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Abstract. CoCoA-5 is an interactive Computer Algebra System for
Computations in Commutative Algebra, particularly Gröbner bases. It
offers a dedicated, mathematician-friendly programming language, with
many built-in functions. Its mathematical core is CoCoALib, an open-
source C++ library, designed to facilitate integration with other soft-
ware.
We give an overview of the latest developments of the library and of the
system, in particular relating to the project SC-Square.

1 Introduction

We briefly recall what is described in [2]. The CoCoA project dates back to 1987,
with the first public release of its interactive system in 1989. The aim has always
been to offer a convenient software laboratory for studying Computational Com-
mutative Algebra, specifically ideals of multivariate polynomials (e.g. Gröbner
bases).

In the last few years the CoCoA software has undergone a profound change
in its internal design: its “mathematical expertise” resides in the C++ software
library [3]; the interactive system [7] uses an interpreter which grants easy access
to CoCoALib’s capabilities. All code is free and open source (licence GPL-3).

We give an overview of the latest developments of the library and of the
system (release May 2017). There are some aspects of particular interest to
the project SC2. One is the efficient computation of the minimal polynomial
(Section 3.2) which is the main tool for many operations on 0-dimensional ideals,
and also for studying polynomial systems. Another aspect is first prototypes in
communication between CoCoA and MathSAT (Section 3.3).

2 News about the overall design

The design of CoCoALib and CoCoA-5 is obviously quite stable (because of their
size and age), so naturally the main changes are the addition of numerous new
functions. There are, nevertheless, a few handy changes in the user experience:

– verbose mode for printing “internal progress information”;
– clean interrupt handling (including a “timeout” capability).
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2.1 Verbose mode

The new function SetVerbosityLevel(N) sets the global verbosity level to N.
Various functions defined in CoCoALib and in the CoCoA packages print out
some internal progress messages when the global verbosity level is higher than a
certain threshold value. Higher levels trigger greater verbosity, and the manual
entries for each function list the relevant thresholds. This is useful to developers
who want to understand what is happening inside important functions (and also
to the curious).

For instance, the lowest level giving information on the progress of Gröbner
bases is 100: everytime a new polynomial is found, a line like this is printed:

myDoGBasis[1]: --New poly in GB: len(GB) = 5 len(pairs) = 2

Besides GBasis, verbose information can be produced by numerous other
functions: for instance, those described in Section 3.2. Indeed, the number of
functions which respond to the verbosity setting is steadily increasing — details
are in the documentation (e.g. in CoCoA-5 type “?verbose”).

Since Gröbner Basis computation is quite pervasive in CoCoA its verbosity
threshold level is quite high, whereas in general other functions have levels in the
range 10–99. The values 1-9 are effectively reserved for user defined functions,
so that they may be used without triggering any verbosity from CoCoA.

2.2 Interrupt handling

In some hard Gröbner basis computations, by setting the verbosity level, one may
see that the number of pairs yet to be processed is unfeasibly high. The user may
then choose to interrupt the computation by typing Ctrl-C: the computation will
be interrupted as soon as the reduction of the current S-polynomial terminates.
The user may instead set a timeout : the calculation is automatically interrupted
after the specified computation time.

This interruption cancels the incomplete Gröbner basis computation, and
returns the computer to the state it was in just before the Gröbner basis compu-
tation was begun. Doing this correctly is not entirely trivial: thanks to its clean,
exception-safe design, CoCoALib guarantees that no memory has been lost, and
no data has been modified.

The design for doing it is quite simple: it is enough to add a call to the Co-
CoALib function CheckForInterrupt in potentially critical loops: this function
checks if the “interrupt flag” has been set, and if so, throws an exception. Thus
it may be used in any function in CoCoALib (even those defined by users of Co-
CoALib, if they have been written in an exception-safe way!), and the number
of interruptible CoCoALib functions is gradually increasing.

On the other side, all code written in the interpreted CoCoA language is
intrinsically interruptible, with no addition to the code, thanks to the design of
the interpreter of CoCoA-5.

A small aside: one might like to interrupt a computation, perform some
checks and then decide whether to continue the computation from that stage.
This option is not (yet) implemented.



2.3 Removing old features

As software develops, sometimes a few old functions become obsolete because a
better design had evolved. For some users this fact is a deterrent to updating to
the latest software release, for fear that their programs would stop working.

In CoCoA-5 and CoCoAlib we have opted to first declare such functions
obsolescent, i.e. they will become obsolete in a few years time. We put them into
the special files, obsolescent.cpkg5 for CoCoA-5, and obsolescent.[HC] for
CoCoALib. They still work, but print out a message warning about obsolescence
but also giving useful guidance on the new function to call instead. We use this
approach to allow users time, and provide help, to update their programs.

3 News about CoCoA-5 and CoCoALib

A list of all new functions and features in CoCoA-5 can always be found at the
CoCoA-5 download page, or obtained by running the function RelNotes(). In
addition, a fully detailed description of the work and decisions made for each
release of CoCoA-5 and CoCoALib may be found at the CoCoA Redmine website
https://cocoa.dima.unige.it/redmine.

Most of the new functions added to CoCoA-5 have actually been added to
CoCoALib, and then made available to CoCoA-5; the remaining few will be
ported to CoCoALib shortly.

Here we mention some of the more significant additions.

– several efficient operations specifically for 0-dimensional ideals: (Section 3.2)

• MinPolyQuot

• PrimaryDecomposition

• IsMaximal, IsPrimary, IsRadical, radical

• FrobeniusMat, FrobeniusBasis

• QuotientBasisSorted

– Algebraic extensions and FactorAlgExt

– rgin — generic initial ideal wrt. DegRevLex ordering (regardless of the or-
dering associated to the polynomial ring)

– IdealOfProjectivePoints — the optimized C code which was written for
CoCoA-4 (see [4]) is now accessible from CoCoALib and CoCoA-5

– more convenient access to Gröbner bases in the Gröbner fan (e.g. via the
functions GroebnerFanIdeals and CallOnGroebnerFanIdeals)

– access to several functions of the Gfan library [11]: for example
GFanContainsPositiveVector, GFanGeneratorsOfLinealitySpace,...

– BettiNumbers — for both standard and multigraded resolutions

– StagedTrees — a surprising application of monomial ideals to the investi-
gation of putative causal interpretations of datasets in statistics (see [10])

– faster conversion from a string to a RingElem — this is now the best way
to read a large polynomial with very many terms



3.1 News specific for CoCoALib

Special effort has always been invested in making the CoCoALib code clean and
portable; it now has a more portable configure-build-install procedure.

CoCoALib is currently written using standard C++03; this does mean that
compilation with a C++11 compiler may produce some harmless warnings about
“deprecated” features. A proper update to a newer C++ standard is imminent.

3.2 Minimal polynomials

It is well-known that if K is a field and R is a zero-dimensional affine K-algebra,
i.e. a zero-dimensional algebra of type R = K[x1, . . . , xn]/I, then R is a finite-
dimensional K-vector space. Consequently, it is not surprising that minimal
and characteristic polynomials from Linear Algebra can be successfully used to
detect properties of R. For example, in the quotient ring R = Q[x, y]/(x2, y2)
the minimal polynomial for the residue class of x + y is z3.

This point of view was taken systematically in the book [12] where the par-
ticular importance of minimal polynomials (rather greater than that of charac-
teristic polynomials) emerged quite clearly. We studied the theory of minimal
polynomials, developing efficient algorithms to compute them, and finding prac-
tical and efficient applications; here we recall the main results we described in [5]
and in [13].

The first step was to implement in CoCoALib algorithms for computing the
minimal polynomial of an element of R and of a K-endomorphism of R (functions
MinPolyQuotElim, MinPolyQuotMat, MinPolyQuotDef).

For computing minimal polynomials of elements of an algebra over Q we use
a modular approach and the rational reconstruction described in [1]. As always,
various obstacles for termination and correctness had to be overcome. In partic-
ular, we deal with the notion of reduction of an ideal modulo p, introducing the
related notions of ugly, usable, good and bad primes. This is further investigated
in a forthcoming paper [6].

After having made the computation of minimal polynomials quite swift, we
then showed how they can be successfully and efficiently used to compute several
important invariants of zero-dimensional affine K-algebras. More specifically,
we described algorithms which determine whether a zero-dimensional ideal is
radical, maximal or primary, and another to compute the radical of a zero-
dimensional ideal. (In particular, it is noteworthy that in the case of coefficient
fields of small finite characteristic, Frobenius spaces play a fundamental role,
as described in [12, 13]). Finally, we described how to compute the primary
decomposition of a zero-dimensional affine K-algebra.

As we said, all the algorithms described have been implemented in CoCoA.
Their merits are illustrated by the tables of timings in [5].

The efficient computation of minimal polynomials is also a key ingredient in
solving polynomial systems, and together with the other derived algorithms we
believe we can develop good tools for the SC2community.



3.3 Communication with MathSAT

The philosophy behind CoCoALib prizes ease of use for humans, but also ease
of communication with other systems, as already mentioned in [2]. There is a
“symbiotic” integration with Normaliz [9], a system specialized in computations
on affine monoids, vector configurations, lattice polytopes, and rational cones.
CoCoALib and CoCoA-5 have functions calling libnormaliz (see [8]), while Nmz-
Integrate uses CoCoALib for multivariate polynomial arithmetic.

The first few steps along these lines have recently been made between Co-
CoALib and MathSAT in strict collaboration with Alberto Griggio. In particular,
some practical aspects were discussed, outlining these directions of development:

1. MathSAT using CoCoA’s RingTwinFloat arithmetic (instead of arbitrary
precision rationals, GMP mpq);

2. Making a collection of systems of polynomial equalities and inequalities aris-
ing from typical MathSAT computations, to be solved by CoCoALib and
CoCoA-5;

3. enabling CoCoALib to call some of MathSAT’s functions;
4. CoCoA-5 offering a handy interface for MathSAT through CoCoALib;
5. MathSAT using CoCoALib for solving systems of polynomial inequalities.

The development work since then has reached the following stage:

1. We have a working prototype using just RingTwinFloat which appeared
to make MathSAT faster in those (rare) cases where MathSAT needs very
high precision: MathSAT currently uses a “double arithmetic” adapting to
the computations by using, as necessary, machine integers or GMP mpq; it
is clearly unbeatable when using machine arithmetic, but it’s worth further
testing for the cases needing high precision.

2. We made a first collection of benchmark examples, and tested some of them
in CoCoA-5. Inequalities are not trivially dealt with by CoCoA’s algorithms,
but we got very encouraging results in detecting unsat, due to the very
special structure of the examples tested. We now need to design how to make
the conversion to CoCoA-5 of these examples (more) automatic, providing
a wide spectrum of cases to test.

3. The first prototype of calling MathSAT through CoCoALib is in the ex-
ample ex-MathSat1 calling msat solve. This is already part of the Co-
CoALib distribution from version 0.99550 (released in May 2017). A more
evolved interface, with a proper CoCoALib C++ wrapper class for the data
type msat env is part of the forthcoming CoCoALib 0.99560 distribution
(September 2017). It still needs some common development with MathSAT
to minimize the overhead of data conversion.

4. The first prototype of calling MathSAT functionalities via CoCoA-5 is the
function MSatLinSolve. This is part of the CoCoA-5.2.2 distribution (based
on CoCoALib 0.99560, September 2017). Type ? MathSAT in CoCoA-5 for
the latest news and examples.



5. Future. With the work about minimal polynomials (Section 3.2) CoCoALib
has a new tool for tackling systems of polynomial equations, but inequali-
ties are not (yet) in its nature: the examples from item 2 will inspire new
investigations for this SC-Square goal.
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