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ABSTRACT 
Recent years have seen an explosion of interest in “modern” board 
games.  These differ from the “classic” games typically seen in 
Artificial Intelligence research (e.g. Chess, Checkers, Go) in that 
the modern games often have a large component of randomness or 
non-public information, making traditional game-tree methods 
infeasible.  Often, these modern games have an underlying 
mathematical structure that can be exploited.  In this paper, we 
describe an intelligent agent to play the game Battle Line, which 
uses elements of theorem-proving and probability to play 
intelligently without utilizing game trees.  The agent is superior to 
the only other known computer player of the game and plays at a 
level competitive with top human players. 

CCS CONCEPTS 
• Computing methodologies ~ Probabilistic reasoning  
• Computing methodologies ~ Game tree search 

ADDITIONAL KEYWORDS 
Modern Board Games, Battle Line 

1 INTRODUCTION 
Historically, the main work in developing intelligent agents to play 
board games has focused on “classic” games such as Chess [5], 
Checkers[12], or Othello[4].  The agents that play these games 
often focus on variants and improvements to game-tree search.  
While modern agents have many clever approaches and 
optimizations, there is still an exponentially-sized game tree to 
search.  Even the recent “AlphaGo” program by Google [13] uses 
neural networks, but does so in order to evaluate a game tree more 
efficiently.  

In recent years, an influx of new games have been created of 
varying levels of complexity.  These games often depend on non-
public information (such as a secret hand of cards or tiles) or 
randomness, making the size of a typical game tree infeasibly large.   

There have been efforts to design agents to play these games. 
Some of these efforts have involved designing variants of classical 
search methods [8] [10] [11], some have applied multiple agents to 
the problem, and some have kept a simpler model of the game to 
reduce the complexity [14]. Another approach is to develop a rule-

based system derived from specific rules and strategies of a given 
game. These rules can then either be applied directly to choose a 
move, or serve as the basis of an evaluation function in a search [7] 
[8]. 

While these methods can produce competitive players, any 
approach that uses a variant of classical search will eventually 
become confounded by the exponential growth of the game tree- 
often sooner in modern games than in more classical games because 
of the need to model randomness or hidden information.  Efforts to 
reduce the game’s complexity may remove important information.  
Rule-based systems can only perform as well as the rules in which 
they are given, and since those rules are typically programmed in 
by humans, they do not capture the autonomous nature that we 
desire in our agents. 

Our approach is to notice that these games often have 
interesting underlying mathematical structure and to exploit that 
structure.  If we can recast a game’s strategy as a mathematical 
problem, then we have the ability to use theorems and approaches 
from mathematics to design an agent that makes moves based on 
an underlying mathematical model.  We feel that an agent made 
according to this paradigm is more autonomous than one that 
follows a rule-based system or an evaluation of leaves of a game 
tree because its strategy comes from the mathematical 
underpinnings of the game itself. 

We have used this approach in the past on a different game, 
called Football Strategy [8], where the rules of the game can be 
viewed as a normal-form game, in the game-theoretic sense.  By 
applying concepts of Nash Equilibria, our agent created a mixed 
strategy that made it competitive against top human players.  

In this paper we focus on the two-player strategy card game 
Battle Line, published by GMT Games in 2000 [1].   We have 
developed an agent named “Deep Barca” that plays this game by 
exploiting the underlying probabilistic and logical nature of the 
card game.   

2 DESCRIPTION OF THE GAME 
In Battle Line there are two decks of cards: Troop cards and Tactic 
cards.  Most of the game is played using the Troop cards, which is 
a deck of 60 cards consisting of the numbers 1-10 in six different 
colors.  On their turn, players play a Troop card from their hand on 
one of nine flags.  Each player will eventually place three cards on 
each of nine flags. The three card hand that is formed is called a 
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formation.  (See Figure 1 for an example of what flags and 
formations look like).  The player with the better formation will 
claim the flag.  Winning the game requires claiming 5 of the 9 flags 
or any 3 flags in a row. 

2.1 Evaluating Formations 
The values of the formations correspond to three-card poker hands.  
The order in which cards are played does not matter; the cards in 
the final formation are evaluated collectively. The ranks of the 
different formations are as follows (the actual game uses military 
terminology for these ranks, but we have translated them into 
terminology that is closer to that used in poker to aid 
understanding).  

x A straight flush is the highest possible hand.  It consists 
of three cards, all the same color, in consecutive order 
(for example, the 7, 8, and 9 of Blue). 

x A three of a kind is the next highest hand, consisting of 
three cards of the same number (for example, the red, 
blue, and green 8). 

x A flush is three cards of the same color, but with no 
relationship among the numbers (for example, the 
Yellow 1, 4,and 8). 

x A straight is three cards in consecutive order, but with no 
relationship among the colors (for example, a Red 2, 
Orange 3, and Purple 4). 

x A nothing is the lowest formation, and is any collection 
of cards that does not fit one of the above rankings.  (for 
example, a Red 2, Orange 4, and Blue 6).  Note that a 
single pair (for example, a Green 2, Blue 2, and Orange 
7) counts as a nothing. 

When both players have completed formations, if one player’s 
formation is a higher rank, that player wins.  If two players have 
the same rank, then the highest total wins (so a three of a kind with 
7’s beats a 3 of a kind with 4’s).  If two players have the same rank 
and the same total, whoever finishes their hand first wins the flag.  
In practice among skilled players, most flags are won with a straight 
flush or three of a kind.  

 
Figure 1: Some examples of formations 

Figure 1 illustrates some of these situations.  In the leftmost 
column, the top player has a straight flush, which beats the 
opposing three of a kind.  In the second column, both players have 
flushes, but the top one totals to 18 and will beat the bottom’s total 
of 12.  

The third column of Figure 1 shows a situation where the top 
player has played the best possible hand-- the highest possible 
straight flush (10, 9, 8) that is finished first.  Once the player plays 
the final card of this formation, it cannot be beaten.  When this 
situation occurs, a player is allowed to claim a flag at the beginning 
of their next turn, even before the opponent has competed their 
three card hand on the flag.  This prevents the opponent from 
playing any more cards on the flag and is a powerful move, as it 
reduces the available number of places for the opponent to play 
cards. 

 It is also possible in other situations to use the state of the 
board to prove that a player will not be able to beat a completed 
formation no matter what Troop cards are played.  For example, in 
the fourth column of Figure 1, the top player has completed a 
straight totaling 27.  The best formation the bottom player could 
possible complete is a straight totaling 9.  In this case, the player is 
also allowed to claim the flag at the start of their next turn.   

This situation can also arise when a needed card exists 
elsewhere on the board.  In the rightmost formation of Figure 1, the 
bottom player has two cards towards a straight flush, which if 
completed would win the flag.  However, the cards that can 
complete the straight flush have already been played (the 8 in the 
third column and the 5 in the same column by the top player). In 
this case, the best formation that can be completed by the bottom 
player is a flush, which will lose to the top player’s three of a kind, 
and so the top player can claim this flag at the start of their turn. 

2.2 Tactics Cards 
The deck of 10 Tactics cards provides “special” cards that can bend 
the rules of the game in various ways.  Some are wild cards (and 
thus can take on a variety of colors or numbers depending on what 
makes the best possible formation), some change the resolving 
rules of a flag (for example, making the hands consist of 4 cards 
instead of 3, or turning all hands into “nothings” so only the highest 
total wins), and some change the positions of the cards (allowing a 
player to move their cards between flags, or steal a card from an 
opponent’s formation).  The possibility of an opponent responding 
to a completed formation with a Tactic card play is the main reason 
why flags are claimed at the start of the claimers turn.  

Tactic cards operate under two important restrictions.  First, if 
a player chooses to draw a Tactic card, they do so instead of 
drawing a Troop card for that turn. This reduces the player’s hand 
of playable Troop Cards.  Second, a player is not allowed to have 
played more than one Tactics card beyond what their opponent has 
played.  So, if Player A had played two Tactics cards, and Player B 
had only played one, Player A would not be able to play another 
Tactics card until Player B has played a second one. 
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3 DESIGN OF THE AGENT 
Our goal in designing Deep Barca was to make the agent as 
autonomous as possible, giving it a set of underlying mathematical 
and probabilistic principles from which moves will be devised.  The 
agent models these principles in several different ways, and these 
models generate rankings of the possible moves that the agent can 
make.   

3.1 Enforcing the Rules 
Before intelligently deciding on the best moves, it is necessary to 
develop a program that enforces the rules of the game.  Many of 
those rules are straightforward.  The most complex involves when 
a flag can be claimed.  

As stated in the previous section, flags can be claimed by a 
player at the start of their turn if it can be proven that no possible 
set of cards the opponent can play will beat the player’s formation. 
To determine this, when a formation is finished, the program 
determines the set of superior formations: formations that can beat 
the formation that was just completed.  Then, the set of possible 
cards that can complete the formation are examined.  These are 
cards that are currently not on the board (though they may be in 
player’s hands).  If any superior formation can be completed by 
adding these cards to it, then that formation is feasible.  A flag can 
only be claimed if all superior formations are infeasible.  

3.2 The Probabilistic Model for Decision Making 
Deep Barca uses a general probabilistic model for decision making 
to play Battle Line. Each turn, for each card in its hand and for each 
flag that card could be placed on, the agent evaluates the probability 
of winning the game if the card being considered is placed on the 
flag being considered. It then chooses the option that maximizes 
this probability. Calculating the probability of winning the game 
for each move is a three-part process. 

First, for each flag the agent calculates the top four formations 
that each player could make on the flag. These are the four strongest 
formations that could possibly be made, given the Troop Cards 
remaining in the agent’s hand and the cards left in the deck of Troop 
Cards.  

Next, the agent calculates the probability of winning each flag 
given the move under consideration. We categorize each flag in one 
of the following three ways: 

a) If neither player has played a card towards a formation 
on the flag, we simply say the probability of winning 
the flag is 50%.   

b) If both players have played at least one card towards a 
formation on the flag, we calculate the probability of 
winning the flag via what we call the Multiple 
Formation Approach, or MFA, described in the next 
section. 

c) If one player has played at least one card towards a 
formation on the flag, but the other player has yet to 
play a card, we use a mix of the MFA from above and 
the Best Single Formation Approach, or BSFA, also 
described in the next section. 

Lastly, we calculate the probability of winning the game as a 
function of the probabilities of winning each of the nine flags. Since 
we have two different win conditions (winning five out of nine, and 

winning three adjacent flags) we take the weighted average of the 
probabilities of winning via each of these two conditions as a 
function of the number of cards left in the Troop Deck. Thus, in the 
beginning of the game, the agent is far more concerned with simply 
winning the majority of the flags since this goal in practice entails 
doing as well as possible on as many flags as possible. Near the end 
of the game, the agent is more concerned with winning three 
adjacent flags and will even willingly sacrifice a fringe flag if it 
means winning three in a row somewhere else. 

 
3.3    The MFA and BSFA Methods 
The Multiple-Formation Approach (MFA) is designed to estimate 
the best hands that can be created once both players have committed 
to a hand.  It is computed for each of the agent’s top four formations 
computed above.  For each potential final formation, the agent finds 
the probability of winning via that formation (the probability of 
making that formation multiplied by the probability of that 
formation not being beaten by the opponent). The probability of the 
agent winning that flag is the union of the probabilities of winning 
via each of its top formations.   

Table 1 shows what these probabilities would look like in the 
situation where the agent has played a 9 on a flag, and the opponent 
has played a 4 of a different color.  For this table, we assume that 
no cards in any useful formation exists in the player’s hand or on 
any other flag.  The top two formations the agent can make using 
the 9 are straight flushes (10-9-8 and 9-8-7).  If these are 
successfully made, the opponent cannot possibly beat them using 
the 4 that was committed to its flag.  The next highest formation is 
three nines.  This involves the agent drawing any two of the five 
remaining nines in the deck, but can be beaten if the opponent 
draws any of the three possible straight flushes using the 4.  The 
fourth highest formation is a flush totaling 26 (10-9-7).  This loses 
not only to any straight flush, but also to any three 4’s. 
 

Formation Probability 
of Making 

Probability 
of Opponent 
beating 

Chance 
to win 
flag 

SF 10-9-8 .25 0 .25 
SF 9-8-7 .25 0 .25 
9-9-9 .82 .58 .35 
Flush 26 .25 .94 .02 

Table 1: A sample table used in the MFA for a 9 vs a 4 on an 
empty board.  For details of how the probabilities are computed, 
see section 3.4 

 
In our experiments, we found that the MFA approach did not 

work well on flags where one player had not played any cards.  This 
was because on an empty flag all of the top formations in the game 
are still theoretically possible.  Once a card is played on a flag, the 
space of potential formations is drastically reduced-- instead of 
being able to create any feasible formation, now only formations 
that include the played card can be considered.  This had the effect 
of making the agent undervalue playing cards on empty flags.  The 
reason for this is that the MFA does not take into account the need 
of a player to play a card on a flag (usually reducing the potential 
value of the formations that can be made on the flag) each turn.  
Instead, the probability is based on whether the formation can be 
made by the end of the game.   

Thus, to make the agent less pessimistic, in situations where 
one of the two flags had no cards played, we implemented the Best 
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Single Formation Approach (BSFA).  In the BSFA, we find the 
single best possible formation for the player with no cards and then 
evaluate the chances of winning the flag if that formation was 
played vs the top four formations of the player who has played 
cards. This simulates the potential “goal” of the opponent who sees 
a card played and is trying to beat what our agent is trying to do. 

The BSFA on its own yields very narrow decision making 
because the agent will not even consider many decent or adequate 
formations (since they are not the single best formations that could 
be made). Often even subpar formations are enough to yield a 
victory on a particular flag. The MFA on its own is weak as well 
since it is heavily biased in favor of the player who has yet to play 
a card on the flag. This is due to the fact that all of the top 
formations generated for that player are simply the very strongest 
formations in the game since the player has yet to commit any card 
that would narrow his or her options. Using a mix of these two 
approaches, our agent makes much better decisions than it would 
using either approach by itself. 

3.4 Evaluating Formations Probabilistically 
In both the MFA and BSFA models described above, the agent 
needs to determine the likelihood of whether one formation will 
defeat another, especially in a situation where the formations are 
currently incomplete, and the cards needed to complete the 
formation will need to be drawn from the deck. We use the 
following probabilities to aid our calculations: 

x If a card is present on the board, and is in the formation, 
it has a 100% probability of being part of the final 
formation. 

x If a card is present on the board but is part of another 
flag, it has a 0% probability of bring part of the final 
formation. 

x If a card is not present on the board but is in the agent’s 
hand, then the agent gives a 100% chance of that card 
being a part of the formation if the desired formation 
belongs to the agent and a 0% chance of the card being 
part of the formation if the desired formation belongs to 
the opponent. 

x If the card is not present in the board or in the agent’s 
hand, the card must be drawn to be useful.  The cards in 
the Troop deck are assumed to be split evenly among 
both players.  The probability of the agent drawing a 
needed card is their share of the Troop deck divided by 
the total number of unseen cards (both in the Troop 
deck and the opponent’s hand).  The complement of that 
probability is the probability that the opponent will draw 
(or has drawn) that card. Notice that the agent will do 
this calculation even if the card is actually in the 
opponent’s hand, since the agent has no legitimate way 
of knowing this fact. 

3.5 Discarding on a Lost Flag 
The above probabilistic behavior forms the bulk of our agent, and 
thus it chooses moves largely autonomously within the models it is 
given.  However, our models do not cover some areas.  Thus, there 
is a need to develop approaches for these specific situations. Even 
here, we attempted to make the decisions as autonomous as 
possible, avoiding low-level pre-programmed rules. 

The first situation arises in the turn before claiming a flag.  
Recall that a flag is claimed at the start of a turn, meaning that in 
the normal course of events, the opponent has a turn to react 
between the playing of a card that will win a flag and the actual 
claiming of it.  This turn exists to give the opponent a chance to 
play a Tactics card that may result in changing the resolution of a 
flag.  But even if the player cannot or does not wish to play a Tactics 
card, they must take a turn.  This turn often has rich strategic depth. 

Since a flag that is claimed is ineligible to be played upon by 
either player, even if the formation is incomplete, it usually 
behooves the player about to lose the flag to play a card on the flag 
that is about to be lost.  This “discarding” action has several 
benefits: 

x Since playing a card on a flag often decreases the 
possible formations that can be formed, it is usually 
beneficial to delay committing to a flag as long as 
possible.  Playing a card on the flag that is about to be 
claimed helps delay decisions about other flags. 

x Since proving a flag is unbeatable often involves using 
cards already played on the board as a reference, 
discarding is a good chance to play a card that will help 
a later proving effort. 

x Since once the flag is claimed the flag will become 
unplayable, not playing on the flag before it is claimed 
will mean the owner of the losing flag will have less 
total spaces to play on in the game (and thus have less 
total options in the game).  This loss of tempo is 
especially noticeable at the end of the game, since it is 
possible for one player to have no legal places to play a 
card and be forced to pass. 

Deep Barca handles the situation in which it is about to lose a 
flag in a different way than it handles the normal course of the 
game.  If it recognizes (via its internal proving mechanism) that it 
is about to lose a flag, it attempts to find a card to discard.   The 
decision of which card to dump is made by creating a set of 
“wishlists”-- cards that each possible formation (for each player) 
are hoping to draw or to play on a flag.  The agent will choose a 
card that appears most frequently on the opponent’s wishlist and 
least frequently on its own.  The hope is that this discarding action 
will thus not adversely affect any of the top formations the agent is 
trying to make but possibly will aid in proving that a formation the 
opponent is trying to make is impossible. 

These wishlists are also used by the agent to resolve conflicts 
where a single card is one of the top formations on multiple flags.   
By noting what cards are desired by the agent in other places, we 
reduce the probability that such a card will be available on the 
conflicted flag. 

3.6 Drawing and Playing Tactics Cards 
In addition to the Troop deck, Battle Line has a deck of Tactics 
Cards.  These cards do many different things, and if played at the 
right time, can swing the ownership of a flag from one player to 
another, for example by playing a wild card to complete a formation 
that would be proven impossible using played Troop cards. The 
agent has two decisions regarding Tactics cards.  The first decision 
is deciding when to draw one.  The agent will be drawing a Tactics 
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card instead of a Troop card, and since there are limitations on how 
many Tactics cards can be played, it is not a good idea to have an 
excess. The second decision is when to play one.  Since there are 
limitations on the frequency of playing these cards, the timing of 
the play should be carefully considered. 

Since the different Tactics cards are so different and the 
situations in which they can be played are so different, we had to 
resort to several ad-hoc rules: 

x If playing a Tactic card could win the agent the game, 
play it. 

x If the agent is about to lose a flag, and the loss can be 
prevented by the play of a Tactics card, play it if it 
raises the agent’s chance of winning the flag to over 
50%, or if losing the flag would lose the game. 

 
Other than that, except for very specific situations relating to 

specific cards, the agent will not play a Tactics card.  This has the 
result of the agent being rather conservative with their Tactics 
cards, which mirrors the way they tend to be used by expert-level 
humans. 

Similarly, the agent will draw Tactics cards defensively.  If it 
determines that the opponent is one card away from winning a flag 
that can only be beaten by a Tactics card, it will draw one.  It will 
draw a second if the opponent has two or more cards or if the one 
tactic card the agent possesses is one of the “less useful” ones.  In 
either case, the agent will not draw a Tactics card that it cannot 
play. 

4 RESULTS 

4.1 Evaluating the Quality of Deep Barca 
We evaluated the quality of our agent against computer and 

human players. To the best of our knowledge, there is only one 
other computer agent, which is the IOS App Reiner Knizia’s 
Battleline, by Gourmet Gaming [6] We played a best-of-three 
match, in which our agent handily won 2-0. In one of the games, 
our agent won without losing a flag. Against human players, we 
tested against a group of 5 experienced human players, and the 
agent won about 50% of the time.  One of the authors is a former 
three-time world champion at Battle Line [2] at the World 
Boardgaming Championships [3]. We played a 10 game series, in 
which Deep Barca won three of the games. 

With these results we can confidently say that our agent can 
competitively play against even the very best human Battle Line 
players. Also, our agent was able to make its decision for each turn 
in between a tenth of a second and one second, which is far faster 
than a human player could play. This is encouraging, since it leaves 
the option for more complex decision-making without those 
decisions taking an undue amount of time. 

4.2 Emergent Behavior 
Since our agent generally followed a general mathematical model 
for decision making, we often found that it would make moves that 
went against our immediate human intuition. In our experiments, 

we found some emergent behaviors that were particularly 
noteworthy. 

 Eight > Ten: We noticed that early in the game, on an empty 
flag, the agent often chose to play an 8 on the flag when it could 
also play a 10.  Most high level human players would prefer a Troop 
Card with value 10 to a Troop Card with value 8, all else equal. The 
10 is a higher value, and thus potentially can make hands with 
higher totals than the 8. However, the 8 is eligible for more straight 
flushes (10-9-8; 9-8-7; 8-7-6 as opposed to just 10-9-8), which are 
the strongest formations. Because of this, our agent’s preference of 
an 8 over a 10 is not necessarily bad, and many human players even 
have this preference. We were pleased to see this behavior emerge, 
as it was unexpected and not caused by direct human intervention. 

Playing low-value viable formations: If the agent has two 
cards toward a straight flush (for example, the 5 and 6 of red), and 
the opponent has two cards towards a three of a kind (for example, 
two 7’s), the agent would often give up on the straight flush, going 
all the way down to a straight (for example, playing a blue 4).  This 
was especially common in situations where many of the cards of 
the opposing three of a kind were already played (and thus making 
the three of a kind less likely) or in situations where there was just 
one possible card that would complete the straight flush.   

At first glance, it appeared that the agent was making a mistake 
giving up a flag so easily.  But in reality, once two cards of the same 
value are played on a flag, the only possible outcomes are a three 
of a kind or a nothing.  The agent has recognized this fact and 
decided to create a formation that can only be beaten by the 
opponent drawing the card to complete their three of a kind. 

While the actual usefulness and timings of these moves against 
top players can be debated, the ability to find these kinds of moves 
without having the strategies directly programmed in validates our 
approach to make the agent largely autonomous and based on 
underlying mathematical principles.  

5 FUTURE WORK 
There are many possible improvements we could make to the agent 
to strengthen quality of play and reduce ad hoc decision making 
even further. 

We would like to improve the way the agent draws and plays 
Tactics cards to be less ad-hoc. 

We would like to improve the agent’s ability to make longer-
term decisions. Since we evaluate the quality of each move based 
only on the game state one turn in the future, the agent can often 
miss moves involving multiple Tactic Cards used together, since 
the play of any of the cards by itself is weak. 

The agent’s ability to handle the scenario in which multiple 
flags are being claimed at the same time is very weak. We would 
like to be able to evaluate which of the claimed flags are worth 
fighting for and which of the flags might be too detrimental to lose, 
but currently we do not. 

Our agent keeps the top four possible formations in its MFA 
model of rating a flag, mainly for efficiency reasons.  We would 
like to examine what would happen if that number was increased. 
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Since our agent evaluates its moves so quickly, it would be 
interesting to see if it would be possible to incorporate some 
lookahead search into the agent, even if just for one or two moves. 
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