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Automating the Encoding for the LISA Model of Analogy from Raw Text

SEAN WILNER, University of Illinois Urbana-Champaign
JE HUMMEL, University of Illinois Urbana-Champaign

Analogy is an integral part of human cognition. Consequently researchers would like to produce computational models
of analogy to test implementations of theoretical claims. Such computational models have relied almost exclusively upon
hand-coded representations, making the resulting models too dependent upon the modeler’s choices, and thus di�cult to
interpret in isolation of the modeler. In an e�ort to combat this dependency, we present here a means of automatic encoding
for the LISA model of analogy and inference.
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1 INTRODUCTION
Analogy, and more generally, relational reasoning are core cognitive capacities [6, 8, 10] that, along with language,
seem to separate human cognition from the cognitive abilities of all the other great apes [22]. Many of the
computational models of analogy arising from machine learning revolve around solving semantic, or 4-way,
analogies of the form “king:queen::brother:?” where the model �lls in “sister” [19]. �ese models fail to account
for the more substantial form of analogy – narrative analogy – wherein agents and actions must all be analogically
mapped to one another. Numerous models have been developed to account for our ability to make such analogies.
Among the most in�uential have been Falkenhainer et al.’s [3] Structure Mapping Engine (SME), Holyoak and
�agard’s [9] Analogical Constraint Mapping Engine (ACME) and Hummel and Holyoak’s [11, 12] Learning and
Inference with Schemas and Analogies (LISA) (see Gentner & Forbus, 2011[7], for a review).

Although these and other models account for many aspects of human relational thought, they share a common
limitation: All of them rely on hand-coded knowledge representations, placing a great deal of control in the
modeler’s hands. As such, it is o�en unclear how many of the successes of these models re�ect the models’
fundamental tenets and how many re�ect arbitrary representational and modeling choices made by the modeler
at the time of creating the simulations (see, e.g., Lu et al. 2008 [17]). Since such models are only as good as their
modeler, the support or challenge to any theoretical claims they make must be interpreted carefully.

Ideally, these models would produce their representational inputs directly from natural language, removing
their dependence upon hand-coded inputs. �ere are some models that approach this goal for speci�c narrow
domains, such as intuitive physics (Friedman SE & Forbus KD, 2009 [5]) and moral decision making (Dehghani M
et al., 2008 [2]). However, the task of generalizing open domain natural language for analogy remains elusive. To
address this problem, we describe recent e�orts applying several Natural Language Processing (NLP) techniques
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to the automatic generation of knowledge representations for LISA. When combined, these techniques allow us
to transform English sentences into semantically-rich propositional representations usable to the LISA model of
analogy (i.e., representations in “LISAese”).

1.1 Representation
LISAese is a collection of semantic encodings and structural representations which, together, allow LISA to
produce semantically informed, structurally consistent analogies. LISA employs semantic representations for
both objects and predicates and encodes structure in a predicated logical form. Semantics for an object in LISAese
consist of a distributed list of abstract “semantic units” and corresponding weights. For instance, if we were to
hand-code the representation for a taxi driver, “Bob” and a bank teller “Jill”, we may end up with the following
semantics and corresponding weights:

Bob: human=1.0, adult=0.7, male=1.0, employed=0.8, taxi driver=1.0

Jill: human=1.0, adult=0.7, female=1.0, employed=0.8, bank teller=1.0

Bob’s semantics could then overlap with the semantics for our bank teller, “Jill”, who is also human, adult, and
employed, but would di�er on male and taxi driver. LISA treats these “semantic units” as universal across all
representations, that is, if two “semantic units” have the same name, they are the same unit. Aside from this
universality, the names are arbitrary and the choice to give them relevant names with regard to the objects they
are a�ached to only serves to facilitate human readability.

Similarly, predicate semantics consist of “semantic units” and weights; however, predicate semantics are de�ned
at the level of their relational roles rather than the predicate itself. For example, the two-place predicate love is
de�ned by two lists of semantics. �e �rst list represents the agent role of love (the lover); the second represents
the patient role of love (the beloved). �is could be represented as follows:

love:
[ lover=1.0, emotion=1.0, strong emotion=0.8, passionate=0.9 ]

[ beloved=1.0, receives emotion=1.0, receives strong emotion=0.8, receives passion=0.9 ]
With de�ned semantics on objects and predicates, LISA is able to ground its structural representation, given in

a predicated logical format, to represent “Bob loves Jill”: love(Bob, Jill). �is logical representation is robust to
recursive references such as “Jill knows that Bob loves her.” which yields: know-(Jill, love(Bob, Jill)). Indeed, this
is su�cient to represent the necessary semantic and structural information LISA needs to make analogies and
inferences.

1.2 Task
Our task in this paper is to outline a technique to produce semantic and structural representations automatically
from text. Subsequently, we will show that LISA can use the resulting LISAese to successfully �nd analogies and
inferences. More speci�cally, we will present a method which achieves the following:

(1) Generates Semantics
• Object semantics that account for modi�cation by adjectives, noun-phrases, and copular verb

a�achments
• Predicate semantics with role-by-role representation

(2) Generate Structure
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• Produces logic form
• Handles recursive references
• Associates multiple references to a single entity

By using NLP techniques to automatically pre-process and encode text into LISAese, the LISA model will no
longer need to rely on hand-coded knowledge representations. Freeing it of this requirement will clarify how
LISA’s successes as a model re�ect its fundamental tenets rather than choices made by the modeler.

2 GENERATE SEMANTICS
Ultimately, we need to generate semantic representations for both objects and predicates, but the requirements
for automated generation of the two di�er slightly. �is is because, as previously noted, in LISAese semantics are
assigned not to the predicates themselves, but rather to each predicate role independently.

2.1 Object Semantics
Objects may be represented in a fairly straightforward manner using word embedding. Word embedding is a
means of mapping words into a semantic space (a vector space) such that words which are ‘similar’ are closer in
the resulting space than words which are ‘dissimilar’. �ere are many means of producing word embeddings.
One of the most commonly used semantic embedding tools is Google’s Word2Vec [19] which produces vectors
based o� carefully cra�ed word co-occurrence statistics. Using these vectors, we can produce embeddings for
individual words such as “cat”, “January”, or “happy”. However, this means of embedding can break down upon
encountering proper nouns such as “Microso�” or “Bob”. In order to properly encode proper nouns, we employ an
NLP technique called Named Entity Recognition (NER) which identi�es what kind of entity the proper nouns are:
“Microso�”!ORGANIZATION and “Bob”!PERSON. Using these NER tags, we can encode the proper nouns by
the semantic embedding of their associated tag (for added speci�city, where known, we also incorporate the
gender of each proper noun).

In order to accommodate various modi�ers, we additively combine the semantic vectors corresponding to each
object. �ese vectors consist of the embeddings of the words contained within or associated with an entity, for
example, the words in a noun-phrase, an NER label, adjective modi�ers, or copular modi�ers. Copular verbs
are stative verbs such as is/are/was/were, seem, or appear. For example, “smelly Sam” and “Sam is smelly” both
result in the incorporation of the semantics for “smelly” in the representation of Sam.

Using the resulting vectors, we can produce LISAese by creating an arbitrary semantic label, call it “SemUnit i”,
to every ith index of the vector where the weight on the generated semantic unit is the value at the ith index of
the vector. For example, if our word embedding was 4 dimensions (instead of 300), we could have the following
embedding for “happy”:

happy! [0.14, 0.0024, 0.81, -0.37]

Which would then yield a LISAese representation of “happy”:

happy! SemUnit 0=0.14, SemUnit 1=0.0024, SemUnit 2=0.81, SemUnit 3=-0.37

�us allowing us to produce object semantics in LISAese from the Word2Vec word-embeddings.
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2.2 Predicate Semantics
Predicate semantics in their most general form are more di�cult to automatically encode than objects. Direct
role-by-role representation via word-embedding is certainly non-obvious, although we will explore methods to
do so in the future work section. Here, we will simplify our semantic representation to the easiest usable form
wherein we assign semantics to each role corresponding to word embeddings for the predicate. For example, in
our 4-dimensional embedding from before, we can imagine the following vector for “love”:

”love” ! [0.23, 0.01, 0.76, -0.45]

Copying the embedding onto the agent and patient roles of love gives us:

love:
[SemUnit 0agent=0.23, SemUnit 1agent=0.01, SemUnit 2agent=0.76, SemUnit 3agent=-0.45]

[SemUnit 0patient=0.23, SemUnit 1patient=0.01, SemUnit 2patient=0.76, SemUnit 3patient=-0.45]

While this representation meets all of our requirements, it does have a glaring weakness. �ere will never be
any semantic overlap between two di�erent predicate roles (e.g. agent and patient). �e resulting LISAese will
make LISA preferentially map agents and patients onto other agents and patients respectively. Again, we will
explore alternatives to this encoding which do not su�er from the same weakness in the future works section
below.

Using the above semantic representations, we meet all the requirements for LISAese’s semantic encoding and
are ready to explore how to structurally represent text in LISAese.

3 GENERATE STRUCTURE
In order to encode language in the kind of predicated logic LISAese requires, we need to identify predicate roles
and the objects which �ll them. In the simplest case, we may be presented with text such as “Bob loves Jill”.
In which there is one predicate with two roles, agent and patient, �lled by “Bob” and “Jill” respectively. As
mentioned earlier, this structure becomes more di�cult when predicates �ll the roles of other predicates as in
“Jill knows Bob loves her”. In this later case, the structure we hope to capture is that “Jill” is the agent and love
is the patient of know. To discover these a�achments, we may employ an NLP technique called Semantic Role
Labeling (SRL). SRL identi�es predicates and their roles as well as portions of the text which �ll those roles. Using
SRL, we can label “Jill” as the agent and “Bob loves her” as the patient of know. Similarly, “Bob” is identi�ed
as the agent, and “her” the patient of love. For our work, we use the SRL engine laid out in Punyakanok, Roth,
and Yih [24] which uses joint inference over several SRL systems and Integer Linear Programming for global
constraint satisfaction to optimize its labeling. A�er using our SRL engine, we have the following structural
encoding: know(Jill, love(Bob, her)). �is is nearly enough to properly structure the input for LISA since we are
able to encode the predicates in a LISA’s logical form and are able to handle recursive references to predicates
as arguments to other predicates. �e last remaining piece is to properly associate “Jill” with “her”. In order
to achieve this, we use another NLP technique called ‘co-reference resolution’ [18]. Co-reference resolution
associates multiple references to the same entity throughout a text. Using this technique, we are able to associate
“her” with “Jill”, yielding our �nal representation: know(Jill, love(Bob, Jill)).

�e automated structural encoding, along with the semantic encoding, is su�cient to produce functional
LISAese without the involvement of any hand-coding and li�le modeler input. However, this automatic encoding
is useless if LISA is not able to function on the resulting LISAese. In order to test this, we explore three benchmark
simulations LISA has successfully completed in the past: Latin to Logic, Love Triangle, and Driving a Vehicle.

Automating the Encoding for the LISA Model of Analogy from Raw Text pp. 115–122

118



Automating the Encoding for the LISA Model of Analogy from Raw Text • 1:5

4 SIMULATIONS
To test our automated representations, we will compare LISA’s discovered mappings and inferences on them
against the hand-coded LISAese. Since our automatic encoding produces several hundred semantics for each
object and role, we have omi�ed them from this paper. However, since there were some di�erences in some of
the structural representations between the hand-coded and automatic representations, we have provided both for
each benchmark below.

For “Latin to Logic”[14], the benchmark representation is shown below:

Analog 1:
is incomplete(Second Order Logic)

Analog 2:
is self referential(Natural Language)
has unprovable statement(Natural Language)
is incomplete(Natural Language)

LISA can use this produced representation to �nd the analogy between Second Order Logic and Natural
Language and infer that Second Order Logic has unprovable statements and that it is incomplete.

In order to test our automatic representation, we need to identify English sentences which convey a similar
meaning. Running LISA over the representations generated by these sentences, we can check if it produces
the correct mappings and inferences. For that purpose, we chose the following stories: “Second Order Logic is
incomplete.” and “Latin is able to self reference. Latin proves and disproves a statement. Latin is incomplete.”
Using the automatic representational system described here, we produced the following representation:

Analog 1:
be(Second Order Logic, incomplete)

Analog 2:
be(Latin, able to self reference)
prove(Latin, a statement)
disprove(Latin, a statement)
be(Latin, incomplete)

Running LISA on this representation does in fact produce a mapping between Second Order Logic and Latin.
LISA makes both of the desired inferences, namely that Second Order Logic is self referential and that it can
prove and disprove a statement. Worth noting is that the structure generated by our automated system is quite
di�erent from that of the original representation. However, the correct mapping and inference was still produced.

For “Love Triangle” [12] the hand-coded benchmark structure and the automatic structural encoding were
identical, and it is shown below:

Analog 1:
love(Sally, Jack)
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love(Jack, Megan)
hate(Sally, Megan)

Analog 2:
love(John, Mary)
love(Mary, Bob)

In order to produce this representation automatically, Analog 1 was generated from the sentences “Sally loves
Jack. Jack loves Megan. Sally hates Megan.” and Analog 2 from “John loves Mary. Mary loves Bob”.

“Latin to Logic” is the easiest of our three benchmarks since the structure is simple and semantic similarity
alone is enough inform mapping. In “Love Triangle”, while the structure remains simplistic, the object semantics
are inversely correlated with the ideal mapping. �at ideal mapping is from “Sally”!“John”, “Jack”!“Mary”, and
“Megan”!“Bob”, which is counter-indicated by semantic similarity on the subset of semantics corresponding to
gender. In the hand-coded version, LISA �nds this ideal mapping and produces the correct inference, namely
hates(John, Bob) in Analog 2. A�er running LISA on the automatically produced LISAese, the same mapping and
inference was found.

Lastly, we will look at the most complicated benchmark, “Driving a Vehicle” [12]. Its hand coded structure is
shown below:

Analog 1:
has(Joan, car)
want(Joan, goto(Joan, airport))

Analog 2:
has(Sam, car)
want(Sam, goto(Sam, beach))
drive(Sam, car, beach)

�e automatic encoding produced a very similar structure:
Analog 1:

have(Joan, a car)
want(Joan, go(Joan, the airport))

Analog 2:
have(Sam, a jeep)
want(Sam, go(Sam, to the beach))
drive(Sam, a jeep, to the beach)

To produce this, the NLP pre-processor was given “Joan has a car. She wants to go to the airport.” for Analog 1
and “Sam has a jeep. He wants to go the beach. He drives the jeep to the beach.” for Analog 2.

On both the hand-coded and auto-coded LISAese, LISA found the correct mapping that “Joan” is like “Sam”
and the “jeep” is like the “car”. LISA also managed to produce the correct inference that Joan drives her car to the
airport.
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5 CONCLUSION
Using NLP techniques to pre-process and encode text into LISAese has proven to be a fruitful approach to
incorporating the encoding process into LISA as a model. With the incorporation of this linguistic front-end, LISA
is now the �rst computational model of analogy capable of encoding simple open-domain text and performing
analogical mapping and inference over it. More importantly, the LISA model no longer needs to rely on hand-coded
knowledge representations. With this, it is now clearer how LISA’s successes as a model re�ect its fundamental
tenets rather than the representational and modeling choices made by the modeler.

6 FUTURE WORK
We hope to improve both the semantic and structural encoding in the future with be�er semantic libraries and
relational capture. For object semantics, we can use sparse over-complete vectors [4] for the word embeddings,
since it has previously been shown that LISA performs be�er over sparse encodings. For predicate semantics, we
can explore role speci�c semantics so that predicate role semantics can overlap between labeled roles (some agents
overlap with some patients). Towards that end, we intend to explore several di�erent tracks for embedding. We
will look at PropBank [15] labels for verb speci�c roles and use the embeddings of the words in their labels (agent
of love is “lover”, patient of love is “loved”). We will also look at embedding the roles directly, either by forming
role co-occurence chains and using Word2Vec on those chains directly, or by replacing the spans of text by their
SRL label and running Word2Vec over the replaced text. However, regardless of what embedding techniques
we use, the representation technique as we’ve described it falls pray to a common word embedding weakness –
inability to di�erentiate phrasal cconstructs. �at is, “the cat on the blanket” vs “the blanket on the cat” have the
same semantic representation. �is pitfall can be avoided by capturing only the head of noun phrase (with adjec-
tives) and instead predicating any prepositional relationships contained within the phrase. We will also explore
additional ways to extract structure from language in the form of explicitly stated intra-sentential cause and
e�ect: “Bob loves Susan because she is kind.” We will store the extracted information in “Cause-E�ect” groups [13].

In addition to improvements of the encoding, we hope to expand our use of LISA. With the availability of
computational resources as well as abundant text, auto-encoding LISAese allows for an explosion of analogical
modeling. As research progresses, we hope to use auto-coded LISA’s mappings and inferences as learning features
on a range of traditional NLP tasks. Success in these domains would demonstrate the importance of analogy
as a core cognitive capacity and its salience to a host of higher level computational tasks, for example schema
generation [23][1], the Story Cloze Task [20, 21], story classi�cation or even provide some insight into the
Winograd Schema challenge [16].
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