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1 Introduction

A special class of tasks that demand huge computational resources is known as embarrassingly parallel. Such
tasks may be split into a large amount of small independent subtasks, known as workunits. The results of the
processed workunits are later assembled. Note that the independence of the workunits makes it inappropriate
to run embarrassingly parallel applications on a supercomputer. This is due to the fact that the key feature of
a supercomputer (the high speed interconnect) is not utilized during the computation. Thus, one needs to use
general purpose instruments like Map–Reduce framework, Beowulf-type clusters for parallel computing (having
modern implementations, such as Simple Network of Workstations SNOW package for R language), and Desktop
Grids (DG), to get results for such embarassingly parallel tasks. It should be pointed out that DG is a specifically
designed, inexpensive, and very powerful option.

A common mechanism used in the DG environment (as well as in other modern distributed computing ap-
proaches, such as Cloud-based computing), is replication. Replication requires each workunit to be processed by
multiple hosts, and when the required number of results from these hosts is obtained, the workunit is said to be
completed. The replication is known to reduce latency in a high-throughput systems [JSW15a], and to increase
redundancy in RAID storage systems [Tho14]. In DG, the replication mechanism is used together with obtain-
ing the quorum of results, which allows to reduce the probability of malicious activity, increase redundancy and
reduce the response time [BYSS+12, HAH09]. The quorum is the number of results (from one to the number of
replicas) that are required to conclude that the workunit is complete. Moreover, when the result is obtained only
approximately, or there is no easy algorithm to validate the result (e.g. in prime number searching problem),
the quorum mechanism is the ultimate solution. Below we use the term workunit to indicate a single subtask of
a DG project before replication (and after obtaining a quorum), and the term result to denote the replica of the
workunit (it will allow to adopt the more common term customer or task to the DG context). We stress that
the replication and quorum settings dramatically affect the performance of the distributed computing systems.
Thus, a model is required to study the effect of the aforementioned settings on the key performance metrics of
the DG system.

The class of queueing models that describes the replication and quorum mechanisms is known as Fork-Join
queues. In the Fork-Join n-server queueing system, a single input of workunits is replicated to r results and
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dispatched to r servers, each having its own queue, according to the dispatching discipline (e.g. to the first
r servers with least residual workload). The r servers act independently and serve the results according to
some queueing discipline (e.g. First-Come-First-Served). After being processed, each result is routed to a single
unlimited join queue. When the quorum q of results of the same workunit is obtained (and waits in the join
queue), the workunit is marked as completed, and the unused results, which are either waiting in the queues,
or being served by corresponding servers, are abandoned. Such models, known as (n, r, q) Fork-Join systems,
have been studied extensively in [Jos16]. Note however, that, despite the simplicity of the model, only few
analytic results are available and that too under stringent conditions (e.g. for the (n, n, n) M/M-type Fork-Join
system [Jos16]), and in most cases only the asymptotic bounds or approximations are obtained [BDVD98, BM97].
In particular, the upper bound on the performance of the (n, r, r) Fork-Join system in [JSW15b] is done with
the help of another closely related type of model, known as Split-Merge, or Split and Match queues. The key
property of the Split-Merge system is that the service of the results of a particular workunit is started only
after the previous workunit is completed (note, that in particular if q = 1 and r divides n, then Split-Merge
and Fork-Join models coincide). The Split-Merge queues have been extensively studied since three decades
ago. Two-server Split-Merge system was considered in [RP85], the departure process from Split-Merge was
studied in [Rao90]. An emerging interest to the Split-Merge systems is related to new applications in Cloud and
distributed systems [FL15].

In this work we suggest a Split-Merge model of the replication and quorum mechanism of a DG, which we
refer below as (n, r, q) Split-Merge model. Our work extends the (n, n, n) Split-Merge model studied in [FL15],
and elaborates the Fork-Join type models studied in [Jos16]. We give exact solutions for particular cases of the
model that are analytically tractable, and study the effect of parameters, r and q, on the performance of the
model by means of simulation.

The work is organized as follows. In section 2 we give a brief description of the DG technology, providing
necessary details for the BOINC-based DG (the standard software used for distributed computing), and discuss
the limitations of our approach. In section 3 we present the model, providing the necessary notation. In section 4
we validate the model and discuss the results of numerical experiments. The conclusion and possible extensions
of the model are given in section 5.

2 BOINC-Based Desktop Grid

DG technology is a distributed computing technology, that allows to utilize the idle resources (central processor
unit time, memory and disk space) of a host in order to complete the computational project that consists of
loosely coupled workunits. The hosts are either provided by volunteers (the Volunteer Computing, VC [NDS14]),
or are a part of some controlled environment, e.g., the computational resources of a company (the Enterprise
Desktop Grid, EDG [Iva15]). The project management, workunit generation, replication and result validation
via quorum mechanism is performed by the management server of the project. During the project evaluation,
the server produces workunits, then generates the necessary number of replicas of a workunit, and dispatches
them to the hosts, either on their requests (VC), or impassively (EDG). The server receives and validates the
results of computation, and assimilates them. However, it also has to deal with several key difficulties of VC:
host availability, trust, malicious activity etc. [NDS14]. We also note, that the VC project requires a lot of social
work with the volunteers, however, discussion of these issues is beyond the scope of this paper.

The EDG is a far less studied concept, which, however, has several simplifications compared to the VC. Namely,
in most cases the hosts of an EDG may be treated as trusted, reliable, controllable and available. Moreover, since
the hosts are directly under control of, say, the enterprise owner, the workunits may be PUSHed to the hosts (i.e.
immediately dispatched), rather than PULLed by them (i.e. requested by clients in asynchronous regime, the
basic technology used in the VC), and moreover may be canceled on demand [YJKA11]. In the present paper we
mostly consider the model of EDG performance controlled by replication and quorum. However, some results of
the study may be related to the VC model as well.

We briefly describe the key performance metrics, which are basically studied for the DG [ETA09]:

throughput — the number of workunits completed per unit time;

latency — the time from workunit generation (arrival) to workunit completion (departure);

delay — the time from workunit generation to the beginning of results computation;

starvation — the fraction of the idle time of the hosts, which is not used for computation;
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completion time — the average time it takes to complete a fixed number of workunits.

Moreover, the centralized structure of the DG network in some cases makes the project management server
become the bottleneck of the system. Indeed, all the tasks related to dispatching, scheduling, result validation
and assimilation, are done on a single server. In the current paper we mainly focus on the throughput, latency
and delay of the DG model.

3 Stochastic Model of Desktop Grid Performance

We consider an EDG project, that has a fixed number, say n, of identical hosts processing the workunits,
generated by management server at instants of a point process with intensity λ. The workunit is immediately
replicated and dispatched upon arrival to the hosts that have the least work left to be finished. Let r 6 n be
the number of results corresponding to a single workunit requested by the management server from the hosts,
and let q 6 r results be required to constitute a quorum. We assume, that the hosts start evaluating the results
of a single workunit simultaneously, and the service time of results on each host is iid with distribution function
FS . Immediately when q results are obtained, computation of r− q incomplete results (if any) is canceled by the
management server. We assume that once received, the result is correct, i.e., the earliest q results received are
valid. We also assume an unbounded time for result computation, that is, q results are eventually received. We
are interested in the performance metrics of such a computation.

Let S1, . . . , Sr be iid random variables corresponding to the (potential) times of computation of the results
of a single workunit. Since the results are started simultaneously, then the time to complete evaluation of the
workunit is distributed as the qth order statistics of r r.v., which we denote by Sq:r. Recall, that

P (Sq:r 6 x) =
r∑

i=q

(
r

i

)
F iS(x)F

r−i
S (x),

where FS(x) := 1− FS(x). In particular, the minimum of S1, . . . , Sr is distributed as

P (S1:n 6 x) = 1− F rS(x).

Thus, the system under study is equivalent to an M/G/nr queueing system with general service time Sq:r.
Note however, that it is not necessary, that FSq:r

(x) := P (Sq:r 6 x) belongs to the same class of distributions,
as FS . Obtaining the distribution of qth order statistics analytically is difficult in general. Note that if the service
times are exponentially distributed with FS(x) = 1 − e−µx, µ > 0, then Sq:r is exponentially distributed only
for q = 1, which provides FSq:r

(x) = 1− e−rµx, r > 1.
The class of distributions, that is closed under the operation of obtaining order statistics, is phase-type (PH)

distribution. A continuous-time PH distribution of order m with representation (β,B) is the time to absorption
of the continuous-time Markov chain with a fixed number m of transient states (phases), initial distribution of
states β = (β1, . . . , βm) and transition subintensity matrix B. The vector b0 = −B1 > 0 gives the intensity of
transitions to absorbing state m+1 (for more details on this type of distributions see e.g. [He14, Neu81]). Recall
also, that if S has a (β,B) PH distribution, then ES = −βB−11 and ES2 = 2βB−21 [BKF14]. Let FS be a
(β,B) PH distribution.

Now we give a procedure to obtain PH representation of the distribution FSq:r
(x) (a detailed discussion on

the procedure in case of non-identical PH distributions may be found in [BN17]).
First, we need to extend the phase space. Denote Mk := {1, . . . ,m}k the set of mk lexicographically ordered

k-tuples corresponding to the states of k processes that have not yet reached absorbing state. Now we construct
the process

{X (t) :=
(
X1(t), . . . , Xrq−q(q−1)/2(t)

)
, t > 0} ∈M := Mr ∪ · · · ∪Mr−q+1,

that corresponds to evolution of the r processes until q absorptions, where the number of components equals
r + (r − 1) + · · · + (r − q + 1). Below we explain the evolution of the process in detail. Initially the first r
components of the process are independent copies of r.v. with PH(β,B) distribution. Thus, the evolution of
the process (X1(t), . . . , Xr(t)) ∈ Mr without absorptions is governed by the mr ×mr subintensity matrix B⊕r,
where

B⊕r = B ⊕ · · · ⊕B︸ ︷︷ ︸
r

.
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Intuitively the notation above means, that only one of the r.v. X1, . . . , Xr makes its own independent transition,
that does not end into absorption.

When an absorption occurs, we exclude the absorbing component, switching to the process
(Xr+1, . . . , X2r−1) ∈ Mr−1. Thus, the transitions of the process related to absorption of one of the compo-

nents are governed by mr × mr−1 matrix B
(r)
0 . We stress, that the rate [B

(r)
0 ]i,i′ of transition from a state

i = (i1, . . . , ir) ∈ Mr to the state i′ = (i′1, . . . , i
′
r−1) ∈ Mr−1 depends on the number of possibilities to remove

exactly one component of i and arrive at i′ as follows

[B
(r)
0 ]i,i′ =

∑

t∈N(i,i′)

b0,it , i ∈Mr, i
′ ∈Mr−1,

where N(i, i′) = {t 6 r − k + 1 : ij = i′j , 1 6 j 6 t, ij+1 = i′j , j > t} is the set of indices of such components of i,
that, being removed from i, convert it to i′. We note, however, that, by exploiting the lexicographical order of
Mr and Mr−1, a more straightforward expression for the transition rate matrix appears

B
(r)
0 = b⊕r0 := b0 ⊗ Imr−1 + Im ⊗ b0 ⊗ Imr−2 + · · ·+ Imr−1 ⊗ b0, (1)

(with obvious conventions if r < 2) where Ij is the identity matrix of size j > 1.
Then the transitions of the process X (t) are governed by the following bidiagonal matrix (where zeroes are

the zero matrices of the corresponding dimension)

Bq:r =




B⊕r b⊕r0 0 0 . . . 0
0 B⊕r−1 b⊕r−10 0 . . . 0
...

...
...

...
. . .

...
0 0 0 0 0 B⊕r−q+1


 . (2)

It remains to note, that the initial distribution of the process is given by

βq:r = (β⊗r,0), (3)

and the transition intensity to the super-absorbing state corresponding to exactly q absorptions of r independent
processes is given by −Bq:r1. It may be seen, that row sums of the matrix Bq:r are zero for all rows, except the
last mr−q+1, which correspond to the phases of process with q − 1 absorptions.

It may be now seen, that the r.v. Sq:r has a PH(βq:r, Bq:r) distribution.
The PH representation allows to obtain immediately the stability condition and performance measures of the

system as follows.
Stability condition of the system

λESq:r <
n

r
, (4)

where, recall,
ESq:r = −βq:rB−1q:r1.

Thus, the maximal throughput of the system equals

θ =
n

r
[ESq:r]

−1.

The explicit forms for the mean stationary delay (ED), as well as the mean latency (EW ), are available for r = n
(for more details see Appendix E in [Jos16], case q = r = n is considered in [FL15]), since the system in this
case is equivalent to an M/PH/1 system:

ED =
λβq:nB

−2
q:n1

1 + λβq:nB
−1
q:n1

(5)

EW = ESq:r + ED. (6)

For r < n it is possible either to use approximation [Jos16], or rely on simulation. Alternatively, the solution of
continuous-time QBD process corresponding to the M/PH/nr system may be obtained in terms of the intensity
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matrix R, which (except some special cases) is derived only numerically. However, discussion of this approach is
beyond the scope of this paper and will be presented elsewhere.

We note, that it is easy to sample exactly from qth order statistics of r independent PH(β,B)-type variables
by sampling from a single PH(βq:r, Bq:r) r.v. The drawback of this approach is the growing size of the number of

phases that requires to process square matrices of order
∑q−1
i=0 m

r−i = (mr+1−mr−q+1)/(m−1). Note however,
that it is mostly a technical limitation.

Now we focus on the latency in some particular cases, that are most analytically tractable.
An important particular case is the M/M/nr -type system with exponential interarrival times. This corresponds

to an (n, r, 1)-type replication with exponentially distributed service times (with intensity µ). In this case we
have (n, r, 1) split-merge model, i.e., we send r results and wait for the fastest, we obtain the Exp(rµ) service
distribution of the minimum of r exponentials, and obtain the M/M/bnr c-type model. That is, the sojourn time
equals

EW =
1

rµ
+
C(bn/rc, λ/(rµ))

bn/rcrµ− λ , (7)

and in particular, if r = 1 (no replication at all), the sojourn time equals

EW =
1

µ
+
C(n, λ/µ)

nµ− λ , (8)

where

C(n, λ/µ) =

[
1 + (1− ρ)

n!

(nρ)n

n−1∑

k=0

(nρ)k

k!

]−1
(9)

is the Erlang C-formula. On the other hand, if r = n (full replication), we obtain the M/M/1 system with
service intensity nµ, and the mean stationary sojourn time is EW = 1

nµ + 1
nµ−λ .

4 Numerical Experiments

In this section we discuss the results of several numerical experiments performed for illustrative purposes and
quantitative analysis.

First, we study the proximity between the exact value (6) of average stationary sojourn time of the DG model
with (n, n, q) replication, and a simple mean estimator obtained by stochastic modeling of the M/PH/1-type
system with general service time Sq:r. First we define a 3-phase PH(β,B) distribution by

B =



−4 2 0
2 −5 1
1 0 −1


 , b0 =




2
2
0


 , β = (0.2, 0.4, 0.4). (10)

We set n = r = 3 and q = 2, and derive βq:r from (3), and Bq:r from (2). We consider N = 5 · 105 tasks arriving
at epochs of a Poisson process (with intensity λ), with service times generated according to PH(βq:r, Bq:r)
distribution. We fix λ = 0.9µ and µ = [ESq:r]

−1. Note, that the average stationary latency in the system
obtained from (6) is 7.42. The results of the experiment shown on Fig. 1 show the proximity between the
theoretical result and practical estimaion.

Next, we study the dependence of the theoretical value of sojourn time (6) in a system with (n, n, q) replication.
We fix the PH(β,B) distribution used in the first experiment. We vary r = 1, . . . , 5 and q = 1, . . . , r. We depict
the theoretical value obtained from (6) for each pair (q, r) by the size of a circle on the graph. It may be easily
seen form Fig. 2, that the sojourn time is increasing both for increasing q and decreasing r.

Finally, we illustrate the system with exponential service times. We consider (n, r, q) replication with n = 100,
q = 1, 2, 3 and r = 1, . . . , 10. We perform a parameter sweep experiment for all (q, r) pairs s.t. q 6 r. We also
consider the theoretical value (7) for the case q = 1. We depict the dependency of the sample mean latency
obtained by simulation of the M/G/bnr c system with Sq:r obtained as an q-th order statistics of r exponentially
distributed r.v. and exponentially distributed interarrival times with λ = 0.9bnr c(ESq:r)−1. For a fixed pair (q, r)
we generate the input of 5 ·105 tasks and evaluate the delay of each task at arrival by means of multiserver system
simulation using the hpcwld package for R language. The results of the simulation are presented on Fig. 3, that
coincide with the previous experiment.
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Figure 1: Comparison of the theoretical value of average stationary latency EW obtained from (6) and sample
mean for 5 · 105 tasks

5 Final Remarks

In this paper we have presented a model of the EDG system with (n, r, q)-type replication and quorum mech-
anism. The results of numerical experiments illustrate the practical applicability of the model and show good
correspondence to the obtained, as well as earlier known, theoretical results.

Note however, that the numerical experiments mostly cover the so-called log-convex distributions. It is known,
that the monotonicity of dependence of the mean stationary latency on the values q, r may the opposite, compared
to the log-concave distribution (for a detailed discussion on the impact of log-concavity/convexity on latency for
the Fork-Join type models see [Jos16]). Moreover, the dependence may not be monotonic for the distributions
with the so-called heavy tails (e.g. Pareto distribution). Thus, a more intensive numerical study is required, and
we leave this for future research.

We also note, that an extension to heterogeneous servers may be done taking into accounts results of [AM01],
and order statistics of heterogeneous PH distributions are discussed in [BN17].
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