
ubiPCMM06:2nd International Workshop on Personalized Context Modeling and Management for UbiComp Applications 

 

Personalization and Context Aware Services: A 
Middleware Perspective 

Fahim Kawsar1, Kaori Fujinami1, Susanna Pirttikangas2, Tatsuo Nakajima1 
1 Department of Computer Science, Waseda University, Japan 

2 Department of Electrical and Information Engineering, University of Oulu, Finland 
{fahim,fujinami,tatsuo}@dcl.info.waseda.ac.jp, msp@ee.oulu.fi

 
 

 
 

ABSTRACT 
The basic goal of any context aware system is to provide some 
proactive services adopting users' context. However, often in real 
life proactive behaviors create complex problems. The end users 
of the system have an implicit understanding of the system. If the 
context aware behavior of the system conflicts with their 
understandings and reacts differently from users’ expectation 
applications success ratio reduces radically. So, personalization is 
a crucial factor for the success of the proactive applications. In 
this paper we discuss this particular aspect from a middleware 
perspective. Initially we present a requirement analysis and 
propose a classification scheme for structural representation of 
preference information in proactive systems. Then we present a 
middleware, part of which exploits this classification to support 
application developers to facilitate the end users with the 
flexibility to personalize the context-aware services. This facility 
stems entirely from the middleware and is independent from the 
applications. 

Keywords 
Preference, Personalization, Middleware, Context Awareness. 

 

1. INTRODUCTION 
Providing proactive context aware services based on perceived 
users' context is one of the major focuses of ubiquitous 
computing. However, proactive systems involving multiple smart 
artefacts often create complex problems, if their behaviors are not 
inline with users' preferences and implicit understandings. Every 
user has own understanding and perspective towards a system and 
wants to personalize it in own way regardless of its proactive 
characteristics. For the success of the application, we argue every 
proactive context aware system should provide personalization 
facility.  

Inspite of being an essential and recurring requirement of 
proactive application, there has been no attempt to generalize 
preference management support. This is because of the following 

two reasons: 

1. There is no guideline for representing the preference 
information in a structured manner. 

2. There is no middleware that provides a common base for 
supporting preference management features in proactive 
applications. 

Both these reasons are complementary to each other and rooted 
for one particular issue that preference information is application 
specific.  However, we argue that even though each application 
has different personalization perspectives, it is possible to 
accommodate them into some abstract common categories for 
generalizing preference management in application development. 
 
In this paper, we have tried to validate our argument. First, we 
present our initial requirement analysis that guided us to 
approximate what user wants to personalize in a context aware 
system in general. Based on the analysis we propose a 
classification of preference types to represent the preference data 
in a structured way.   

Then we present a component of a middleware that implements 
this taxonomy and assists the developers to handle personalization 
functionalities. For collecting users' preference information the 
middleware provides two interaction techniques: Graphical User 
Interface and Voice. These two techniques are selected based on 
the findings of our user study. 
The novelty of our approach is that the middleware takes care of 
the identification, extraction, storage and representation of 
preference information. So the developers do not have to care 
about these issues rather they can only focus on how to utilize the 
information for smooth application flow that conform to users' 
preference. Furthermore, the taxonomy presented can act as a 
guideline for the proactive application developers to structure the 
preference support. 

The rest of the paper is organized as follows: in section 2, we have 
presented the requirement study that includes three phases of 
interactions with the target user group to identify the 
personalization aspects. Section 3 presents the taxonomy of the 
preference information and other design issues. In section 4, the 
implementation of the middleware and the programming model 
are presented briefly with an illustrative application. Section 5 
discusses on several issues where as section 6 compares the 
uniqueness of our approach with similar works. Finally, section 7 
concludes the paper. 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
 
UbiPCMM06 September 18, 2006, California, USA 



ubiPCMM06:2nd International Workshop on Personalized Context Modeling and Management for UbiComp Applications 

 

2. REQUIREMENT STUDY 
Preference information in proactive applications is usually 
application specific. So, generalizing them into some categories 
for common base support is difficult. However, our hypothesis is 
that even the personalization options differ from application to 
application; there is a common pattern that can be generalized. We 
have approached towards this resolution through an infromal user 
study that can guide us to argue about the validity of our hypothesis. 
Our goal was to come up with some common categories of preference 
information that can be represented for possible system support. In 
this section we will describe the findings of our requirements study. 

We have gone through three different phases (interview, user survey, 
brainstorm) to identify two issues: 

1. What are the possible features that users want to personalize in a 
proactive system incorporating many physical artefacts? 

2. What interaction mechanisms are well accepted for 
personalization functions? 

The profiles of the participants are mentioned in table 1. We 
conducted three different phases of user interaction for rationalizing 
the quantative results through the observation of focus groups facial 
and immediate expressions. In all three phases, for clarifying to the 
target group what sort of systems we are talking about, we presented 
them 10 minutes video clip composed of various scenes from the 
movie “Minority Report”.  In the video clip based on the presence of a 
person many things in the home (TV, Music System, Door, Lighting 
System) are automatically started and configured perceiving user's 
context in a proactive way. All the interactions are voice controlled. 

2.1 Guiding Topics 
In all three phases the following topics were presented to the 
participants: 

1. Impression: How do you like the system and do you want to 
use such smart artefacts and systems? 

2. Preference Types: What sort of personalization do you 
require, i.e. what features do you want to personalize? Can 
you break it down to implicit cases? 

3. Interaction Technique: How do you want to interact with the 
system for personalization? Options offered are: Voice, 
Gesture, Graphical User Interface, and Implicit Controller. 

 
Table 1:Profile of the Participants 

Phase Participants Age Professions 
Interview 1 Female 

2 Male 
24-31 Business Analyst, 

Graduate Student. 

User Survey 4 Female    
6 Male 

22-42 Lawyer, Researcher, 
Graduate Student 

Brainstorming 2 Female   
 3 Male 

23-35 Researcher, 
Graduate Student 

 

2.2 Interview 
In the first phase we interviewed 3 people. After the video clip, 
their initial impression was “It is cool to live in such home” and 
mentioned many interesting points. It appeared that they want to 
personalize the proactive behavior completely that includes timing 

of action, selection of specific artefacts (like overhead lamp or 
desk side lamp etc.) or digital contents (like an audio clip), 
emotional mood based actuation, etc. One subject mentioned that 
she wants the system to know with whom she is and should 
reconfigure automatically. When being asked how they want the 
system to know their preference, one subject told it would be best 
if she does not need to do anything and the system will 
automatically learn from her past preferences but if she does like 
it she will change manually. The other two subjects mentioned 
that they want to put their preference manually. Regarding 
interaction technique, two of them preferred voice to other 
techniques. One subject told that he does not like the voice based 
interaction, because it is difficult to remember what to say to the 
system. Interesting finding was, all of them mentioned their 
reluctance towards gesture-based interaction for preference 
management or controlling the system because they feel, it is very 
ambiguous. The summary of the interview is presented in table 2. 
 

Table 2: Summary of the Interview 
Topic Response 

Impression Like: 100%  Dislike: 0% 

 
Preference Type 

Action, Timing, External Presence, 
Content, Emotional State,  

Artefact Participation. 

Interaction 
Technique 

(Rank Based) 

GUI (93.33%)   Voice (86.67%) 
Controller (60%)  Gesture (40%) 

 
2.3 User Survey 
In the second phase we conducted user survey of 10 people. 
Various questions were asked focusing on the guiding topics. The 
summary is presented in table 3. 
 

Table 3: Summary of the User Survey 

Topic Response Comment 

Impression Like: 80%   
Dislike: 20% 

“The system will make me 
lazy.” 

 
Preference 

Type 

Action, Timing, 
Emotional State, 

Artefact Selection, 
Control Mechanism 

“I want to use specific artefact 
that I like.” 

“I want to designate the role of 
each artefact” 

Interaction 
Technique 

(Rank 
Based) 

GUI (76%) 
Controller (66%)  

Voice (64%) 
Gesture (46%) 

“I don't want to use voice 
because it is noisy to others.” 

 

2.4 Brainstorming 
In this phase, we had a close discussion session for 2 hours 
focusing on the guiding topics. All the participants were the 
members of the author’s lab including the author. We started the 
session with the video clip and identified various aspects. Then 
we focus on specific issues. The summary of the discussion 
session is presented in table 4. 



ubiPCMM06:2nd International Workshop on Personalized Context Modeling and Management for UbiComp Applications 

 

Table 4: Summary of the Brainstorming Session 

Topic Response Comment 

Impression Not Discussed Not Applicable 

 
Preference 

Type 

Action, Timing, 
Content, Artefact 

Selection, 
Control 

Mechanism 

“If preference is configured 
based on history it would be 

best.” 

Interaction 
Technique 

(Rank 
Based) 

GUI (92%)  
Voice (72%) 

Gesture (68%) 
Controller (44%) 

“If the gesture is simple I 
would like to use that.” 

“Interaction feedback should 
provide a cue for decision 

making.” 

 
2.5 Summary of the Study 
One of the interesting observations of our user study was the 
facial expression of the participants when the movie clip was 
being shown. It seemed obvious that if the proactive applications 
can be presented in the way they want, applications' success ratio 
will increase to a significant rate. However, as to our major 
concern, the derived statistics from the user study exhibits that, 
the users want to have personalized functions regardless of the 
functional advantages of the proactive behavior. 2nd row of table 
2,3 and 4, clearly exhibit various personalization requirements of 
the users. Readers may argue about the scope of the applications 
being shown on the movie. We understand this issue and do not 
claim that our study is a complete one to validate our hypothesis. 
But, to some extent the extracted result gives a clear indication 
about the diversity of the personalization options in context aware 
systems. Also we have tried to identify the possible interaction 
techniques that users may want to use for providing the 
personalization information and the extracted statistics give us a 
good guideline. As to our next concern of providing system 
support for generating the personalization facilities, the findings 
of the user study has been used as the design guideline.  In the 
next section, we present design issues where we have discussed 
how the extracted responses and statistics of the user study are 
used to generate the design decisions. 
 

3. DESIGN DECISIONS 
In this section, we will introduce the design concerns of the 
middleware component and the decisions that we have made for 
the implementation. Considering the summary of the user study, it 
is visible that, the user wants to have full personalization facilities 
even in a complete proactive system.  Furthermore, we have seen 
that the required preference facilities depend on the functionalities 
of the applications. But, in general these preferences can be 
grouped into some generic classes to represent the preference 
information in a structured way. 

3.1 Structured Representation of Preference 
Information 
Structures representation is useful for the application developers 
to handle the preference functions in a unified way. So, based on 
the focus group input feedback, our prior experiences [5,6,7] and 
understanding, we have classified the preference attributes into 
following five generic types. 

1. Artefact Preference: This attribute is for enabling the user 
to select the participation of any artefact in the cooperative 
smart environment. For example a user may wants to use the 
desk side light but not the overhead light in a smart lighting 
system. Using this attribute user can manipulate the artefacts’ 
participation. 

2. Action Preference: This attribute is to enable the user to set 
action according to their preference. Usually a system 
consists of several actions that it actuates based on some 
conditions. Users can enable or disable actions using this 
attribute. For example, user can enable/disable the automatic 
confirmation mail sending action of a system, that notifies 
user whenever system is reconfigured. 

3. Context Preference: This attribute is to enable user to 
manipulate the participation of the context information in the 
system. Here the context information can be any information 
that the system developers consider as context that affects the 
systems behavior, like location, position, activity, emotional 
state etc. The system developers should define the overall 
systems functionality and integral context conditions. The 
users should use this attribute to provide their preference. For 
example, a user may specify that he/she does not want the 
music system to turn on automatically when he/she is with 
some one else. 

4.  Control Preference: This attribute is to provide user the 
flexibility to select their preferred control mechanism. For 
example, a smart display may have two modes: abstract and 
detail. To navigate from the abstract mode to detail mode the 
user can use voice or GUI or tangible interface. User can 
mention his/her preferred mechanism for this control action. 
Also, this attribute can be used in general to capture users 
interaction with the system, as we will see in the next 
section.  

5. Generic Preference: Finally this attribute is for providing 
user the flexibility to provide their preference regarding the 
generic aspects of the system. For example if the system 
actuation is music, then which sound clip to play, if the 
system actuation is display then what should be the 
background color, font size, or timing of the display etc. In 
general, it should accommodate the preferences like content 
preference, timing preference or other generic features' 
preference of the application in context. 

We anticipate that these five levels of preference attributes can 
accommodate most of the preference options for context aware 
systems in general. So, the middleware in concern should support 
this structured representation of the preference information.  

3.2 Interaction Techniques 
Our next concern is the interaction technique that the user should 
use for providing their preference information. The accumulated 
average of the user study on this issue indicates (as shown in 
figure 1) that, GUI has highest preference followed by Voice, 
Gesture and Controller. This result also matches the findings of 
[1] where speech was preferred as interface for controlling home 
appliances. Based on this statistics we have decided to provide 
two facilities in the middleware: GUI and Voice. That means, the 
end user can provide their preference to personalize the system 
using GUI and/or voice. 



ubiPCMM06:2nd International Workshop on Personalized Context Modeling and Management for UbiComp Applications 

 

 
Figure 1: Preference of Interaction Technique 

 

3.3 Required Features  
Considering the two previous subsections, we require that the 
middleware to implement five types of preference information and 
to provide APIs to application developers to manage this 
preference information in a structured way. For manipulating the 
preference information we have decided to use two attributes: 

1. Positive: This attribute represents user's willingness to use 
the options in context. 

2.  Negative: This attribute represents user's unwillingness to 
use the options in context.  

Also the middleware should provide the two interaction 
mechanisms to collects preference information.  
1. Speech Recognition: End user can provide their preference 

in natural English language phrase. The application 
developer provides the list of phrases that can be used for 
preference.  

2.  Graphical User Interface (GUI): End user can provide 
their preference by manipulating GUI that represents the 
applications. 

Furthermore, the collected information should be classified 
(following the taxonomy of preference) internally by the 
middleware and should be represented to the application in a 
unified way.  These supports should entirely be decoupled from 
the application meaning that the developers do not have to 
consider about the GUI generation or voice recognition/synthesis 
for collecting user input or to classify the input information into 
specific categories. The application developers’ responsibilities 
are to: 
1. Provide the application specific preference options in proper 

syntax using the middleware APIs.  
2. Implement the application logic that handles the specific 

preference information when being delivered to the 
application. 

3. Activate the desired interaction technique using the 
middleware APIs.  

With these design concerns the component is implemented. In the 
next section we will discuss about the implementation. 

4. IMPLEMENTATION 
The component that handles the personalization aspects is 
basically part of a generalized middleware Prottoy [7] that is 
designed to extract, distribute, manage, model and represent the 
context information. The personalization component works on top 
the core components of this middleware as a pluggable 

component. For clarity here we will introduce Prottoy in a 
summarized manner. Prottoy is composed of three core 
components and three pluggable components. 
The core components are: 
 Resource Manager: Responsible for resource discovery, 

managing location information and reconfiguration of the 
underlying environment. 

 Artefact Wrapper: Responsible for encapsulating artefacts 
and offering artefact service and context information to 
applications. 

 Virtual Artefact: Responsible for providing unified 
interface to applications for interacting with the underlying 
layers. 

The pluggable components are: 
 Interpreter: Responsible for interpreting context 

information in application specific ways. 

 Preference Manager: Responsible for managing preference 
and control information. 

 Artefact Proxy: Responsible for providing context storage 
information. 

For using Prottoy as a middleware for context aware applications 
developers usually create virtual artefact instances in their 
application that represent physical artefacts or other context 
sources. Using virtual artefact API developers can interact with 
the underlying physical artefacts or context sources. Furthermore, 
developers can use the pluggable components in the application 
based on application specific requirement. The preference 
manager component contributes to the issues we are focusing on 
this paper. For detail description of the other components please 
consult the reference [7]. The preference manager implements the 
taxonomy of preference mentioned in section 3.1 and the two 
types of input mechanism for capturing end user preference 
information. 

4.1 Architecture of Preference Manager 
Figure 2 shows the internal architecture of the preference 
manager. In the following the internal architecture is described. 
 

 
Figure 2: Internal Architecture of Preference Manager 

1. Preference File: This file is the key player through which 
the virtual artefact component of Prottoy and the preference 
manager communicate with each other in a transparent 



ubiPCMM06:2nd International Workshop on Personalized Context Modeling and Management for UbiComp Applications 

 

fashion. The virtual artefact internally uses this file to 
identify end users’ preference regarding application behavior 
and adopt the preference at run time. This file is generated 
dynamically during the deployment time of the application 
by scanning application code. The file contains the 
application specific preference information that the 
application developers provide in the application code. 
Developers can provide the artefacts and actions that the 
application usage with corresponding preference options. 
These two features are manipulated by the positive and 
negative attributes as mentioned in the previous section. 
Also, they can provide context, control and generic 
preference options in the same way. However in case of 
these three preference types, the positive/negative attributes 
are not used. Figure 3 shows a snapshot of this file for the 
application we will mention in the programming model 
section. 

2. Preference Manager: The preference manager is the central 
coordinator of the other components. When it receives GUI 
event or speech event from speech recognizer it looks for 
appropriate match in the preference file and if it finds a 
match it updates the file accordingly reflecting end users 
preference and notifies the application. 

3. Speech Recognizer: This is the speech handler of the 
preference manager. When the application starts, it listens for 
any command or preference statement. When it recognizes a 
phrase it notifies the preference manager to update the 
preference file. For speech recognition we have used Sphinx 
[21]. 

4. GUI Generator: This is the GUI counter part of speech 
recognizer. It provides a GUI to the end user for providing 
the preference. It notifies the preference manager when 
preference is changed. 

 

 
Figure 3: Structure of the Preference File 

4.2 Programming Model 
The preference manager provides very simple APIs for the 
application developers to handle the tasks mentioned in section 
3.3. Table 5 enumerates the major APIs and their functionalities. 

Table 5: Preference Manager API 
API Functionality 

public String   
   addArtefact(String name) 

For adding an artefact. 

public String 
     addAction(String name) 

For adding an action. 

 public void 
   addPositivePhrase(String  
         id, String phrase) 

For adding positive phrase 
for an artefact or action. 
this phrase represents users 
willingness to use a 
specific action or artefact. 

public void 
  addNegativePhrase(String   
        id, String phrase) 

For adding negative phrase 
for an artefact or action, 
this phrase represents users 
unwillingness to use a 
specific action or artefact. 

public string   
addPreference(String            
name, String prefType) 

For adding  preference 
information. 

Void addPhrase 
  (String id,String phrase) 

For adding generic phrase 
that reflects users 
preference. 

public void 
subscribe(Object source,  
           string callback) 

For subscribing to 
callback.  The callback 
receives preference and 
control information that 
developers can use. 

public Boolean 
 checkPreference(String id) 

For checking 
artefact/action preference. 

 

The code snippets in the following demonstrate the usage of some 
of these APIs in a very simple application that consists of a 
overhead light embedded with an ambient light sensor. The light 
is automatically turned on/off based on the sensed ambient light 
level of the surroundings. 
1. PropertyList props = new PropertyList();  
2. props.add("owner","Fahim");  
3. VirtualArtefact sensor = new  
4. VirtualArtefact("Environment-Light-         
                       Level","Lambdax",prop);  
5. VirtualArtefact lamp = new  
       VirtualArtefact("Light","Lambdax",prop);  
6.  
7. PreferneManage pm = new PreferenceManager();  
8. if(sensor.status){  
9.    sensor.enablePreference(true);  
10.   artefactID=pm.addArtefact(sensor.getName());  
11.   pm.addPositivePhrase(artefactID,"I want to  
                           use overhead light");  
12.   pm.addNegativePhrase(artefactID,"I do not  
                     want to use overhead light");  
13.   sensor.subscribe(this,sensorListener);  
14. }  
15. if(lamp.status){  
16.   lamp.enablePreference(true);  
17.   actionID=pm.addAction("switching");  
18.   pm.addPositivePhrase(actionID,"I like  



ubiPCMM06:2nd International Workshop on Personalized Context Modeling and Management for UbiComp Applications 

 

                            automatic lighting");  
19.   pm.addNegativePhrase(actionID,"I hate  
                            automatic lighting");  
20. }  
21. pm.subscribe(this,preferenceListener); 
22. pm.startRecognizer(); // or pm.stratGUI(); 
23.  
24. // virtual artefact call back  
25. public void sensorListener(Context data){  
26. String context = data.getContextData();  
27. //do something  
28. }  
29. // preference callback  
30. public void preferenceListener(Preference  
                                       data){  
31. String type=data.getType();  
32. String stmt=data.getPhrase();  
33. if(type.equals("action")){  
34.    if(stmt.equalsIgnoreCase("I like automatic  
                                     lighting")){  
35. //do something  
36. }  
37. }  
38. } 

In first 6 lines we have created two artefact instances for this 
application using Prottoy’s virtual artefact component. Please see 
reference for detail of these APIs [7]. In line 7 we have created a 
preference manager instance. Then from line 9 to line 20 we have 
added the light artefact to the preference manager, enable the 
preference for this artefact and added one positive phrase and one 
negative phrase. Similarly for the switching action we have added 
the action, positive phrase and negative phrase to the preference 
manager. Then in line 21 and 26 we have subscribed to sensor 
data using virtual artefact API and subscribed to preference 
manager for preference and control data. Then we started the 
recognizer. Finally we have shown in line 30-38, how the 
preference callback can be used to extract preference information 
that can be utilized by the application developer according to 
application specific way. 

 
Figure 4: Automatically Generated GUI 

In this application we have used only two types of preference 
attributes: artefact preference and action preference. However the 
other three types of attributes can be used in the similar way. 
After application deployment preference manager capture end 
user preference either by speech recognition or by GUI events, 
and modifies the preference file accordingly and notifies the 
application using the callback. For example, in figure 4, we have 
illustrated a snapshot of this component’s GUI for a simple 
application presented in the code listing. The GUI is automatically 
deployed without the application developers’ effort. Since in this 
application context preference, generic preference and control 
preference are not used, the generated GUI does not include them. 
However, if the input mechanism is speech then a speech 

recognizer will run in the background. When the preference 
manager receives a phrase from recognizer that matches the 
predefined phrases provided by the developers it is sent to the 
application using the callback. 

One interesting issue is that, if we add several commands as 
control preference we can actually get the command in the 
callback and can change the applications’ control flow. Thus the 
preference manager also provides the controllability of the system 
besides preference reflection. 

4.3 Sample Application 
We have developed several context aware applications on top of 
Prottoy for evaluating the performances of its various 
components. In this section we will introduce one application 
“RoonRoon” and how preference and controllability are managed 
in the applications using the preference manager component of 
Prottoy.  As mentioned before, preference manager has two types 
of users: 

1. Application Developers: They provide the application 
specific preference options and the phrases that users need to 
use for providing their preference information. 

2. Application Users: They are users of the application. They 
have to use the developer defined phrases to interact with the 
application. The interaction includes personalization and 
control facility. 

4.3.1 RoonRoon 
RoonRoon is a small wearable pet, (a physical embodiment 
artefact, that can monitor users movement). It is very active pet. It 
can talk to you, can listen to you, can monitor your activity and do 
some gestures to notify you about its state of mind. Basically 
RoonRoon has three state of mind: Happy, Normal and Sad. 
RoonRoon becomes happy when you do healthy physical 
movement, it is sad when you don't do any physical activities at 
all and RoonRoon is normal when your movement is in between. 
To notify its sate of mind to user it can vibrate, it can talk and can 
play a music clip. RoonRoon is built with small sensor node that 
contains a 2D accelerometer and a vibrator. The sensor node 
communicates with the host using Bluetooth. The sensor node 
monitors the physical movement and notifies the RoonRoon’s 
host system. A Bluetooth headset with microphone is used to 
communicate with RoonRoon. Figure 5 shows a user wearing 
RoonRoon. For personalizing and controlling RoonRoon activity 
several facilities are provided as shown in table 6. 

 
Figure 5: User Wearing RoonRoon and Application 

Component 



ubiPCMM06:2nd International Workshop on Personalized Context Modeling and Management for UbiComp Applications 

 

User can personalize RoonRoon’s functionality completely using 
voice or GUI (in the host machine). Also user can control its 
behavior by saying explicit commands or can change the 
preference at runtime. All these facilities stem from the preference 
manager component. 

Table 6: Preference Option in RoonRoon 

Preference Types Options 

Action Preference Setting action: What action to 
actuate when it is happy, sad 
and normal. 

Setting action for later 
actuation: User can instruct 
RoonRoon to activate later. 

Context preference Whether to consider user 
movement state during 
actuation: If user is on move 
what RoonRoon should do 
when it is active. 

Control Preference How to activate RoonRoon 
(Manually | Automatic) 

Generic Preference Timing 

 

4.3.2 Observation 
From developers point of view we have found preference manager 
to be very useful, since we only need to provide the preference 
options/phrases and implement the callback. In RoonRoon for 
preference facilities we need to write 97 lines of code 
respectively. We do not need to consider about the speech 
recognition and GUI generation. Furthermore, the structured 
representation of the preference information made the 
implementation of the callback very simple. 

From end user point of view, if they use voice based interaction 
they need to know the appropriate phrases for using the system 
and using those phrases they can personalize and control the 
application. From the evaluation, we have found that when the 
users use the GUI, the system works nice. But sometimes the 
speech recognizer could not identify the phrases correctly; as a 
result the some preference options changes automatically while 
using speech recognizer. This makes the system unstable. 
However, users have found the facilities useful, particularly they 
were convinced with the way preference manager changes their 
preference at runtime. 

5. DISCUSSION 
It has been mentioned in several works [3,4,14,16,20] that the 
most important criteria for the success of a context aware system 
depends how well it copes with humans' implicit understanding of 
the systems. Unfortunately available context-aware middlewares 
in the literature do not consider this as a concern for middleware 
although they emphasize the perspective of personalization. 
Prottoy has taken a unique approach in this perspective. The 
preference manager component of Prottoy provides end users with 
the facility to control the system from their preference point of 
view. We have shown how the speech and/or GUI facilities are 
generated independently from application development codes in 
Prottoy for providing the preference support. We believe this 
approach attempts to provide the flexibility to support the mental 
model of end users to some extent. Of course it is impossible to 

exactly identify users understanding but Prottoy’s options can be 
seen as a tool dedicated for reducing the gap of humans implicit 
understanding of system and context aware behavior of the 
system.  We believe the major contributions of this work are: 

 A guideline and taxonomy for structured representation of 
preference information. 

 A middleware component, that takes care of the acquisition 
and representation mechanism of preference information 
with a loosely coupled architecture. 

5.1 Focus on Specific Issues 
There are few issues that should be explained in detail. In the 
following subsections these issues are considered. 

5.1.1 No Generalization for Application Logic 
Our approach does not attempt to handle the application logic. 
The preference manager receives the information from the 
environment and presents it to the application in a structured way 
using the preference attributes. It is the responsibility of the 
developer to utilize this information in application specific way. 
For example: In the RoonRoon application, if the application 
receives that user does not want to receive any event when he/she 
is walking, we have implemented the logic in the application that 
handles the behavior of RoonRoon when it is active and  the user 
is walking. 

5.1.2 Controllability 
As we have mentioned in section 4 that the “Control Preference” 
attribute contributes to support controllability aspect. Basically 
our approach collects the control command from the user and 
presents it to the application so that developers can handle it in 
application specific way. Since the GUI is automatically 
generated, an indirect contribution of our approach is automatic 
user interface generation from structured control preference 
attribute. 

5.1.3 Preference Classification 
Based on the user study, we have grouped the preference 
attributes. But we do not claim that this grouping is enough and 
can handle all sorts of applications. However we believe our 
taxonomy can be considered as a guideline for further 
classification. In the user study we have mentioned some users 
want the system to identify their preference automatically from 
their previous activities. In such case history information is very 
important. In fact in Prottoy we have Artefact Proxy component 
that provides storage information to the applications. This 
information can be utilized to configure the system analyzing 
users interaction pattern with the system. We are focusing on this 
issue with great interest and hope to come with some interesting 
results soon. 

5.1.4 Interaction Paradigm 
Our GUI and voice provision for collecting users input may not be 
always applicable to all systems. However if we look at the 
architecture of the preference components, it is clearly visible that 
any new interaction mechanism can easily be accommodated 
because of the loose coupling among the components. So if some 
applications need a gesture-based interaction, one gesture 
recognizer can replicate the operations of the speech recognizer. 
Similarly a RFID tag-based interaction can easily be 
implemented. 



ubiPCMM06:2nd International Workshop on Personalized Context Modeling and Management for UbiComp Applications 

 

5.2 Performance 
From the performance point of view, we have found in the sample 
applications that the Preference Manager works pretty well. It 
takes care of extracting and representing preference information 
independently. The APIs we have shown in the implementation 
section demonstrates the simplicity of the approach. The 
automatic GUI generation and voice recognition minimizes the 
developers’ task considerably. The structured representation of the 
preference/control information gives the developer more control 
to handle the flow of the proactive application in users' preferred 
way. Also the number of lines that  developers need to write for 
personalization facilities is significantly small. Considering the 
functionalities of the application we argue such reduction of codes 
minimizes developers' task considerably.  

However, sometimes the speech recognition is not correct and the 
system preference changes that does not conform to users 
preferences. We do not consider it as a major drawback since a 
better recognizer may handle this issue in a better way. Also since 
we do not identify/authenticate the voice of the user, anyone can 
personalize and control a system. So in terms of ownership issue it 
creates a complex problem. Currently we are focusing on these 
two issues to come up with a better resolution. 

6. RELATED WORK 
Although personalization in proactive context awareness is a very 
important issue, there has been very little work in this area. Most 
of the works basically presents their research results based on 
some case study that has been conducted on target users.  
Barkhuus and Dey presented an interesting case study on some 
hypothetical mobile phone services and have shown that users 
prefer proactive services to personalized ones [13]. However their 
focus domain was only mobile phone services and the implication 
cannot be applicable to the context aware system that involves 
many physical artefacts. Some researches that precede Barkhuus's 
work also argued whether information should be pushed towards 
the user or should be pulled by the user for customization of the 
context aware systems [11]. Brown and Jones have also defined 
the interactive and proactive systems where, where 
personalization activities fall into the interactive systems [15]. In 
all three works, they have tried to drawn some level of 
interactivity. However in all cases, we argue that a clear 
distinction between personalized and proactive system is not 
perfectly applicable, because all proactive systems needs to be 
personalized before hand or at runtime so that it matches users 
mental model. Our target user study also confirms this argument. 
The video clip shown to them contains   several proactive 
behavior of the system, but we have found each user wants to 
personalize this behavior. Each user has a different understanding 
and choice; a same proactive behavior cannot be applicable to all 
users because the proactive ness itself needs to personalize by the 
user using the system. We have mentioned and shown in this 
paper that personalization is an inherent part of proactive systems, 
which conflicts with some previous research proposition. We 
strongly argue that there cannot be distinct borderline between 
personalization and proactive ness rather they are complement of 
each other. Our implication is that personalization is an important 
conjugal part for successful deployment of proactive systems. 
 

In traditional desktop computing for providing personalization, 
usually graphical user interface is provided using which user can 
personalize a system/application.  This aspect has been well 

investigated in desktop computing paradigm [9,10,17,19]. 
Considering proactive applications in pervasive environment, 
there are not many woks in the literature that focuses on this 
aspect. Prottoy is a unique middleware because it handles 
personalization and controllability aspects besides discovery, 
extraction, distribution, management and representation of context 
information. Sakai et. al proposes a framework that focus on 
explicitly on end user preferences on the mobile phone 
applications [18]. But their approach cannot be applicable in 
boarder context aware aspects. Also they do not provide any voice 
based interaction technique to control and personalize the system. 
Furthermore, the framework is tightly coupled with the 
application considering their rigid focus on mobile phone domain, 
thus making custom application development fairly complex. In 
[12] a rule based approach has been proposed to control and 
configure information appliances. However, their approach does 
not cover how to personalize the system using such rules. Also we 
believe uttering specific phrases as in our approach for controlling 
appliances are easier for the end users than generating rules for 
context aware behavior. Voice and GUI based interaction for 
controlling smart spaces has been investigated in various projects 
like   Odisea [8], EasyLiving [2] etc. However since in our 
approach speech or GUI has been used just as preferred input 
mechanism based on user study, we believe any standard 
mechanism that has been used in these projects for supporting 
voice or GUI based interaction is applicable in Prottoy. 

7. CONCLUSION 
In this paper we have focused on personalization aspect for 
context aware computing. Initially we have introduced a user 
study and then we have implemented the findings in a component 
of a middleware called Prottoy. From the context aware 
computing point of view we believe this work has a major 
contribution to the context aware community, since Prottoy 
approaches the personalization aspect in a unique way while 
reducing application developers burden considerably.  

8. REFERENCES 
[1] B. L. Brumittet and J. Cadiz. “Let there be light: Examining 

interfaces for homes of the future”; In Interact 2001. 

[2]  B. L. Brumittet, B. Meyers, J. Krumm, A. Kern, and S. 
Shafer. “Easy living: technologies for intelligent 
environments.”; In 2nd International Symposium on 
Handheld  and Ubiquitous Computing, 2000. 

[3] D. A. Norman. The Design of Everyday Things. NY: Basic 
Books, 2002.  

[4] D. A. Norman. Emotional Design. NY: Basic Books, 2004. 

[5] F. Kawsar, K. Fujinami, and T. Nakajima. Augmenting 
Everyday Life with Augmented Artefacts. In Smart Object 
and Ambient Intelligence Conference, 2005.  

[6] F. Kawsar, K. Fujinami, and T. Nakajima. Experiences with 
Developing Context-Aware Applications with Augmented 
Artefacts. In 1st International Workshop on Personalized 
Context Modeling and Management for UbiComp 
Applications, A Workshop in conjunction with 
UbiComp2005, the 7th International Conference on 
Ubiquitous Computing, 2005.  

[7] F. Kawsar, K. Fujinami, and T. Nakajima. Prottoy: A 
Middleware for Sentient Environment. In The 2005 IFIP 



ubiPCMM06:2nd International Workshop on Personalized Context Modeling and Management for UbiComp Applications 

 

International Conference on Embedded And Ubiquitous 
Computing, 2005.   

[8] G. Montoro, X. Alamn, and P. A.Haya. Spoken interaction in 
intelligent environments: a working system. advances in 
pervasive computing. Austrian Computer Society, 2004.  

[9] G. Rossi, D. Schwabe, and R. Guimares. Designing 
personalized web applications. In The tenth international 
conference on World Wide Web, 2001. 

[10] H. K. O. Stiermerling and V. Wulf. How to make software 
softer - designing tailorable applications. In Symposium on 
Designing Interactive Systems, 1997.  

[11] K. Cheverst, K. Mitchell, and N. Davies. “Investigating 
context-aware information push vs. information pull to 
tourists.”; In Mobile HCI 2001.  

[12] K. Nishigaki, K. Yasumoto, N. Shibata, M. Ito, and T. 
Higashino. Framework and Rule-Based Language for 
Facilitating Context-Aware Computing Using Information 
Appliances. In First International Workshop on Services and 
Infrastructure for the Ubiquitous and Mobile Internet, 2005 

[13] L. Barkhuus and A. Dey. “Is Context-Aware Computing 
Taking Control Away from the User? Three Levels of 
Interactivity Examined. ”; In The 5th International 
Conference on Ubiquitous Computing, 2003. 

[14] M. Satyanarayanan. Pervasive Computing: Vision and 
Challenges. IEEE Personal Communications, 2001. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[15] P. J. Brown and G. J. F. Jones. “Context-aware retrieval: 
Exploring a new environment for information retrieval and 
information Itering.”; Personal and Ubiquitous Computing, 
5(4), 1997.  

[16] R. H. Harper. Why People Do and Don’t Wear Active 
Badges: A Case Study. In Computer Supported Cooperative 
Work, 1996.  

[17] S. Farrell, V. Buchmann, C. S. Campbell, and P. P. Maglio. 
“Information programming for personal user interfaces.”; In 
Intelligent User Interfaces, 2002.  

[18] S. H., Y. Murakami, and T. Nakatsuru. Personalized Smart 
Suggestions for Context-aware Human activity Support by 
Ubiquitous Computing Networks. NTT Technical Report, 2-
2, 2004.  

[19] T. Rist and P. Brandmeier. Customizing graphics for tiny 
displays of mobile devices. Personal and Ubiquitous 
Computing, 6(4), 2002. 

[20] V. Bellotti and K. Edwards. “Intelligibility and 
Accountability: Human Considerations in Context-Aware 
Systems.”, Human-Computer Interaction, 16,2-4, 2001.  

[21] Website of Sphinx4 Speech Recognizer. 
http://cmusphinx.sourceforge.net/sphinx4. 

 
 


