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Abstract—This paper presents a hybrid genetic algorithm (GA) 

with Wisdom of Artificial Crowds (WoAC) approach to solving an 
NP-hard problem.  This is a novel approach to solving Shortest 
total-Path-length Spanning Tree (SPST) problems. In our tests 
this approach achieved results up to 12% better than use of the 
genetic algorithm alone. 
 

Index Terms—genetic algorithm, shortest total path length 
spanning tree, wisdom of artificial crowds 

I. INTRODUCTION 
HIS project addresses the NP-complete Shortest total-

Path-length Spanning Tree (SPST) problem, proposed and 
discussed in [1-3]. For an edge-weighted, undirected graph, the 
objective of this problem is to find the spanning tree for which 
the total sum of total edge weights on the paths between every 
pair of vertices is minimized. NP-complete problems are those 
for whom no fast solution is known; as the size of the problem 
set grows the time any currently known algorithm requires to 
solve it increases incredibly quickly. SPST has been 
demonstrated as one such NP-complete problem [4, 5]. 

 
In this implementation of the problem we consider the 

distance between each vertex as the weight or cost of the edge. 
Specifically, we consider the Euclidean distances between 
vertices with Cartesian coordinates, calculated with the formula 
below. Therefore, the total distance of a path is the sum of the 
costs of each edge between each vertex in that path. The total-
path-length of a spanning tree is the sum of the path length 
between every pair of vertices in the tree. 

𝑑 = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2   (1) 
 
Genetic algorithms mimic the real-world phenomena 

whereby populations of biological species reproduce children 
based on the genes of the parents and natural selection steers 
each generation towards superior genes [6]. The genetic 
algorithm we incorporated into our hybrid approach initializes 
a random population of SPST solutions then reproduces 
successive generations of solutions. It analyzes the reproductive 
fitness of each member of a population, probabilistically selects 
stronger parents to reproduce, generates child solutions from 
the genes of the parent spanning trees, and sets up the next 
generation’s population with the strongest members from the 
old population plus qualifying members from the child 
solutions. 

 

The wisdom of crowds [7] describes the phenomenon where 
aggregated results from a population, or “crowd,” approach the 
best answer to a problem, even though individual answers may 
have significant differences and deviations from the globally 
optimum solution.  The Wisdom of Artificial Crowds makes 
use of the artificially generated populations from the genetic 
algorithm, treating these solutions as the “crowd” whose 
expertise can be consulted.  One child per population is created 
by aggregating the edge choices of every SPST solution, 
probabilistically selecting a number of those edges to base the 
child on, then building the remainder of the spanning tree 
solution via locally greedy edge choices. 

 
The program is written in Python 3.5, the graphics are 

generated with the module pygame, and the graphs are 
generated with the matplotlib module.  The input provided to 
the program is a data file with the vertices’ coordinates. The 
program must read in these coordinates, calculate the distance 
between each pair of vertices that are connected, generate a 
random initial population of spanning trees, then apply the 
genetic algorithm with wisdom of artificial crowds to 
generationally approach the best SPST for the graph provided. 

 
The motivation behind developing this algorithm was to 

explore the interplay of the genetic algorithm component and 
wisdom of artificial crowds component. We also sought to 
explore whether wisdom of artificial crowds is a viable, 
successful variant to the genetic algorithm for the SPST 
problem as well as whether a genetic algorithm is a viable, 
successful source of good solutions for a wisdom of artificial 
crowds component.  

II. PRIOR WORK 
The approach of a hybrid GA plus WoAC has been shown 

many times as a viable approach to solving many NP-complete 
problems [8-11], including the famous Travelling Salesperson 
problem [12]. Baseline genetic algorithms have been applied to 
solve spanning tree problems similar to the SPST problem [13] 
and other approximation algorithms have been applied to the 
SPST problem [14-16]. However, a hybrid GA + WoAC 
algorithm is, to our knowledge, a novel approach to the SPST 
problem. 

III. PROPOSED APPROACH 
To solve this SPST problem, the program uses a genetic 

algorithm with a wisdom of artificial crowds component. The 
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program’s first order of business is to read in the coordinates of 
each vertex from a file and calculate the Euclidean distances 
between, saving these in a dictionary for quick lookup. Its last 
order of business is to plot the best, average, and worst results 
from each generation of the algorithm and to graphically 
display the best spanning tree found, with the shortest total-
path-length. 

 
Overall, the genetic algorithm drives the development of a 

diverse, increasingly fit population every generation. The 
wisdom of the crowds aggregates the collective knowledge of 
these populations to discover better or at least comparable but 
diverse paths. 

  

A. SpanningTree Class 
This program is based on a SpanningTree class. Each 

instance of the class has an instance variable sptree, a set of the 
edges, stored as tuples, in the spanning tree. To initialize a 
SpanningTree the class should be provided a set of unique 
tuples, meaning no duplicates e.g. (1,2) and (2,1). Internally the 
sptree variable generates and stores both of these tuples, 
however, for easy lookups to the edges contained in this 
SpanningTree instance.  

 
Upon initializing a new instance of a SpanningTree, the class 

function calc_paths calculates the path for every pair of vertices 
and stores it in the instance variable paths. It does this by using 
a recursive algorithm, the recursive_expansion function. 
Starting with the first vertex, the function “expands” this vertex, 
creating a “frontier” of the vertices that can next be reached 
given the edges constituting the spanning tree. For example, if 
the only edges in the spanning tree that contain the vertex ‘1’ 
are the edges (1,2) and (1,3), expanding the vertex ‘1’ would 
yield a frontier of ‘2’ and ‘3’. It then arbitrarily chooses one of 
these vertices, adds it to the current path being traced, and with 
another call to recursive_expansion expands again on this new 
vertex. Important to cultivating the frontier is eliminating the 
vertices already in the current path so the algorithm does not try 
to expand “backwards.” If the algorithm reaches a vertex whose 
frontier is empty, meaning the path has hit a dead end, that 
vertex is taken out of the path and the next option from the 
frontier at that level is selected and expanded. In this way, the 
recursion searches depth-first, backing up from dead-ends and 
expanding each vertex until the destination vertex has been 
found. The algorithm can stop searching upon first 
encountering the destination vertex because of an important 
feature of spanning trees: there can only be one valid path 
between any two vertices. Valid spanning trees by definition do 
not have cycles; if a tree contained a cycle this would offer more 
than one path from one vertex to another. Therefore, once the 
algorithm found a valid path it could stop searching as this was 
the only valid path.  Finally, these paths are stored in the 
instance variable paths, a dictionary whose keys are pairs of 
vertices, stored as tuples, and whose values are lists containing 
each path. Only unique tuples, meaning no duplicates, are 
stored in this dictionary as lookups in one direction are only 

ever required. 
 
Once all paths have been identified, the SpanningTree class 

function calc_length is called to sum the total lengths of these 
paths. The calc_length function simply needs to issue lookups 
to the dictionary of distances between every pair of vertices in 
the graph generated at the beginning of the program. The 
function looks up and sums the length of each edge in every 
path. The total-path-length of the SpanningTree is stored in its 
length instance variable. 

 
Finally, the SpanningTree class has a mutate function, which 

will be discussed further in the context of the genetic algorithm, 
below. 

B. Genetic Algorithm 
To begin, the genetic algorithm sets up its initial population 

with the get_init_pop function by generating spanning trees 
randomly, calling the get_rand_sptree function. This function 
generates a valid spanning tree by tracking the vertices that have 
been added so far and randomly selecting an edge from one 
such vertex to one not yet added. This methodology prevents it 
from adding an edge “backwards” and introducing a cycle. 

 
Each successive population in the genetic algorithm is 

generated by the get_next_pop function, which first produces 
one child based on the “wisdom of artificial crowds,” discussed 
further in the next section. Then using calls to the reproduce 
function, it reproduces all remaining children required 
“genetically” from selected parents. Reproduce uses the 
get_fitness function to judge the fitness of each potential parent 
in the current population. Better spanning trees – those with 
shorter total-path-lengths – are judged to have a higher 
reproductive fitness and therefore have a greater probability of 
being selected as parents for the next generation. When two 
trees are selected to be parents, the crossover function generates 
two new children from those parents’ “genes.” Every time a 
child is produced there is a possibility that a mutation will occur 
in its “genes,” handled by the SpanningTree class’s built-in 
mutate function.  

 
In the get_fitness function, the fitness ratios of every 

spanning tree in the population need to reflect how short their 
total-path-lengths are. The typical fitness ratio in a genetic 
algorithm tries to achieve selection of a maximum value; this 
will simply take each element’s value out of the sum total of the 
population’s values. If applied to the total-path-lengths this 
would “reward” the long paths rather than the short ones. For 
the SPST problem this function must instead seek to achieve 
selection of minimum values. Therefore, this algorithm’s 
fitness ratio takes each tree’s length and subtracts it from the 
highest value in the population and from 1, before dividing by 
the sum total of these adjusted costs. Finally, it scales so these 
probabilities all add up to 1, a requirement for a valid 
probability distribution. This method more heavily weights the 
shortest total-path-lengths. It also has the side effect of 
assigning the very worst spanning tree a fitness ratio of zero, 
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which will cull it from potential selection in the next part of the 
algorithm. This is a perfectly acceptable, even desirable, side 
effect from this process.  

 
The crossover function uses an experimentally-determined 

break point in each parent’s “genes,” discussed further in the 
next section, to determine the edges that will be passed on to 
the children. One child is first set up with a portion of edges 
taken from the “mom” parent tree and the second child is first 
set up with a portion of edges taken from the “dad” parent tree. 
Each of these children, currently just an incomplete set of edges, 
is then passed to the complete_tree function, along with the 
opposite parent from which it was first based on. The 
complete_tree function, as the name implies, completes the tree 
using only edges available in the parent provided. In this way, 
the first child is first built using “mom” then completed with 
“dad,” and vice versa for the second child.  

 
The complete_tree function is integral to both the genetic 

algorithm and the wisdom of artificial crowds component, 
whose use of it is discussed in further detail in the next section. 
This function first identifies all groups that exist in the edges 
provided. For example, if (1,2) and (2,3) are both edges in the 
set provided, the function identifies that {1,2,3} is a connected 
group of edges. Then vertices that are not yet connected, that 
have zero edges, are added as groups of one each by themselves. 
The function’s next step is to choose and add edges which will 
connect these groups into a complete spanning tree. Starting at 
an arbitrary group called the coregroup, the function generates 
a list of valid edges it may choose from: all edges from a vertex 
in the current group to a vertex not in the group and only edges 
that are also present in the parent tree. It is important to point 
out that only edges from an added vertex to an unadded vertex 
are those allowed. As with the process for finding the paths in 
a tree or for building a random tree, selecting edges in this way 
ensures the tree is never grown “backwards” i.e. that it is never 
allowed to introduce a cycle. After identifying the valid edges, 
the function then greedily selects the shortest one, adding that 
edge to the tree. It must also identify the group that vertex 
belongs to and incorporate all that group’s vertices into the 
coregroup. This process is repeated until all groups are 
incorporated, growing the coregroup across the graph until it 
includes all vertices and the child spanning tree is complete.  

 
There are a couple important items to note regarding the 

complete_tree function. First, the arbitrary selection of the 
initial coregroup does not affect the final spanning tree. It does 
not matter in what order the groups are added to the coregroup 
because of the greedy nature of the edge selection and the fact 
any vertex not currently in the coregroup is allowed as the next 
addition. For instance, if vertex ‘1’ is in one group, vertex ‘2’ is 
in another, and their edge is the shortest available to join those 
two groups, it will always be the one selected whether vertex 
‘2’s group is incorporated first, somewhere in the middle, or 
last. Second, the greedy decision to add the shortest edge 
available from the parent was based on the assumption that 
these shortest edges available will contribute to an overall 

shorter total-path-length for the spanning tree. There are some 
instances where including a longer edge instead leads to overall 
better paths. However, these locally optimal choices 
demonstrated through testing to often be globally optimal as 
well. In addition, the fact the child is based in portion on a 
parent and not wholly on local greedy decisions helps to 
compensate and works to retain knowledge of which long 
routes are favorable.  

 
After crossover has completed both kids, they are each 

checked for mutations using the SpanningTree class’s built-in 
mutate function. If the test against the probability of mutation 
occurring hits, the function randomly selects a path that 
involves two edges (three vertices), discards the first edge and 
adds a replacement connecting the first edge straight to the 
third. This approach allows for a test of whether going straight 
from the first to the third vertex, rather than through the second 
vertex, offers better paths for the tree in terms of minimizing 
total-path-length. Because the selection of which two-edge path 
to mutate is random, it is equally likely to affect “central” 
vertices with many connections and “leaf” vertices with just 
one. This is an advantageous approach because either situation 
has the potential to benefit from such a mutation, so any path 
should be eligible for selection. Finally, this approach is 
guaranteed never to introduce a cycle, maintaining the integrity 
of the mutating spanning tree. 

 
The get_next_pop function has a predetermined number of 

children it is required to generate. Children that are duplicates 
of trees that are in the old population or children already 
generated are not permitted, however. This is a useful feature to 
ensure that genetic diversity is maintained in the population. If 
all viable parents have been used to reproduce but there aren’t 
enough new children yet, random trees are generated to be used 
as children. This option was very rarely needed, if ever, but is 
an important feature nonetheless. In addition, the crossover rate 
is set very high, but approximately 5% of the time two 
randomly-generated children are returned from reproduction. 
Again, this infuses some genetic diversity in to the population. 
After the required number of children have been generated, the 
get_next_pop function replaces up to a set number of the worst 
solutions in the old population with children, but only if the 
children are superior to those being discarded. In addition to 
purposefully driving successively better results each 
generation, it also mimics the real-world phenomenon where 
weak members of an animal species do not survive infancy. In 
this way, it is an improvement both to the function and the spirit 
of this genetic algorithm. 

 

C. Wisdom of Artificial Crowds 
In every population, the “Wisdom of Artificial Crowds” is 

applied to generate one child. Every occurrence of each edge in 
the population is tallied and its percentage of the total edges is 
calculated. These percentages serve as the probabilities the 
get_crowd_wisdom function uses when selecting edges the 
child will contain. The more often a particular edge occurs 
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throughout the population, the higher the probability it will be 
selected to be part of the child. Edges that never occur in the 
population have a zero probability of being selected for 
inclusion in the child, a desirable effect in the algorithm.  
 

Some wisdom-of-the-crowd implementations use only a 
portion of a population to study, choosing to consult only 
answers it deems as “experts.” In our approach, we purposefully 
chose to use the entire population and consider every spanning 
tree an “expert” worth consulting. First, this is because we 
wanted a comprehensive view of the population’s aggregate 
knowledge, not a narrow one. Second, it is because every 
spanning tree in that population has been carefully built and 
selected from previous populations, meaning it will contain 
knowledge worth considering. Because successive populations 
do not allow for bad spanning trees i.e. those worse than their 
predecessors to ever be included, every tree in the “crowd” is 
good enough to lend its input. 
 

The child is initialized with these selected edges and then 
complete_tree is called to fill out the rest of the edges. The 
parent passed to complete_tree in this case is a dummy 
SpanningTree initialized with every vertex pair possible for the 
graph. In this way, when complete_tree is greedily selecting the 
best edges to join the disparate groups of edges within the child 
spanning tree, every possible connection is available as an 
option.  
 

There is an important logic check in complete_tree that does 
not come into play during its use by the genetic algorithm but 
plays a key role during its use by the wisdom-of-artificial-
crowds component. This check is part of the initial process of 
sorting the child’s edges into their groups. If a group containing 
only two vertices, therefore representing an edge, is detected to 
have not just one but both of its vertices already in a group, it is 
discarded. By definition if two vertices are already in a group 
together, an edge between them would introduce a cycle. Such 
situations may occur because get_crowd_wisdom selects edges 
only based on probabilities. This means it may select edges that, 
if all included, create a cycle e.g. (1,2), (2,3), (1,3). This check 
in complete_tree vets the edges of the child it has been 
provided. For example, the function will begin by building a 
group from (1,2) and (2,3) of {1,2,3}, then detect that (1,3) is 
invalid and drop it. This situation does not occur during the 
genetic algorithm because the child passed to complete_tree in 
that instance is based on a parent tree which is guaranteed to be 
valid (unless it was somehow otherwise corrupted). Therefore, 
if the parent does not contain any cycles then the subset of the 
parent used to build the child is also guaranteed to be cycle-free. 
 

The greedy decisions of complete_tree drive the 
development of optimal spanning trees. The inclusion of every 
path possible in the parent in the case of the wisdom-of-
artificial-crowd child helps contribute both to optimal spanning 
trees and a diverse population because it may include a new 
edge not seen anywhere else in the population but that turns out 
to be highly optimal. 

 

IV. EXPERIMENTAL RESULTS 

A. Data 
The data used was generated by the Concorde TSP Solver 

[17]. While designed to solve Travelling Salesperson Problems, 
it is also suitable for generating datasets for a variety of similar 
problems. Using the Windows GUI, we could randomly 
generate graphs of any number of vertices, which are saved in 
a standardized TSP format listing the vertices numbered 1 to n 
with corresponding coordinates. The program reads in this file 
line by line and extracts the coordinates. Below is an example 
for 10 vertices:

 
NAME: concorde10 
TYPE: TSP 
COMMENT: Generated by CCutil_writetsplib 
COMMENT: Write called for by Concorde GUI 
DIMENSION: 10 
EDGE_WEIGHT_TYPE: EUC_2D 
NODE_COORD_SECTION 
1 22.549020 89.029536 
2 23.039216 81.434599 
3 30.392157 79.324895 
4 40.277778 80.379747 
5 38.071895 60.759494 
6 23.774510 59.704641 
7 25.245098 67.721519 
8 30.065359 66.244726 
9 36.029412 70.886076 
10 49.264706 71.940928 

 
 

B. Results 
The genetic algorithm alone yielded the results shown in 
Table 1, all from 30 generations per execution of the 
algorithm. Figures 1 and 2 show example outputs of these 
results. Figures 1A and 2A graph the worst, average, and best 
solutions per generation in red, blue, and green, respectively. 
Figures 1B and 2B display the resulting best spanning tree 
found at the completion of the algorithm. 
 

Vertices Population Runtime (s) Best Length 
30 50 37.56215 33174.15536 
30 50 42.87745 33454.12696 
30 50 38.18318 37393.45269 
50 50 177.57016 115716.17169 
50 50 235.58247 119350.27524 
50 50 188.93781 125145.69157 
77 77 1212.46735 277132.34661 
77 77 1380.45296 286723.39976 
77 77 1442.40950 271129.73645 

Table 1: Results from Genetic Algorithm 
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Figure 1A: Worst, Average, and Best Solutions per Generation 

 

 
Figure 1B: Spanning Tree of Total-Path-Length 125145.69157 

 

 
Figure 2A: Worst, Average, and Best Solutions per Generation 

 
Figure 2B: Spanning Tree of Total-Path-Length 277132.34661 
 
The full hybrid algorithm yielded the results in Table 2, also 
from 30 generations per execution of the algorithm. Figures 
3 and 4 show example output from the hybrid algorithm. 
Figures 3A and 4A graph the worst, average, and best 
solutions per generation in red, blue, and green, respectively. 
Figures 3B and 4B display the resulting best spanning tree 
found at the completion of the algorithm. 
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Vertices Population Runtime (s) Best Length 
30 50 37.52615 32912.40819 
30 50 39.67027 33800.07715 
30 50 35.05000 34155.32438 
50 50 215.91535 103152.67340 
50 50 268.56736 106292.14450 
50 50 226.07593 107272.21349 
77 77 1723.61959 253756.81567 
77 77 1423.14640 257199.90750 
77 77 1375.86069 262635.91412 

Table 2: Results from Hybrid Algorithm 
 

 
Figure 3A: Worst, Average, and Best Solutions per Generation 

 
Figure 3B: Spanning Tree of Total-Path-Length 106292.14450 

 

 
Figure 4A: Worst, Average, and Best Solutions per Generation 

 
Figure 4B: Spanning Tree of Total-Path-Length 253756.81567 

 
For 30 vertices and a population of 50, the hybrid algorithm 

required 5.38% less time and produced results of an average 
3.03% shorter final total-path-length over the genetic algorithm 
alone. For 50 vertices and a population of 50, the hybrid 
algorithm required 18.02% more time and produced results an 
average 12.07% shorter than the genetic algorithm alone. For 
77 vertices and a population of 77, the hybrid algorithm 
required 12.08% more time to execute and produced results an 
average 7.35% shorter than the hybrid algorithm alone. 

 
This hybrid approach was capable of finding good solutions 

to larger datasets, as shown here in Table 3, though with long 
runtimes. Figures 5 and 6 show example outputs of these 
results. Figures 5A and 6A graph the worst, average, and best 
solutions per generation in red, blue, and green, respectively. 
Figures 5B and 6B display the resulting best spanning tree 
found at the completion of the algorithm. 

 
Ver-
tices 

Popu-
lation 

Gene-
rations 

Runtime (s) Best Length 

80 80 30 1976.99008 271001.70025 
80 40 30 853.11680 289119.11059 
100 100 20 3228.44966 507786.11792 
100 20 20 702.63019 663055.61606 
222 100 10 38360.50510 3912193.54795 
222 20 10 8892.24261 5096472.87880 

Table 3: Results from Hybrid Algorithm on Large Datasets 
 

 
Figure 5A: Worst, Average, and Best Solutions per Generation 
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Figure 5B: Spanning Tree of Total-Path-Length 507786.11792 

 

 
Figure 6A: Worst, Average, and Best Solutions per Generation 

 
Figure 6B: Spanning Tree of Total-Path-Length 3912193.54795 

 

V. CONCLUSIONS 
This combination of genetic algorithm with wisdom of 

artificial crowds is complete, meaning it will always find an 
answer. It is not guaranteed to be optimal, however this 
algorithm is still successful and is capable of not only finding 
some result but with good implementation can optimize to find 
a better, if not best, result. 

 
The relationship of the genetic algorithm to the crowd-

wisdom component proved to be advantageous. As the genetic 
algorithm developed artificial results to inform the wisdom of 

the crowds, the resultant child would in turn drive the diversity 
and fitness of the genetic algorithm’s population. Therefore, the 
hybrid algorithm as a whole developed good results. 

 
Finally, it is also important to highlight that while not 

optimal, this algorithm is relatively fast. Some algorithms are 
incapable of finding any answer for datasets of the size tested 
here. Overall, as a problem-solving technique, this combined 
algorithm has many advantages in that it is relatively efficient, 
complete, and finds a good answer to the Shortest Total-Path-
Length Problem for large datasets. 
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