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Abstract

We present an advanced brute force attack on the A5/1 keystream gen-
erator, that is still widely used in modern GSM networks. To greatly
reduce the search space, we use a well-known idea, introduced by R.
Anderson more than 20 years ago. The main contribution of the present
paper is the implementation of Anderson’s attack on a GPU platform
in bit-slice technique. The preliminary estimates of the attack’s speed
showed that, with the use of GPUs processing power, the attack could
be performed in the real time on a modern computer cluster or in a
volunteer computing project. To verify our estimates with the use of
the BOINC technology we launched a volunteer computing project and
executed our variant of Anderson’s attack within it. As a result, 10
A5/1 cryptanalysis problems were solved in 7 days in the project. The
results presented in this work provide yet another proof of A5/1’s cryp-
tographic weakness that shows that this generator is totally unsuitable
for transmission of any kind of sensitive data through modern GSM
networks.

1 Introduction

The A5/1 keystream generator has a key length of 64 bits. It is used to encrypt voice and SMS traffic in 2nd
generation (2G) GSM networks. A5/1 is one of the most publicly recognized cryptographic algorithms.

The growth of the computational power of GPUs and FPGAs made it possible to put into practice the attack
on A5/1, which was described by R. Anderson in 1994 [And]. This attack is based on reduction of the search
space size from 264 to 253. The FPGA-based variant of Anderson’s attack was already performed in 2008 in the
COPACOBANA project [GNR08]. So, the primary goal of our work is to demonstrate the viability of GPU-
based variant of the attack. Let us note that GPUs are much easier to operate than FPGAs. Besides, the former
belong to the class of consumer-grade devices and could be found in any modern PC, while the latter belong to
the class of specialized equipment. With the usage of the BOINC software platform [And04], these qualities of
GPUs allowed us to implement the attack in the form of a volunteer computing project using idle computational
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Figure 1: The A5/1 generator scheme

capabilities of the project members home PCs. Our estimates of the attack’s speed were based on our previous
work[BS16].

Let us make a brief outline of the article’s contents. In Section 2 we describe the A5/1 algorithm along
with some advanced brute force attacks on it. Section 3 introduces bit-slicing technique and goes through
important details of implementing Anderson’s attack. Section 4 provides a look into the internal organization of
the volunteer project which was launched by us to perform the attack. Section 5 contains the retrospective of
A5/1 cryptanalysis works related to our study.

2 A5/1 keystream generator

The A5/1 keystream generator consists of 3 linear feedback shift registers (LFSRs [MVO96]), defined by the
following primitive polynomials:

LFSR1 : X19 +X18 +X17 +X14 + 1;

LFSR2 : X22 +X28 + 1;

LFSR3 : X23 +X22 +X21 +X8 + 1.

The illustration of the A5/1 generator’s scheme can be seen at Figure 1.
The outputs of the LFSRs are mixed by a linear function (addition modulo 2), that provides the best correlation

immunity. Non-linearity of the cryptanalysis equations is achieved by clocking the registers asynchronously —
on each clocking of the generator any of it’s LFSR can be shifted or it can retain its current state. LFSR with
index j ∈ {1, 2, 3} is shifted if the following Boolean function χj takes the value of 1:

χj = (bj ≡ majority(b1, b2, b3));

majority(A,B,C) = (A ∧B) ∨ (A ∧ C) ∨ (B ∧ C).

Here b1, b2, b3 denote clocking bits marked at Figure 1 by black wedges. Conversely, if at some moment χj = 0,
LFSRj is not shifted (it remains in its last state).

Further, we will focus on the idea of the attack that was suggested by R. Anderson in 1994 in a small essay
on the A5/1 cryptographic resistance [And]. Next we describe the details of Anderson’s attack.

Anderson’s attack is a typical example of a guess and determine attack (see, for example, [Bar09]). Suppose
that we know the bits filling LFSR1 and LFSR3, and bits of LFSR2 from the beginning of the register to the
clocking bit (bits 31 to 41, see Figure 2). Next, suppose that we know 64 bits of the keystream. It was shown by
R. Anderson, that 11 unknown bits of LFSR2 can be figured out without any additional guesses. This is possible
because the following data is known:

• the clocking bits (so, the clocking schedule for the next 11 shifts of LFSR2 is also known);

• 2 out of 3 LFSRs output bits, which are used as input for the XOR operation;
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Figure 2: The set of guessing bits used in Anderson’s attack (greyed out).

• the result of the XOR operation (from the keystream).

Therefore, one can efficiently derive the unknown bits of LFSR2 one by one, by clocking the generator and
applying XOR operation to corresponding keystream bits and output bits of LFSR1 and LFSR3.

The considered algorithm, that is used to determine the unknown 11 bits of LFSR2, makes it possible to
mount a brute force attack on the A5/1 generator over the search space with the size of 253. The simplicity
of the algorithm provides an opportunity to implement it on a specialized computational architecture. One
such implementation was built with FPGAs by authors of [GNR08]. In the following sections we describe our
implementation of this attack for modern GPUs.

3 Bit-slicing-based Implementation of Anderson’s Attack

The efficiency of a brute force attack is defined by two parameters: the speed of checking of the key candidates
and the size of the search space. R. Anderson’s idea described in the previous section gives us the search
space with the size of 253. Instead of using the “naive” implementation of the A5/1 generator, to speed up the
key candidates checking procedure one can opt to use more sophisticated alternatives. In [BS16] we evaluated
the performance of two different fast implementations of A5/1 generator. The first one was based on an idea of
precomputation of the states of LFSR1-3, and keeping these states in PC’s memory. This approach demonstrated
a considerable speed-up against “naive” implementation. A similar method of precomputation of LFSRs was
described in [BSW00]. However, in [BS16] we found its performance inferior to another one implementation,
that is based on bit-slicing technique. Next we briefly describe the idea of this technique, and its application to
Anderson’s attack.

Consider an arbitrary total Boolean function f : {0, 1}n → {0, 1}. This function can be represented in the
form of the Boolean circuit C(f) over some complete basis B. A common example of such basis is B = {∧,∨,¬},
but we will use the basis B = {∧,∨,¬,⊕} instead, since it better fits our goals.

Now consider the problem of calculating the arbitrary total Boolean function f : {0, 1}n → {0, 1} over all
2n possible inputs. For each input X ∈ {0, 1}n one can calculate the value of f as a superposition of the basis
functions, according to the circuit C(f). We can select a fixed order of calculation of basis functions from
C(f), that results in getting the value of f . Let m be the number of internal nodes in C(f). Assuming that
the calculation of one basis function takes one processor instruction, the computation of f over all inputs from
{0, 1}n will take m · 2n instructions.

SIMD(Single Instruction, Multiple Data) architecture calculates many copies of the same function over many
different memory cells with a single instruction. When a modern computational device executes a bitwise logical
instruction on its general-purpose registers (GPRs), it effectively acts as a SIMD device, in which individual bits
of GPRs play the role of the individual memory cells. The calculation order of functions in the circuit C(f)
always stays the same. This makes it possible to compute this function over as many inputs, as there are bits in
the device’s GPR. If D is the device’s GPR capacity, we can simultaneously process D instances of the circuit
C(f), calculating the value of f for inputs X1, ..., XD.

Consider the arbitrary basis function g with arity 2, and the corresponding internal node of the circuit C(f).
We denote it as G(x1, x2), meaning that it has a single output and two inputs, which values are determined
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by Boolean variables x1, x2. Next, let us link g with three GPRs denoted R1(g), R2(g), R3(g), each of which is
comprised of D single-bit memory cells, filled in the following way:

• register R1 contains D values of the variable x1, corresponding to X1, ..., XD;

• register R2 contains D values of the variable x2, corresponding to X1, ..., XD;

• register R3 contains D matching values of the function g.

Suppose that all D instances of g can be computed as a result of a single bitwise instruction applied to registers
R1(g), R2(g), while their result is put into register R3(g). If this fact holds for every basis function in the circuit
C(f), the computation of f for all inputs from {0, 1}n will require m · 2nD instructions. This is the key idea of
bit-slicing technique.

We will call the process of computation of the function f (represented by the circuit C(f) with m inner nodes)
on a single input from {0, 1}n a thread, by analogy with the computational threads in a SIMD device. Thus,
with the use of bit-slicing technique, it takes m instructions to execute D threads.

Now we describe the details of bit-slicing implementation of the A5/1 generator. Suppose that a computational
device is able to calculate D instances of any function from the basis B = {∧,∨,¬,⊕}. Each generator’s cell
with number n, n ∈ {1, ..., 64} gets a corresponding word Wn ∈ {0, 1}D:

LFSR1 : W1, ...,W19;

LFSR2 : W20, ...,W42;

LFSR3 : W43, ...,W64.

In bit-slicing technique, the shifting of the LFSR register (LFSR1 in this example) will take the following
form:

W ′1 = W19 ⊕W18 ⊕W17 ⊕W14,

W ′n = Wn−1, n ∈ {2, ..., 19},

where ⊕ is the bitwise addition modulo 2 of Boolean vectors of length D. The calculation of the keystream bit
will look like:

Wout = W19 ⊕W41 ⊕W64.

The conditional clocking is somewhat more complex to implement in bit-slicing technique. First, to know if
the LFSRs should be shifted or not, one needs to calculate the corresponding shifting flags F1, F2, F3 using the
majority function:

Wmaj = maj(W9,W30,W52) = (W9 ∧W30) ∨ (W9 ∧W52) ∨ (W30 ∧W52),

F1 = W9 ⊕ ¬Wmaj ,

F2 = W30 ⊕ ¬Wmaj ,

F3 = W52 ⊕ ¬Wmaj .

Here all operations are bitwise operations over vectors of the length D.
To implement the conditional shifting of an LFSR one can use the bitwise counterpart of the bitselect function

of arity 3:

a, b, c ∈ {0, 1};

BS(a, b, c) =

{
b, a = 1,
c, a = 0.

If the computational architecture lacks the hardware implementation of this function, it can be emulated with
the usage of the standard bitwise functions corresponding to the matching functions from the basis B:

BS(a, b, c) = (a ∧ b) ∨ (¬a ∧ c).
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Table 1: Performance of two implementations of Anderson’s attack (search space size is 253) on a CPU and a
GPU, measured in millions of key’s checks per second.

Computational device Bit-slicing LFSR precomputation

CPU Intel Core I7 930 37 7
GPU NVIDIA GTX 1050 Ti 9180 483
GPU NVIDIA GTX 1050 Ti (LOP3.LUT) 11950 -

Shifting LFSR1 with the use of the bitwise counterpart of BS(a, b, c) and the corresponding shifting flag F1

looks the following way (example for LFSR1):

W ′1 = BS(F1, (W19 ⊕W18 ⊕W17 ⊕W14),W1);

W ′n = BS(F1,Wn−1,Wn), n ∈ {2, .., 19}.

Some important details about bit-slicing implementation of Anderson’s attack should still be covered. This
attack follows 2 steps:

1. calculation of the values of 11 bits of LFSR2 lying left of the clocking bit using the information from the
guessed 53 bits and the known keystream;

2. clocking the generator as normal to check if the guessed filling of the generator matches the known keystream.

The irregular clocking of the A5/1 generator makes it generally impossible to predict how many clockings of
the generator (bits of keystream) would be needed to shift 11 times LFSR2 to complete Stage 1 of the attack.
Therefore, we again put to use the bitselect function to implement the split of the attack into 2 stages. Each
individual thread should be able to advance from Stage 1 to Stage 2 independently of other threads. To achieve
this, we introduce the special Boolean vector φ = (φ1, ..., φD), called attack stage flag. The thread with number
i, i ∈ {1, ..., D} being in Stage 1 of the attack corresponds to φi = 0, and Stage 2 of the attack corresponds to
φi = 1. Let y1, ..., y64 be the bits of the keystream analyzed. Now the shifting of LFSR2 takes into account the
stage of the attack through the usage of the attack stage flag:

W ∗41 = BS(φ,W41, (y ⊕W19 ⊕W64));

W ′20 = BS(F2, (W
∗
41 ⊕W40),W20);

W ′n = BS(F2,Wn−1,Wn), n ∈ {21, ..., 41}.

Here W ∗41 is a helper vector holding temporary data, y is the current bit of the keystream, in the form of a
vector consisting of D copies of the corresponding bit of the keystream. The goal of Stage 1 is to calculate all
11 unknown bits of LFSR2 by using known keystream and guessed last bits of LFSR1 and LFSR3. At Stage
2 the whole generator’s state is known, and the generator is clocked as normal. For the i-th thread the attack
stage flag φi is set to 1 after LFSR2 of this thread was shifted 11 times. To count the number of LFSR2 shifts
individually for each thread, the bit-slicing implementation of an incremental counter is used.

Anderson’s attack described above was implemented on an NVIDIA GPU with the use of CUDA SDK 8.01.
The comparison of the performance of a GPU to a CPU in execution of bit-slicing and LFSR precomputation-
based implementations of Anderson’s attack is shown in Table 1. The last row of Table 1 corresponds to the
case, in which the bitselect function is implemented using the LOP3.LUT2 instruction.

Data provided in Table 1 tells us that even one mid-range consumer GPU is enough to make Anderson’s
attack runtime practical (it will take around 250 hours). A modern computational cluster outfitted with GPUs
will perform the attack in mere minutes. Anderson’s attack’s advantage over the rainbow-tables attack [Noh10]
is the former’s ability to restore the secret key from 64 bits of keystream with the 100% probability. Its advantge
over the attack described in [GNR08] is in the usage of a consumer-grade off-the-shelf hardware.

1https://developer.nvidia.com/cuda-toolkit
2LOP3.LUT is a special instruction that implements arbitrary bitwise functions of arity 3 in hardware.
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Table 2:
Original secret keys and collisions of the A5/1 generator (in hexadecimal format).

Instance Keystream Secret key

1 0x770c0410869366f1 original 0x11b8e4340276c4ee
collision 0x42634f3266d302a3

2 0xae9590560c26e9ed original 0x4c656fd73e59ab9b
collision 0xcf23e4722e3cfb68

3 0xdd4b3ab7f6cf8224 original 0x09429d158555f4b3
collision 0x09429d158553e967
collision 0x40e5f2c8128a1781

4 0x93cd42d97eb75fd9 original 0xfa386a338355aafd
collision 0xf9e81096bb4d0aad
collision 0xf9e81096bb4a8556

5 0x925e423c98121152 original 0xe5cf81035ce5fbe2
6 0x3b3464bd6e377b87 original 0x9625e9d810b46248

collision 0xf5aa1be2d6c36e18
7 0x0367d29121dd1677 original 0xd1b8b06086edf162
8 0x6b49230b7fc0249d original 0xbe81a896968c486b
9 0xc65847556752d14c original 0xb6f65d2855a211c0

collision 0xb6f65d2855a508e0
10 0x07bb7f83d26072ec original 0x122a1a2955286b9f

collision 0xd5151aaa50490012

4 Implementation of Anderson’s Attack in a volunteer computing project

In order to solve 10 cryptanalysis problems for the A5/1 keystream generator we launched the volunteer comput-
ing project AndersonAttack@home. This project is based on BOINC (Berkley Open Infrastructure for Network
Compuitng [And04]). The client (computing) application of this project is based on the CUDA implementation,
which was described in the previous section.

In the first stage of our experiment, a family of workunits was generated on the project server. In each
workunit values of 12 out of 53 guessing bits (see Figure 2) were fixed. Thus, 40960 workunits were generated
for 10 cryptanalysis problems in total. In the next stage, all generated workunits were processed in a desktop
grid formed by the project’s hosts. This took about 7 days. As a result, solutions for all considered problems
were successfully found (see Table 2). It should be noted, that for 7 out of 10 problems the collisions were found.

Usually, the value of deadline for workunits in BOINC projects is 10-14 days. In our case, we used a deadline
of 1 day, because the experiment was quite small. That is why all workunits were processed quickly. The same
effect could be achieved by task scheduling (see, e.g., [MNI15]). In the considered experiment the project’s
performance was comparable to that of a computational cluster equipped with 30 modern GPUs. According to
the BOINC statistics, 143 active hosts belonging to 90 volunteers participated in the experiment. Here by active
host we mean a host which correctly processed at least one task.

5 Related work

It seems that the first practical attack on A5/1 was presented in [GNR08]. Its authors implemented the optimized
variant of Anderson’s attack on a specialized computational device of their own design, assembled from 120
“Xilinx Spartan 3” FPGAs. They state that the attack took about 6 hours. [GKN+08].

In [SZBP11] using SAT-based cryptanalysis 3 instances of the A5/1 cryptanalysis were solved in a service
grid. In SAT@home [ZMK+16] volunteer computing project several dozens cryptanalysis problems for the A5/1
generator were solved (only one burst — 114 bits of keystream — was used each time)[SZ16].

The A5/1 Cracking Project put rainbow-tables (2 Tb in total) for A5/1 into public domain at the end of 2009
[Noh10]. By analyzing 2 frames (912 bits) of known keystream with the help of these tables one can restore the
secret key with probability of success over 85%.
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6 Conclusion

In this paper, we presented a GPU-based implementation of Anderson’s attack on the A5/1 keystream generator.
The meticulous adaptation of this attack to the SIMD architecture made it possible to solve several cryptanalysis
problems in a BOINC-based desktop grid.
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