses the NP-complete Shortest total-

Path-length Spanning Tree (SPST) problem, proposed and
discussed in [1-3]. For an edge-weighted, undirected graph, the
objective of this problem is to find the spanning tree for which
the total sum of total edge weights on the paths between every
pair of vertices is minimized. NP-complete problems are those
for whom no fast solution is known; as the size of the problem
set grows the time any currently known algorithm requires to
solve it increases incredibly quickly. SPST has been
demonstrated as one such NP-complete problem [4, 5].

In this implementation of the problem we consider the

distance between each vertex as the weight or cost of the edge.
Specifically, we consider the Euclidean distances between
vertices with Cartesian coordinates, calculated with the formula
below. Therefore, the total distance of a path is the sum of the
costs of each edge between each vertex in that path. The total-
path-length of a spanning tree is the sum of the path length
between every pair of vertices in the tree.

𝑑 = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 (1)

Genetic algorithms mimic the real-world phenomena

whereby populations of biological species reproduce children
based on the genes of the parents and natural selection steers
each generation towards superior genes [6]. The genetic
algorithm we incorporated into our hybrid approach initializes
a random population of SPST solutions then reproduces
successive generations of solutions. It analyzes the reproductive
fitness of each member of a population, probabilistically selects
stronger parents to reproduce, generates child solutions from
the genes of the parent spanning trees, and sets up the next
generation’s population with the strongest members from the
old population plus qualifying members from the child
solutions.

The wisdom of crowds [7] describes the phenomenon where
aggregated results from a population, or “crowd,” approach the
best answer to a problem, even though individual answers may
have significant differences and deviations from the globally
optimum solution. The Wisdom of Artificial Crowds makes
use of the artificially generated populations from the genetic
algorithm, treating these solutions as the “crowd” whose
expertise can be consulted. One child per population is created
by aggregating the edge choices of every SPST solution,
probabilistically selecting a number of those edges to base the
child on, then building the remainder of the spanning tree
solution via locally greedy edge choices.

The program is written in Python 3.5, the graphics are

generated with the module pygame, and the graphs are
generated with the matplotlib module. The input provided to
the program is a data file with the vertices’ coordinates. The
program must read in these coordinates, calculate the distance
between each pair of vertices that are connected, generate a
random initial population of spanning trees, then apply the
genetic algorithm with wisdom of artificial crowds to
generationally approach the best SPST for the graph provided.

The motivation behind developing this algorithm was to

explore the interplay of the genetic algorithm component and
wisdom of artificial crowds component. We also sought to
explore whether wisdom of artificial crowds is a viable,
successful variant to the genetic algorithm for the SPST
problem as well as whether a genetic algorithm is a viable,
successful source of good solutions for a wisdom of artificial
crowds component.

II. PRIOR WORK
The approach of a hybrid GA plus WoAC has been shown

many times as a viable approach to solving many NP-complete
problems [8-11], including the famous Travelling Salesperson
problem [12]. Baseline genetic algorithms have been applied to
solve spanning tree problems similar to the SPST problem [13]
and other approximation algorithms have been applied to the
SPST problem [14-16]. However, a hybrid GA + WoAC
algorithm is, to our knowledge, a novel approach to the SPST
problem.

III. PROPOSED APPROACH
To solve this SPST problem, the program uses a genetic

algorithm with a wisdom of artificial crowds component. The

Shortest Total Path Length Spanning Tree via
Wisdom of Artificial Crowds Algorithm

Madeline V. Hundley, Roman V. Yampolskiy

T

Madeline Hundley and Roman Yampolskiy MAICS 2017 pp. 77–84

77

 2

program’s first order of business is to read in the coordinates of
each vertex from a file and calculate the Euclidean distances
between, saving these in a dictionary for quick lookup. Its last
order of business is to plot the best, average, and worst results
from each generation of the algorithm and to graphically
display the best spanning tree found, with the shortest total-
path-length.

Overall, the genetic algorithm drives the development of a

diverse, increasingly fit population every generation. The
wisdom of the crowds aggregates the collective knowledge of
these populations to discover better or at least comparable but
diverse paths.

A. SpanningTree Class
This program is based on a SpanningTree class. Each

instance of the class has an instance variable sptree, a set of the
edges, stored as tuples, in the spanning tree. To initialize a
SpanningTree the class should be provided a set of unique
tuples, meaning no duplicates e.g. (1,2) and (2,1). Internally the
sptree variable generates and stores both of these tuples,
however, for easy lookups to the edges contained in this
SpanningTree instance.

Upon initializing a new instance of a SpanningTree, the class

function calc_paths calculates the path for every pair of vertices
and stores it in the instance variable paths. It does this by using
a recursive algorithm, the recursive_expansion function.
Starting with the first vertex, the function “expands” this vertex,
creating a “frontier” of the vertices that can next be reached
given the edges constituting the spanning tree. For example, if
the only edges in the spanning tree that contain the vertex ‘1’
are the edges (1,2) and (1,3), expanding the vertex ‘1’ would
yield a frontier of ‘2’ and ‘3’. It then arbitrarily chooses one of
these vertices, adds it to the current path being traced, and with
another call to recursive_expansion expands again on this new
vertex. Important to cultivating the frontier is eliminating the
vertices already in the current path so the algorithm does not try
to expand “backwards.” If the algorithm reaches a vertex whose
frontier is empty, meaning the path has hit a dead end, that
vertex is taken out of the path and the next option from the
frontier at that level is selected and expanded. In this way, the
recursion searches depth-first, backing up from dead-ends and
expanding each vertex until the destination vertex has been
found. The algorithm can stop searching upon first
encountering the destination vertex because of an important
feature of spanning trees: there can only be one valid path
between any two vertices. Valid spanning trees by definition do
not have cycles; if a tree contained a cycle this would offer more
than one path from one vertex to another. Therefore, once the
algorithm found a valid path it could stop searching as this was
the only valid path. Finally, these paths are stored in the
instance variable paths, a dictionary whose keys are pairs of
vertices, stored as tuples, and whose values are lists containing
each path. Only unique tuples, meaning no duplicates, are
stored in this dictionary as lookups in one direction are only

ever required.

Once all paths have been identified, the SpanningTree class

function calc_length is called to sum the total lengths of these
paths. The calc_length function simply needs to issue lookups
to the dictionary of distances between every pair of vertices in
the graph generated at the beginning of the program. The
function looks up and sums the length of each edge in every
path. The total-path-length of the SpanningTree is stored in its
length instance variable.

Finally, the SpanningTree class has a mutate function, which

will be discussed further in the context of the genetic algorithm,
below.

B. Genetic Algorithm
To begin, the genetic algorithm sets up its initial population

with the get_init_pop function by generating spanning trees
randomly, calling the get_rand_sptree function. This function
generates a valid spanning tree by tracking the vertices that have
been added so far and randomly selecting an edge from one
such vertex to one not yet added. This methodology prevents it
from adding an edge “backwards” and introducing a cycle.

Each successive population in the genetic algorithm is

generated by the get_next_pop function, which first produces
one child based on the “wisdom of artificial crowds,” discussed
further in the next section. Then using calls to the reproduce
function, it reproduces all remaining children required
“genetically” from selected parents. Reproduce uses the
get_fitness function to judge the fitness of each potential parent
in the current population. Better spanning trees – those with
shorter total-path-lengths – are judged to have a higher
reproductive fitness and therefore have a greater probability of
being selected as parents for the next generation. When two
trees are selected to be parents, the crossover function generates
two new children from those parents’ “genes.” Every time a
child is produced there is a possibility that a mutation will occur
in its “genes,” handled by the SpanningTree class’s built-in
mutate function.

In the get_fitness function, the fitness ratios of every

spanning tree in the population need to reflect how short their
total-path-lengths are. The typical fitness ratio in a genetic
algorithm tries to achieve selection of a maximum value; this
will simply take each element’s value out of the sum total of the
population’s values. If applied to the total-path-lengths this
would “reward” the long paths rather than the short ones. For
the SPST problem this function must instead seek to achieve
selection of minimum values. Therefore, this algorithm’s
fitness ratio takes each tree’s length and subtracts it from the
highest value in the population and from 1, before dividing by
the sum total of these adjusted costs. Finally, it scales so these
probabilities all add up to 1, a requirement for a valid
probability distribution. This method more heavily weights the
shortest total-path-lengths. It also has the side effect of
assigning the very worst spanning tree a fitness ratio of zero,

Shortest Total Path Length Spanning Tree via Wisdom of Artificial Crowds Algorithm pp. 77–84

78

 3

which will cull it from potential selection in the next part of the
algorithm. This is a perfectly acceptable, even desirable, side
effect from this process.

The crossover function uses an experimentally-determined

break point in each parent’s “genes,” discussed further in the
next section, to determine the edges that will be passed on to
the children. One child is first set up with a portion of edges
taken from the “mom” parent tree and the second child is first
set up with a portion of edges taken from the “dad” parent tree.
Each of these children, currently just an incomplete set of edges,
is then passed to the complete_tree function, along with the
opposite parent from which it was first based on. The
complete_tree function, as the name implies, completes the tree
using only edges available in the parent provided. In this way,
the first child is first built using “mom” then completed with
“dad,” and vice versa for the second child.

The complete_tree function is integral to both the genetic

algorithm and the wisdom of artificial crowds component,
whose use of it is discussed in further detail in the next section.
This function first identifies all groups that exist in the edges
provided. For example, if (1,2) and (2,3) are both edges in the
set provided, the function identifies that {1,2,3} is a connected
group of edges. Then vertices that are not yet connected, that
have zero edges, are added as groups of one each by themselves.
The function’s next step is to choose and add edges which will
connect these groups into a complete spanning tree. Starting at
an arbitrary group called the coregroup, the function generates
a list of valid edges it may choose from: all edges from a vertex
in the current group to a vertex not in the group and only edges
that are also present in the parent tree. It is important to point
out that only edges from an added vertex to an unadded vertex
are those allowed. As with the process for finding the paths in
a tree or for building a random tree, selecting edges in this way
ensures the tree is never grown “backwards” i.e. that it is never
allowed to introduce a cycle. After identifying the valid edges,
the function then greedily selects the shortest one, adding that
edge to the tree. It must also identify the group that vertex
belongs to and incorporate all that group’s vertices into the
coregroup. This process is repeated until all groups are
incorporated, growing the coregroup across the graph until it
includes all vertices and the child spanning tree is complete.

There are a couple important items to note regarding the

complete_tree function. First, the arbitrary selection of the
initial coregroup does not affect the final spanning tree. It does
not matter in what order the groups are added to the coregroup
because of the greedy nature of the edge selection and the fact
any vertex not currently in the coregroup is allowed as the next
addition. For instance, if vertex ‘1’ is in one group, vertex ‘2’ is
in another, and their edge is the shortest available to join those
two groups, it will always be the one selected whether vertex
‘2’s group is incorporated first, somewhere in the middle, or
last. Second, the greedy decision to add the shortest edge
available from the parent was based on the assumption that
these shortest edges available will contribute to an overall

shorter total-path-length for the spanning tree. There are some
instances where including a longer edge instead leads to overall
better paths. However, these locally optimal choices
demonstrated through testing to often be globally optimal as
well. In addition, the fact the child is based in portion on a
parent and not wholly on local greedy decisions helps to
compensate and works to retain knowledge of which long
routes are favorable.

After crossover has completed both kids, they are each

checked for mutations using the SpanningTree class’s built-in
mutate function. If the test against the probability of mutation
occurring hits, the function randomly selects a path that
involves two edges (three vertices), discards the first edge and
adds a replacement connecting the first edge straight to the
third. This approach allows for a test of whether going straight
from the first to the third vertex, rather than through the second
vertex, offers better paths for the tree in terms of minimizing
total-path-length. Because the selection of which two-edge path
to mutate is random, it is equally likely to affect “central”
vertices with many connections and “leaf” vertices with just
one. This is an advantageous approach because either situation
has the potential to benefit from such a mutation, so any path
should be eligible for selection. Finally, this approach is
guaranteed never to introduce a cycle, maintaining the integrity
of the mutating spanning tree.

The get_next_pop function has a predetermined number of

children it is required to generate. Children that are duplicates
of trees that are in the old population or children already
generated are not permitted, however. This is a useful feature to
ensure that genetic diversity is maintained in the population. If
all viable parents have been used to reproduce but there aren’t
enough new children yet, random trees are generated to be used
as children. This option was very rarely needed, if ever, but is
an important feature nonetheless. In addition, the crossover rate
is set very high, but approximately 5% of the time two
randomly-generated children are returned from reproduction.
Again, this infuses some genetic diversity in to the population.
After the required number of children have been generated, the
get_next_pop function replaces up to a set number of the worst
solutions in the old population with children, but only if the
children are superior to those being discarded. In addition to
purposefully driving successively better results each
generation, it also mimics the real-world phenomenon where
weak members of an animal species do not survive infancy. In
this way, it is an improvement both to the function and the spirit
of this genetic algorithm.

C. Wisdom of Artificial Crowds
In every population, the “Wisdom of Artificial Crowds” is

applied to generate one child. Every occurrence of each edge in
the population is tallied and its percentage of the total edges is
calculated. These percentages serve as the probabilities the
get_crowd_wisdom function uses when selecting edges the
child will contain. The more often a particular edge occurs

Madeline Hundley and Roman Yampolskiy MAICS 2017 pp. 77–84

79

 4

throughout the population, the higher the probability it will be
selected to be part of the child. Edges that never occur in the
population have a zero probability of being selected for
inclusion in the child, a desirable effect in the algorithm.

Some wisdom-of-the-crowd implementations use only a
portion of a population to study, choosing to consult only
answers it deems as “experts.” In our approach, we purposefully
chose to use the entire population and consider every spanning
tree an “expert” worth consulting. First, this is because we
wanted a comprehensive view of the population’s aggregate
knowledge, not a narrow one. Second, it is because every
spanning tree in that population has been carefully built and
selected from previous populations, meaning it will contain
knowledge worth considering. Because successive populations
do not allow for bad spanning trees i.e. those worse than their
predecessors to ever be included, every tree in the “crowd” is
good enough to lend its input.

The child is initialized with these selected edges and then
complete_tree is called to fill out the rest of the edges. The
parent passed to complete_tree in this case is a dummy
SpanningTree initialized with every vertex pair possible for the
graph. In this way, when complete_tree is greedily selecting the
best edges to join the disparate groups of edges within the child
spanning tree, every possible connection is available as an
option.

There is an important logic check in complete_tree that does
not come into play during its use by the genetic algorithm but
plays a key role during its use by the wisdom-of-artificial-
crowds component. This check is part of the initial process of
sorting the child’s edges into their groups. If a group containing
only two vertices, therefore representing an edge, is detected to
have not just one but both of its vertices already in a group, it is
discarded. By definition if two vertices are already in a group
together, an edge between them would introduce a cycle. Such
situations may occur because get_crowd_wisdom selects edges
only based on probabilities. This means it may select edges that,
if all included, create a cycle e.g. (1,2), (2,3), (1,3). This check
in complete_tree vets the edges of the child it has been
provided. For example, the function will begin by building a
group from (1,2) and (2,3) of {1,2,3}, then detect that (1,3) is
invalid and drop it. This situation does not occur during the
genetic algorithm because the child passed to complete_tree in
that instance is based on a parent tree which is guaranteed to be
valid (unless it was somehow otherwise corrupted). Therefore,
if the parent does not contain any cycles then the subset of the
parent used to build the child is also guaranteed to be cycle-free.

The greedy decisions of complete_tree drive the
development of optimal spanning trees. The inclusion of every
path possible in the parent in the case of the wisdom-of-
artificial-crowd child helps contribute both to optimal spanning
trees and a diverse population because it may include a new
edge not seen anywhere else in the population but that turns out
to be highly optimal.

IV. EXPERIMENTAL RESULTS

A. Data
The data used was generated by the Concorde TSP Solver

[17]. While designed to solve Travelling Salesperson Problems,
it is also suitable for generating datasets for a variety of similar
problems. Using the Windows GUI, we could randomly
generate graphs of any number of vertices, which are saved in
a standardized TSP format listing the vertices numbered 1 to n
with corresponding coordinates. The program reads in this file
line by line and extracts the coordinates. Below is an example
for 10 vertices:

NAME: concorde10
TYPE: TSP
COMMENT: Generated by CCutil_writetsplib
COMMENT: Write called for by Concorde GUI
DIMENSION: 10
EDGE_WEIGHT_TYPE: EUC_2D
NODE_COORD_SECTION
1 22.549020 89.029536
2 23.039216 81.434599
3 30.392157 79.324895
4 40.277778 80.379747
5 38.071895 60.759494
6 23.774510 59.704641
7 25.245098 67.721519
8 30.065359 66.244726
9 36.029412 70.886076
10 49.264706 71.940928

B. Results
The genetic algorithm alone yielded the results shown in
Table 1, all from 30 generations per execution of the
algorithm. Figures 1 and 2 show example outputs of these
results. Figures 1A and 2A graph the worst, average, and best
solutions per generation in red, blue, and green, respectively.
Figures 1B and 2B display the resulting best spanning tree
found at the completion of the algorithm.

Vertices Population Runtime (s) Best Length
30 50 37.56215 33174.15536
30 50 42.87745 33454.12696
30 50 38.18318 37393.45269
50 50 177.57016 115716.17169
50 50 235.58247 119350.27524
50 50 188.93781 125145.69157
77 77 1212.46735 277132.34661
77 77 1380.45296 286723.39976
77 77 1442.40950 271129.73645

Table 1: Results from Genetic Algorithm

Shortest Total Path Length Spanning Tree via Wisdom of Artificial Crowds Algorithm pp. 77–84

80

 5

Figure 1A: Worst, Average, and Best Solutions per Generation

Figure 1B: Spanning Tree of Total-Path-Length 125145.69157

Figure 2A: Worst, Average, and Best Solutions per Generation

Figure 2B: Spanning Tree of Total-Path-Length 277132.34661

The full hybrid algorithm yielded the results in Table 2, also
from 30 generations per execution of the algorithm. Figures
3 and 4 show example output from the hybrid algorithm.
Figures 3A and 4A graph the worst, average, and best
solutions per generation in red, blue, and green, respectively.
Figures 3B and 4B display the resulting best spanning tree
found at the completion of the algorithm.

Madeline Hundley and Roman Yampolskiy MAICS 2017 pp. 77–84

81

 6

Vertices Population Runtime (s) Best Length
30 50 37.52615 32912.40819
30 50 39.67027 33800.07715
30 50 35.05000 34155.32438
50 50 215.91535 103152.67340
50 50 268.56736 106292.14450
50 50 226.07593 107272.21349
77 77 1723.61959 253756.81567
77 77 1423.14640 257199.90750
77 77 1375.86069 262635.91412

Table 2: Results from Hybrid Algorithm

Figure 3A: Worst, Average, and Best Solutions per Generation

Figure 3B: Spanning Tree of Total-Path-Length 106292.14450

Figure 4A: Worst, Average, and Best Solutions per Generation

Figure 4B: Spanning Tree of Total-Path-Length 253756.81567

For 30 vertices and a population of 50, the hybrid algorithm

required 5.38% less time and produced results of an average
3.03% shorter final total-path-length over the genetic algorithm
alone. For 50 vertices and a population of 50, the hybrid
algorithm required 18.02% more time and produced results an
average 12.07% shorter than the genetic algorithm alone. For
77 vertices and a population of 77, the hybrid algorithm
required 12.08% more time to execute and produced results an
average 7.35% shorter than the hybrid algorithm alone.

This hybrid approach was capable of finding good solutions

to larger datasets, as shown here in Table 3, though with long
runtimes. Figures 5 and 6 show example outputs of these
results. Figures 5A and 6A graph the worst, average, and best
solutions per generation in red, blue, and green, respectively.
Figures 5B and 6B display the resulting best spanning tree
found at the completion of the algorithm.

Ver-
tices

Popu-
lation

Gene-
rations

Runtime (s) Best Length

80 80 30 1976.99008 271001.70025
80 40 30 853.11680 289119.11059
100 100 20 3228.44966 507786.11792
100 20 20 702.63019 663055.61606
222 100 10 38360.50510 3912193.54795
222 20 10 8892.24261 5096472.87880

Table 3: Results from Hybrid Algorithm on Large Datasets

Figure 5A: Worst, Average, and Best Solutions per Generation

Shortest Total Path Length Spanning Tree via Wisdom of Artificial Crowds Algorithm pp. 77–84

82

 7

Figure 5B: Spanning Tree of Total-Path-Length 507786.11792

Figure 6A: Worst, Average, and Best Solutions per Generation

Figure 6B: Spanning Tree of Total-Path-Length 3912193.54795

V. CONCLUSIONS
This combination of genetic algorithm with wisdom of

artificial crowds is complete, meaning it will always find an
answer. It is not guaranteed to be optimal, however this
algorithm is still successful and is capable of not only finding
some result but with good implementation can optimize to find
a better, if not best, result.

The relationship of the genetic algorithm to the crowd-

wisdom component proved to be advantageous. As the genetic
algorithm developed artificial results to inform the wisdom of

the crowds, the resultant child would in turn drive the diversity
and fitness of the genetic algorithm’s population. Therefore, the
hybrid algorithm as a whole developed good results.

Finally, it is also important to highlight that while not

optimal, this algorithm is relatively fast. Some algorithms are
incapable of finding any answer for datasets of the size tested
here. Overall, as a problem-solving technique, this combined
algorithm has many advantages in that it is relatively efficient,
complete, and finds a good answer to the Shortest Total-Path-
Length Problem for large datasets.

REFERENCES

[1] T. C. Hu, "Optimum communication spanning trees,"

SIAM Journal on Computing, vol. 3, no. 3, pp. 188-
195, 1974.

[2] D. S. Johnson, J. K. Lenstra, and A. Kan, "The
complexity of the network design problem," Networks,
vol. 8, no. 4, pp. 279-285, 1978.

[3] P. M. Pardalos, D. W. Hearn, and W. W. Hager,
Network optimization. Springer Science & Business
Media, 2012.

[4] M. R. Gary and D. S. Johnson, "Computers and
Intractability: A Guide to the Theory of NP-
completeness," ed: WH Freeman and Company, New
York, 1979.

[5] K. Mehlhorn, "Selected Topics in Algorithms 2009
NP-completeness of Minimum Fundamental Cycle
Basis Problem," 2009.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C.
Stein, Introduction to algorithms. MIT press
Cambridge, 2001.

[7] J. Surowiecki, The wisdom of crowds. Anchor, 2005.
[8] D. Bonomo, A. P. Lauf, and R. Yampolskiy, "A

crossword puzzle generator using genetic algorithms
with Wisdom of Artificial Crowds," in Computer
Games: AI, Animation, Mobile, Multimedia,
Educational and Serious Games (CGAMES), 2015,
2015, pp. 44-49: IEEE.

[9] L. H. Ashby and R. V. Yampolskiy, "Genetic
algorithm and Wisdom of Artificial Crowds algorithm
applied to Light up," in 2011 16th International
Conference on Computer Games (CGAMES), 2011.

[10] J. Redding, J. Schreiver, C. Shrum, A. Lauf, and R.
Yampolskiy, "Solving NP-hard number matrix games
with Wisdom of Artificial Crowds," in Computer
Games: AI, Animation, Mobile, Multimedia,
Educational and Serious Games (CGAMES), 2015,
2015, pp. 38-43: IEEE.

[11] A. C. Port and R. V. Yampolskiy, "Using a GA and
Wisdom of Artificial Crowds to solve solitaire
battleship puzzles," in Computer Games (CGAMES),
2012 17th International Conference on, 2012, pp. 25-
29: IEEE.

[12] R. V. Yampolskiy and A. El-Barkouky, "Wisdom of
artificial crowds algorithm for solving NP-hard

Madeline Hundley and Roman Yampolskiy MAICS 2017 pp. 77–84

83

 8

problems," International Journal of Bio-inspired
computation, vol. 3, no. 6, pp. 358-369, 2011.

[13] J. Fletcher, T. Fernando, H. Iu, M. Reynolds, and S.
Fani, "A case study on optimizing an electrical
distribution network using a genetic algorithm," in
2015 IEEE 24th International Symposium on
Industrial Electronics (ISIE), 2015, pp. 20-25: IEEE.

[14] B. Y. Wu, K. M. Chao, and C. Y. Tang,
"Approximation algorithms for the shortest total path
length spanning tree problem," Discrete applied
mathematics, vol. 105, no. 1, pp. 273-289, 2000.

[15] R. T. Wong, "Worst-case analysis of network design
problem heuristics," SIAM Journal on Algebraic
Discrete Methods, vol. 1, no. 1, pp. 51-63, 1980.

[16] B. Y. Wu, G. Lancia, V. Bafna, K.-M. Chao, R. Ravi,
and C. Y. Tang, "A polynomial-time approximation
scheme for minimum routing cost spanning trees,"
SIAM Journal on Computing, vol. 29, no. 3, pp. 761-
778, 2000.

[17] W. Cook, "Concorde TSP solver," See: http://www.
tsp. gatech. edu/concorde. html, 2005.

Shortest Total Path Length Spanning Tree via Wisdom of Artificial Crowds Algorithm pp. 77–84

84

