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Abstract. System Invariant properties at various locations play a crit-
ical role in enhancing confidence in the reliability of system behavior, be
it software, hardware and hybrid systems. While there has recently been
considerable interest in researching heuristics for generating loops in-
variants, almost all developments have focused on generating invariants
typically handled using SMT solvers including propositional formulas,
difference and octagonal formulas and linear formulas. While we have
been investigating methods based on symbolic computation algorithms
including Gröbner basis and approximate quantifier elimination for over
a decade (see [14, 36, 42, 45, 26, 27, 43, 44, 28, 50, 49, 16, 18] for some of our
papers), the SMT and CAV community have only recently started con-
sidering nonlinear polynomial invariants since many programs, especially
linear filters, hybrid systems, and other applications, need nonlinear in-
variants for analysis of their behavior.
We present an overview of our research with a focus on our work on
nonlinear invariant generation [16] as well as interpolant generation [18]
from the perspective of their role in software and hybrid system analysis.
Our approach is in sharp contrast to some recent approaches in which
nonlinear polynomials are approximated using linear inequalities and
symbolic-numeric techniques. We also present new research on quantifier
elimination heuristics for invariant generation and interpolant genera-
tion. Particularly, we give efficient algorithms for interpolant generation
for quantifier-free theories of equality on uninterpreted symbols and oc-
tagonal formulas. We outline problems and challenges for future research.

1 Introduction

We give an overview of the elimination methods-both algebraic, geometric and
logical, being pursued in our research group for static system analysis. We dis-
cuss various heuristics based on elimination for automatically generating loop
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invariants, termination analysis, interpolant generation and related construc-
tions found useful for static program analysis. The first part of the note provides
an overview of ideal theoretic and quantifier elimination approaches for auto-
matically generating polynomial equalities and inequalities as loop invariants for
programs operating on numbers. Further, input-output specifications or postcon-
ditions of programs are not needed. This report borrows from discussions and
examples from an earlier report in [28] which focussed on our work from until
2006. The second part discusses geometric and local heuristics for quantifier-
elimination for generating octagonal invariants. This is followed by our research
on quantifier elimination based approach for generating interpolants to derive
efficient algorithms for subtheories. Although we have been investigating quan-
tifier elimination based approach for interpolant generation for nearly a decade,
the algorithms for interpolant generation for the theory of equality over uninter-
preted symbols as well as octagonal formulas have never been presented before.
Using a series of examples, it is demonstrated that even thought the worst case
complexity of elimination methods is quite high, it is still possible to effectively
use heuristics for elimination and get useful information even by hand. In this
note, we have chosen to be informal by illustrating our techniques on simple
examples; details and theoretical foundations can be found in our publications
on these topics.

Let us begin with the following simple loop for computing the floor of the
square root of a natural number.

Example 1. function SquareRoot(N : integer) returns a: integer
var a, s, t: integer end var
a := 0, s := 1, t := 1;
while s ≤ N do

a := a+ 1; t := t+ 2; s := s+ t;
end while

Using the approach discussed in [42], a conjunction of two polynomial equations,
t = 2a + 1, s = (a + 1)2, can be automatically generated as an invariant. In
fact, this formula can be shown to be the strongest invariant expressed in terms
of polynomial equations. There is no need to provide a postcondition to drive
invariants or give a priori shapes of the desired invariants. The second polynomial
equation, s = (a+1)2, though an invariant, is not an inductive invariant by itself;
in other words, it is not the case that

s = (a+ 1)2 =⇒ (((s = (a+ 1)2)|ss+t)tt+2)aa+1.
1

In contrast, each conjunct in an equivalent strongest formula t = 2a + 1 ∧ s =
−a2 + at − a + t ∧ t2 = 2a + 4s − 3t is an invariant as well as an inductive
invariant. In a later paper [16], we gave a saturation based method for checking
whether an assertion, such as s = (a+ 1)2 for the above example, can be proved
to be an invariant using strengthening.

1 The notation α|xt stands for replacing all free occurrences of a variable x in a formula
α by an expression t.
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Here is a somewhat meaningless but historical example taken from a paper
of Cousot and Halbwachs [10], where a method for generating linear inequalities
as invariants was discussed using the abstract interpretation approach [8].

Example 2. var i, j: integer end var
〈i, j〉:=〈2, 0〉;
while b1 do

if b2 then i := i+ 4;
else i := i+ 2, j := j + 1;

end if
end while

Polynomial methods discussed in [42, 45, 46] cannot be used to automatically
generate an invariant for this example. However, methods based on quantifier-
elimination [34] and Farkas’ lemma [7] can generate an invariant for this example.
Using the quantifier elimination approach illustrated in [34], the conjunction of
inequalities j ≥ 0 ∧ i− 2j ≥ 2 can be easily deduced as an invariant.

Consider the following interesting example that we gave as a homework prob-
lem in a graduate course on semantics of programming languages at the Univer-
sity of New Mexico.

Example 3. var x, y, z: integer end var
〈x, y, z〉:=〈1, a, 1〉;
while y > 0 do

if z = 0 then y := y − 1; z := x;
else x := x+ 1, z := z − 1;

end if
end while

The loop in this program does not admit any interesting polynomial invariant
implying that the loop behavior cannot be captured polynomially. However, if
a template involving program variables as well as their exponentiation is used,
then using the same approach for elimination (really simplification), the following
invariant can be generated: (x+ z) = 2(a+1)−y.

1.1 Organization

We first give a review of two radically different approaches based on elimination
and symbolic computation algorithms. The first approach gives ideal theoretic
semantics of program statements, where the ideal of invariants expressed as a
conjunction of polynomial equalities is associated with every program location.
The second approach assumes a priori that the shape of invariants of interest
is known in the form of a template but exact invariants of that form must be
derived. This approach uses quantifier elimination in the theory whose language
is used to express invariants. Two subtheories considered are those of polynomial
equalities as well as linear constraints. Polynomial inequalities can also be used
but we have limited experience in considering them.
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In 2009, we started investigating a geometric approach for approximating
quantifier elimination for generating loop invariants for specialized theories. In-
spired by Miné’s work [38] on relational numerical constraints for specifying
invariants in the ASTREE system [9], we decided to focus on this fragment of
Presburger arithmetic [32, 29]. Considering geometry of octagonal formulas, we
studied different types of transformations in a loop body which resulted in the
consequent of a verification condition to be an octagonal formula as well as iden-
tify conditions under which the verification condition is valid in the presence of
octagonal tests along a program path. We construct tables of such parameter
constraints a priori under different transformation; it can be proved that all
such parametric constraints are also octagonal. We show that this can be done
in O(n3) where n is the number of program variables. This approach has been
extended to nonconvex max-plus and min-plus constraints thus allowing disjunc-
tive invariants. However, the tables of parametric constraints become complex
and involve lots of disjunctions [32]. The approach however is promising because
of its reliance on geometry of invariants. We believe that the approach can be
extended to template polyhedra in which the coefficients of variables in linear
constraints of a template polyhedra are fixed except for lower and upper bounds

While the material in the earlier sections is based on our already published
papers, the material in the later sections has not been published elsewhere. Sec-
tion 5 outlines an approach for generating ranking functions based on templates
and quantifier-elimination to show termination of loops. In [31], we proposed a
direct relationship between quantifier elimination and interpolant generation for
first-order theories. Based on quantifier elimination heuristics, Section 6 presents
efficient algorithms for interpolant generation for two quantifier-free subtheories:
equality over uninterpreted symbols (EUF) and octagonal formulas. The paper
concludes with some remarks on future research including challenges faced by
SMT and symbolic computation researchers.

2 Ideal-Theoretic Approach to Invariant Generation

Loop invariants are the key ingredient of the axiomatic approach towards pro-
gram semantics, also called the Floyd-Hoare inductive assertion approach. The
concept of invariant has been used in abstract algebra, particularly algebraic
geometry, for nearly 200 years. However, in computer science, the use of invari-
ants first appeared in a paper by Hoare on a proof of the program FIND. Since
then, the use of invariants is ubiquitous in understanding system behavior, be it
of software, hardware or hybrid systems. Because of our interest in elimination
methods in algebraic geometry since the mid 1980s, it was extremely gratifying
to find a close connection between the concept of loop invariants with algebraic
concepts of invariants in invariant theory, as the reader would observe from the
discussion in this section.

For example 1 in the introduction, the values of program variables a, s, t after
the (i+ 1)th iteration, written as ai+1, si+1, and ti+1, can be specified in terms
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of their values in previous iterations as

ai+1 = ai + 1, si+1 = si + ti + 2, ti+1 = ti + 2,

with the initial values a0 = 0, s0 = 1, t0 = 1; furthermore, ai = i, the loop index.
These recurrences can be solved in many cases in terms of the loop index. If the
loop index can also be eliminated from these solutions, relations among program
variables can be computed which do not depend upon the loop index. In this
way, loop behavior can be characterized independently of the loop index.

In our 2003 paper [41], significant progress was reported in deriving loop
invariants automatically using related ideas. Below, we discuss the key ideas
and present results; more details can be found in [41, 42, 44].

It was proved in [42] that if one just considers polynomial equations (of
any degree) as atomic formulas for specifying invariant properties of programs,
then these polynomial invariants have a nice algebraic structure, called a radical
ideal of polynomials. Given two invariants at a program location, expressed as
polynomial equations p1 = 0 and p2 = 0, the following are also invariants:

1. p1 + p2 = 0,
2. qp1 = 0 for any polynomial q, and
3. if p1 = p3

k for some p3 and k > 0, then p3 = 0 is also an invariant.

The above are precisely the defining properties of a radical ideal of polynomials.
In [42], this radical ideal associated with a program location was called the
polynomial invariant ideal.

Theorem 1. The set of invariants expressed as polynomial equations in
Q[x1, . . . , xn] at a given program location constitute a radical ideal, called poly-
nomial invariant ideal. Further, any elimination ideal of this radical ideal is also
a polynomial invariant ideal.2

By Hilbert’s basis theorem, every ideal over a Noetherian ring has a finite
basis. So a polynomial invariant ideal has a finite basis as well. From this fi-
nite basis, a formula which has the structure of a conjunction of disjunctions
of polynomial equations can be generated, from which every polynomial invari-
ant follows. Interestingly, disjunctive polynomial invariants can be easily ex-
pressed in the language using a polynomial equation since pq = 0 is equivalent
to p = 0 ∨ q = 0. Disjunctive invariants are usually not as easy to express in
other frameworks, particularly those based on abstract interpretation. The Illi-
nois cache coherence protocol problem discussed in [28] is an excellent illustration
of the expressive power of conjunctions of disjunctions of polynomial equations
as inductive assertions.

The problem of discovering invariants at a program location thus reduces
to computing the associated polynomial invariant ideal at the location. If this
cannot be achieved, our goal is to find the closest possible approximation to this

2 Given an ideal I over a polynomial ring Q[x1, . . . , xn], its j-th elimination ideal Ij
is the set of polynomials only in variables xj+1, . . . xn in I.



6 Deepak Kapur

polynomial invariant ideal, which in ideal-theoretic terms, means computing a
subideal, to this ideal, including the zero ideal, which corresponds to the formula
true.

Assuming that a significant component of program states at a program loca-
tion can be specified by a conjunction of disjunction of polynomial equations, our
approach automatically derives loop invariants without any information about
input-output specification and/or post condition of a program based on the fol-
lowing ideas:

1. Under certain conditions, semantics of programming language constructs
can be given in terms of ideal-theoretic operations. A program becomes a
computation on ideals. For programs manipulating numbers, a significant
component of program states can be characterized using radical ideals.

2. The polynomial invariant ideal associated can be computed as a fixed point.
The challenge is to determine conditions under which this fixed point com-
putation terminates in a finite number of steps, or can be approximated
so that the approximation can be computed in finitely many steps. Below
such conditions are given by imposing restrictions on programs (see [42] for
precise definitions).

The reader would observe that negation of polynomial equations is not al-
lowed. It is an open problem how this approach can incorporate negated equa-
tions as a part of an invariant.3

Semantics as Ideal Operations In [42], we gave a procedure for computing
the polynomial invariant ideal of a simple loop in a program. The semantics
of programming language constructs is given in terms of manipulating radical
ideals (equivalently, algebraic varieties) characterizing program states [45].

Similar to every Hoare triple {P} S {Q} (assuming termination), an input
radical ideal I characterizes (approximation of) states before the execution of S,
and an output radical ideal J characterizes (approximation of) states after the
execution of S. Thus P is a conjunction of polynomial equations corresponding to
a finite basis of I and Q similarly corresponds to J . For the forward propagation
semantics, the strongest possible postcondition Q for any given P , translates to
generating maximal nontrivial radical ideal J from a given radical input ideal
I. For the backward semantics, the weakest possible precondition P from any
given Q, in ideal-theoretic terms, is equivalent to generating minimal nonzero

3 A negated polynomial equation, say p 6= 0, can be expressed as a polynomial equa-
tion pz = 1, where z is a new variable using Rabinowitsch’s trick (see [24]). It is
unclear how such variables can be systematically introduced to generate invariants
which have negated equations. A quantifier free formula that is a conjunction of
polynomial equations and inequations defines a quasi-variety, which have been stud-
ied in automated geometry theorem proving [48]. It will be interesting to generalize
the method of [42] to work on algebraic quasi-varieties instead of algebraic varieties.
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radical ideal I from a given radical ideal J .4 The initial ideal is determined by
the input state.

For an assignment statement of the form x := e, the strongest postcondition
corresponding to a precondition P is ∃x′(x = e|xx′ ∧P |xx′), whereas the strongest
precondition corresponding to a postcondition Q is Q|xe . Thus Q|xe is equivalent
to substituting e for x in the ideal basis corresponding to Q and then recomput-
ing its radical ideal. If the assignment is invertible, then strongest postcondition
semantics is also relatively easy to compute by substituting for variables, other-
wise a new variable x′ must be introduced to stand for the previous values of x
before the assignment, and the elimination ideal is computed after eliminating
x′ from the radical ideal corresponding to P |xx′ and the polynomial equation
x = e|xx′ .5

The semantics of a conditional statement is often approximated depending
upon the condition in the statement. If a condition c is expressed as boolean
combination of polynomial equations, then its effect can be expressed using ideal-
theoretic operations. Otherwise, the condition c can be approximated by another
condition d such that c =⇒ d and d is a boolean combination of polynomial
conditions. The coarsest approximation is where d is true ( the corresponding
ideal is the trivial zero ideal). Since merging of different control paths in a
program (due to a conditional statement or a while statement) leads to the
union of states corresponding to each path, this is represented logically as a
disjunction of formulas corresponding to each path. In ideal-theoretic terms, it
amounts to the intersection of the corresponding ideals. For example, if one path
leads to x = 0 and the other path leads to x = 1, when these path merge, states
are characterized by x = 0∨x = 1. For the first path, the ideal is < x >, and the
ideal for the second path is 〈x−1〉. The intersection of these ideals is 〈x(x−1)〉,
which captures the disjunction.

In case of a location where program control can pass arbitrarily many times,
an approximation of the ideal corresponding to the states at that control point
eventually stabilizes, i.e., the fixed point is reached approximating the polyno-
mial invariant ideal.

2.1 Termination of Polynomial Invariant Ideal Computation

In [42, 44], we gave a procedure for computing an approximation of the poly-
nomial invariant ideal. The most challenging part in this approach has been
establishing termination of the procedure. Even though to date, there is no ex-
ample for which the procedure does not terminate, establishing its termination
in general is still an open problem. We have been able to show the termination of

4 It might be useful to recall relationship between formulas and the associated ideals.
If a formula f =⇒ g, then the ideal associated with g is a subideal of the ideal
associated with f , since the set of satisfying assignments of f (zero set of polynomials)
is contained in the set of satisfying assignments of g.

5 This suggests that e appearing on the right side of an assignment can be an arbitrary
polynomial.
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the procedure only under certain technical conditions, particularly if assignment
mappings are solvable with their eigenvalues as rational numbers (see [41] for
precise details and proofs). This procedure uses a Gröbner basis algorithm for
computing various ideal-theoretic operations.

The termination of the fixed point computation is established under these
conditions by making use of a beautiful result in algebraic geometry that every
algebraic variety can be decomposed into finitely many irreducible components
[12]. This result is used to show that the algebraic variety of the states at the
loop entry has irreducible components such that the dimension of at least one
component goes up in every iteration of the procedure or the variety stabilizes,
leading to the termination of the procedure. Since the dimension of a polynomial
invariant ideal is bounded by the number of program variables, termination of
the fixed point computation is guaranteed in steps bounded by the number of
program variables in a program.

Invariants generated by this approach are strongest relative to these assump-
tions/approximations made in the semantics of programming constructions (e.g.
tests in conditional statements and loops),

The following three results about the termination of the invariant ideal gen-
eration for programs with simple loops were proved in [42].

Theorem 2. If the procedure for computing polynomial invariant ideals termi-
nates, then it computes a polynomial invariant ideal of a given simple loop.
Further, the approach of computing polynomial invariant ideals is complete and
semidecidable for generating the strongest possible polynomial invariants of a
simple loop.

Theorem 3. If sequences of assignment statements along different branches in
a simple loop body can be executed in any order without affecting the semantics
of the body, then the polynomial invariant ideal generation procedure terminates
in as many iterations as the number of branches.

The above implies that the termination is independent of the number of program
variables changing in the loop. An immediate corollary of the above theorem is:

Corollary 1. If a simple loop body is branch-free, i.e., it is a sequence of as-
signment statements, the procedure for computing its polynomial invariant ideal
terminates in a fixed number of iterations.

Theorem 4. If sequences of assignments along different branches in a simple
loop body do not commute6 and assignments are solvable mappings with rational
numbers as their eigenvalues, then the invariant ideal generation procedure ter-
minates in at most m+1 iterations, where m is the number of program variables
that change in the loop body.

Further details can be found in our papers [42, 45, 43, 44]. A generalization
of the above approach to handle nested loops and procedure calls needs further
investigation. Perhaps summarizing semantics of individual loops and procedures
as radical ideal transforms can be used to explore such an extension.

6 (in other words, order in which branches are executed matters)
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3 Quantifier-Elimination Approach

The approach discussed in this section assumes that the shape of possible invari-
ant properties of programs of interest is known; an interested reader is referred
to [26–28] for further details. Perhaps, the shape information can be determined
from the postcondition associated with the program or by doing an a priori
analysis of the program body or a combination, but so far little is known about
how that can be effectively done. This requirement is similar in spirit to the
design of an abstract domain required in the abstract interpretation framework
introduced by Cousot [8]. It is assumed that a shape is a parameterized formula
in some theories which can be very general (i.e., a polynomial equality of degree
k) or very restricted (i.e., terms appearing from a fixed finite set).

In setting up the analysis, (i) hypothesizes parameterized assertions at appro-
priate control points in a program are associated, (ii) verification conditions from
them are generated, (iii) quantifier elimination heuristics are employed to elim-
inate program variables from the verification conditions to generate constraints
on parameters such that (iv) parameter values satisfying these constraints lead
to valid verification conditions. The hypothesized assertions instantiated with
these parameter values are then invariants. It will become evident that it is not
necessary to do full quantifier-elimination; instead it suffices to generate a “suffi-
ciently interesting” quantifier-free formula implied by ∀X Γ (P,X), a verification
condition generated using parameterized formulas, where P are the parameters
and X are the program variables. Below, we review some results from [26, 27].

3.1 Expressing Shapes using Parameterized Polynomial Relations

Example 2 continued.: Let us assume that the quantifier-free theory of param-
eterized Presburger arithmetic is used for specifying invariants. I.e., an invari-
ant I(i, j) is hypothesized at the loop entry to be an inequality of the form
c1i + c2j + d ≤ 0, where c1, c2, d are unknown parameters. Values of c1, c2, d
determine the shape of the invariant. That is, for example, if c1 = 0, then i will
not appear in the invariant.7

As in [10], it is assumed that the boolean test b2 in the conditional statement
is not an inequality; so it is abstracted to be true; if it was a linear inequal-
ity, it could have been used to further refine the verification conditions. Three
verification conditions, two due to the branch in the loop body, and one from
initialization, are:

(c1i+ c2j + d ≤ 0)⇒ ((c1i+ c2j + d) + 4c1 ≤ 0) (i),
(c1i+ c2j + d ≤ 0)⇒ ((c1i+ c2j + d) + 2c1 + c2 ≤ 0) (ii), and
2c1 + d ≤ 0. (iii)
Two problems to address are: (i) Does a given program location of interest

satisfy a nontrivial invariant of the given shape? (ii) If it does, what is such an in-
variant, i.e., can parameter values be found so that when instantiated with these

7 Of course, if c1 = 0, c2 = 0, d = 0, then the above formula simplifies to true, a trivial
invariant.
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specific values, the formula is indeed an invariant associated with the program
location? Both of these questions are answered using quantifier-elimination by
generating constraints on parameters from the verification conditions. To get
the strongest possible invariant of the hypothesized form, a complete quantifier-
elimination method is required. However, incomplete elimination heuristics can
also be useful in deriving invariants.

For this example, for an invariant of the above shape to exist, each verification
condition must be valid for all possible values of i, j.8 To generate an invariant,
values of c1, c2, d that make ∀i, j, [(i) ∧ (ii)] ∧ (iii) valid, is computed. Had this
formula not been valid, the invariant of the form c1i+c2j+d ≤ 0 would not exist.
Additional constraints on parmaters to rule out trivial invariants or satisfying
certain conditions can be included as well. A quantifier-free formula implied by
∀i, j, [(i) ∧ (ii)] ∧ (iii)] is:

Ψ = [(d ≤ 0 ∧ c1 = 0 ∧ c2 ≤ 0) ∨ (2c1 + d ≤ 0 ∧ c1 < 0 ∧ 2c1 + c2 ≤ 0)].

For any values c1, c2, d that satisfy the above formula, c1i + c2j + d ≤ 0 is an
invariant. As an example, c1 = −2, c2 = 0, d = 0 satisfies the above constraints.
Substituting for these values of parameters in the above template leads to −2i ≤
0 being an invariant. In fact, there are infinitely many values of c1, c2, d satisfying
the above constraints.

It should be noted that these formulas fall outside the language of standard
Presburger arithmetic. However, it is from the theory of parameterized Pres-
burger arithmetic, in which coefficients of variables can be linear polynomials in
parameters [34].

If an invariant for the above loop in Example 2 is hypothesized to be an
nontrivial linear equation, the reader can verify that there does not exist such
an nontrivial invariant (e.g., if I(i, j) = (c1i+c2j+d = 0), since eliminating i, j, d
from the verification condition results in c1 = 0, c2 = 0, d = 0, which simplifies
I to the trivial invariant true).

To illustrate how nonlinear invariants can be generated using this approach
as well, let us consider example 1 in the introduction for which there are multiple
nonlinear invariants independent of each other.

Example 1 continued: Hypothesize an invariant of the loop to have a shape
of a polynomial equation where the degree of each term is ≤ 2. That is,

I(a, s, t)⇔ u1 a
2+u2 s

2+u3 t
2+u4 as+u5 at+u6 st+u7a+u8s+u9t+u10 = 0,

where u1, . . . , u10 are parameters. As discussed in detail in [34], constraints on
parameters are generated using a heuristic for simplifying parametric polyno-
mials (over the theory of an algebraically closed field), from which a basis for
parameter values is generated, leading to multiple independent invariants. If
there are multiple equations in the antecedent of a verification condition, then
parametric Gröbner basis [25] constructions can be used for this purpose. In most
cases, if there is a single equation in the antecedent, as is the case here, then

8 Strictly speaking only values of i, j in reachable states.
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it can be used directly to simplify by replacing the antecedent in the conclu-
sion; even when there are many polynomial equations in the antecedent, they
can be used as they are to simplify the conclusion without having to compute a
parametric Gröbner basis.

Employing another heuristic that in a polynomial obtained after simplifica-
tion, if the coefficient of each term in program variables is made 0, that suffices to
make the polynomial to be 0 for all program variables, constraints on parameters
can be generated. This is an incomplete but extremely useful strategy.

After eliminating program variables a, s, t from the verification condition, the
following constraints on parameters are generated. Each of u2, u4, u6 becomes 0,
implying that the hypothesized shape of polynomial invariants can be further
restricted by dropping out terms s2, as, st. The following relations among other
parameters are generated:

1. u1 = −u5, 2. u7 = −2u3−u5+2u10, 3. u8 = −4u3−u5, 4. u9 = 3u3+u5−u10.

The above set of constraints has infinitely many solutions. However, this infinite
solution set can be finitely described. Each solution can be obtained from an
independent set of 3 solutions obtained by making exactly one of the independent
parameters, u3, u5 and u10, to be 1, generating three invariants

t = 2a+ 1, s = −a2 + at− a+ t, 4s = t2 − 2a+ 3t.

The reader would have noticed that these invariants are somewhat different
from the ones given in the introduction. They are however logically equivalent.
In fact, each of the above three invariants is also an inductive invariant. Whereas
s = (a+ 1)2 is a loop invariant, it is not an inductive invariant, as stated earlier.
This invariant can be derived by combining t = 2a+ 1 and s = −a2 + at− a+ t.
Further, the first invariant is independent. The second invariant is independent
of first one but not of the third one: It can be derived from the first one and
third one. Similarly, the third invariant can be derived from the first and second.
Even though these invariants were generated from independent solutions of a
linear system of equations, variables standing for various power products in the
linear system are related (particularly, a, at and t are related). To get a set of
independent invariants, it thus becomes necessary to check derivability of one
from the others.

The approach discussed in this section can be used to automatically generate
invariants for programs with nested loops and procedure calls, as illustrated in
[34]. The reader can consult [34] for details including many examples.

To generate a strongest possible invariant, there are two conditions which
must be satisfied. Firstly, it should be possible for the subtheory from which
parameterized formulas are drawn, to admit full quantifier-elimination. Secondly,
in the generation of verification conditions, no approximation is made about the
behavior of programming constructs. Both of these requirements can however be
relaxed, but then the proposed approach may not generate the strongest possible
invariant for a program. Further, even if the proposed approach declares that
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there does not exist any nontrivial invariant of the hypothesized shape because
of approximations made, an invariant of the hypothesized shape may still exist.

Neither of these two conditions were met for the above example. Even then
the strongest invariant expressed as linear inequalities is generated. This suggests
that these conditions do not always have to be satisfied to derive the strongest
possible invariants.

It should also be noted that transfer functions needed in the abstract in-
terpretation framework to express the semantics of program constructs on an
abstract domain [11] can be generated using quantifier elimination; in fact quan-
tifier elimination is the most general approach for computing transfer functions.
We will not elaborate on this any further in the paper.

In a later section, it it shown how template based framework can be used
to design ranking functions for proving termination of loops in a program using
quantifier elimination.

4 Geometric Quantifier Elimination Heuristics for
Octagonal Formulas

The high complexity of quantifier elimination algorithms as well as humungous
output generated by them, if at all they output anything, can be daunting. It be-
comes thus critical to develop efficient heuristics for a subclass of formulas which
have low complexity but more importantly, provide useful results, to make the
proposed approach scalable. In this section, we will discuss practical heuristics
for quantifier elimination for relational formulas using geometric techniques [32,
29]. Particularly, the sparse interaction among program variables occurring in
verification conditions from octagonal formula and their special structure will
allow for localized reasoning.

We have been successful in developing efficient polynomial time heuristics
for a conjunction of formulas of the form l ≤ ±x± y ≤ h (also called octagonal
constraints [38] or UTVPI constraints [22, 47]). These techniques are more likely
to be scalable and thus useful for analysis of large programs Such numerical
relational formulas have been found to be effective in ASTREE tool for its ability
to detect bugs in large amounts of real code in flight control software, performing
array bound checks, and finding memory leaks and other critical applications [9,
38]. Details of th heuristics can be found in [32]; below we sketch them.

An octagonal formula is of the form: (l ≤ ±x ± y ≤ h) along with lower
and/or upper bounds on variables. It is easy to visualize them as an octagon
in two dimensions. Such constraints are simpler than general linear constraints
Henceforth, by an atomic formula of the form l ≤ ±x±y ≤ h, we mean any of the
atomic formulas of the form l ≤ x + y ≤ h, l ≤ x− y ≤ h, l ≤ x ≤ h, l ≤ y ≤ h.
By an octagonal expression, we mean any of the expressions in two distinct
variables, say x, y for an instance: x − y, x + y,−x − y, x,−x,A, where A is an
integer.

Octagonal formulas are also interesting to study from a complexity per-
spective and are a good compromise between interval constraints of the form
l ≤ x ≤ u and linear constraints. Linear constraint analysis over the rationals
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(Q) and reals (R), while of polynomial complexity, has been found in practice
to be inefficient and slow, especially when the number of variables grows [38, 9],
since it must be used repeatedly in an abstract interpretation framework. Often,
we are interested in cases when program variables take integer values bound by
computer arithmetic. If program variables are restricted to take integer values
(which is especially the case for expressions serving as array indices and mem-
ory references), then octagonal constraints are the most expressive fragment of
linear (Presburger) arithmetic over the integers with a polynomial time com-
plexity. It is well-known that extending linear constraints to have three variables
even with unit coefficients (i.e., ranging over {−1, 0, 1}) makes their satisfiability
check over the integers to be NP-complete [22, 47]; similarly, restricting linear
arithmetic constraints to be just over two variables, but allowing non-unit in-
teger coefficients of the variables also leads to the satisfiability check over the
integers being NP-complete.

4.1 A Geometric Local Heuristic

Given a program using n variables x1, · · ·xn, a parameterized formula of octago-
nal constraints expressing a program invariant at a given location is a conjunction
of formulas of the form

octa(xi, xj) , l′i,j ≤ xi−xj ≤ u′i,j∧li,j ≤ xi+xj ≤ ui,j∧li ≤ xi ≤ ui∧lj ≤ xj ≤ uj ,

for i 6= j, where li,j , ui,j , l
′
i,j , u

′
i,j lj , uj are parameters. A verification condition

is:
∧

1≤i 6=j≤n

octa(xi, xj) ∧ C(X) ∧ Ck(X) =⇒
∧

1≤i,j≤n

octa(x′i, x
′
j), (1)

x′i, x
′
j are the new values of variables xi and xj after all the assignments along a

kth program branch in a loop body, C(X) is a conjunction of all the loop tests
on the kth branch, and Ck(X) is a conjunction of all the branch conditions along
the kth branch. There are no parameters appearing in C(X), Ck(X), x′i, x

′
j . The

above verification condition has in general 2n ∗ (n − 1) + 2n = 2n2 parame-
ters, which can be a big number for a large program with lots of variables The
verification condition corresponding to all the branches in a loop body is then
the conjunction of the verification conditions along each branch in the loop. In
addition, the initial state of a program expressed by a precondition, as well as
other initializing assignments to program variables the first time a loop body is
entered, also impose additional constraints on parameters.9

To ensure that the above verification condition contains only octagonal for-
mulas, all tests should be octagonal formulas and the assignment statements are
of the form xi := xi + A, xi := −xi + A, xi := A, for some constant integer A.
Otherwise, tests and assignments must be approximated. In the worst case, an
assignment will be approximated as xi getting a random value. Similarly for a
loop test that cannot be approximated, it is assumed to be true; for a conditional
statement, it is assumed that both branches of the statement are executed. Some

9 In case a program has too many branches in relation to its size, intermediate assertion
can be used to decrease the number of branches that need to be analyzed.
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preprocessing can be helpful to generate the desired verification conditions for
programs which do not satisfy the above restrictions insofar as the simplified
verification condition consists only of octagonal formulas; for example, a path
can have a sequence of assignments which are more general than the above re-
stricted assignments as long as the cumulative effect of all these assignments can
be expressed satisfying the restrictions.

For generating invariants, the quantifier elimination problem to be solved is:

∀X
∧

1≤i 6=j≤n

octa(xi, xj) ∧ C(X) ∧ Ck(X) =⇒
∧

1≤i,j≤n

octa(x′i, x
′
j),

with the set of parameters P in the verification condition. It is also possible to
include additional constraints on parameters in P such as certain parameters are
nonzero. In general, octagonal expressions of program variables may not have
any lower bound/upper bound, the domain on which parameters can take values
are extended to include two constants −∞ and +∞ to stand, respectively, for
no lower bound and no upper bound. Arithmetic operations and tests on the
extended domain, which includes both −∞ and +∞, have to be appropriately
extended to account for these values [35]. Unsatisfiable constraint solving be-
comes equivalent to some parameters taking −∞ and +∞ as their values, e.g,
u+ 1 = u is satisfiable if u has +∞ or −∞ as its value.

If the above formula is satisfiable, this implies that there is indeed an invari-
ant of the above form for the loop. A quantifier-free formula purely in parameters
that is implied by the above verification condition is then generated. The ap-
proach is illustrated using a simple example; for additional examples, please
consult [32].

Consider the following simple program.

Example 4. x := 4; y := 6;
while y + x ≥ 0 do
if y ≥ 6 then x := − x; y := y − 1 else x := x− 1; y := − y;
end while

Hypothesize an invariant at the loop entry of the form:

a ≤ x ≤ b ∧ c ≤ y ≤ d ∧ e ≤ x− y ≤ f ∧ g ≤ x+ y ≤ h,

where a, b, c, d, e, f, g, h are parameters. The verification conditions resulting
from the two branches are:

(a ≤ x ≤ b ∧ c ≤ y ≤ d ∧ e ≤ x− y ≤ f ∧ g ≤ x+ y ≤ h) ∧ (y + x ≥ 0)) =⇒

((y ≥ 6 =⇒ (a ≤ −x ≤ b∧c ≤ y−1 ≤ d∧e ≤ −x−y+1 ≤ f∧g ≤ −x+y−1 ≤ h))∧

(y ≤ 5 =⇒ (a ≤ x−1 ≤ b∧c ≤ −y ≤ d∧e ≤ x−1+y ≤ f ∧g ≤ x−1−y ≤ h)))

We discuss below geometric heuristics for quantifier elimination based on the
octagon corresponding to the hypothesis in the above verification condition gets
affected by the assignment statements in each of the branches. The key idea is
to find sufficient conditions on the parameters a, b, c, d, e, f, g, h for the octagon
specified by the conclusion formula to include the octagon in the hypothesis
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formula subject to the loop and branch test conditions. We have developed
a case analysis based on how different kinds of assignments and various tests
affect the validity of the verification condition leading to sufficient conditions on
parameters. There is a table corresponding to each case of assignment statement,
and an entry in the table corresponding to every atomic formula and test as
discussed below. Such tables can be generated a priori once for all; details are
given in [32].

General quantifier elimination tools are not likely to succeed, given that the
complexity of generic quantifier elimination methods is exponential in the num-
ber of variables and alternations of quantifiers (in some cases, it is even worse,
being of doubly exponential complexity). We have tried many of these examples
on REDLOG,QPCAD, etc. but without much success.

4.2 Local Reasoning

A verification condition in general can be quite complex if relationship among
all program variables is considered. However, in case of simple atomic formulas
such as octagonal formulas, the verification condition can be considered locally
by considering separately its subpart corresponding to each pair of distinct vari-
ables xi, xj , i 6= j. The results can be conjoined together accounting for limited
interactions among variables in this subpart with other subparts; these details
are explored in [32].

The subformula below corresponds to all the atomic formulas expressed only
using xi, xj .

octa(xi, xj) ∧ C(X)[i,j] ∧ Ck(X)[i,j] =⇒ octa(x′i, x
′
j), (2)

By doing quantifier-elimination of program variables xi, xj on (2), generating
sufficient conditions on the parameters in (2), and then taking a conjunction of
such conditions on parameters for all possible pairs of variables, it is possible
get a sufficient condition on all the parameters appearing in (1). This way, the
analysis is localized to a single pair of variables, instead of having to consider all
the variables together.

Consider a subformula of the above verification condition which relates a pair
of distinct program variables xi, xj , expressed above as (2). To make the discus-
sion less cluttered, we will replace xi by x, xj by y, as well as l′i,j , li,j , u

′
i,j , ui,j ,

li, ui, lj , uj by l1, l2, u1, u2, l3, u3, l4, u4, respectively; α stands for C(X)[i,j] ∧
Ck(X)[i,j]. To ensure that the verification condition has the form captured in (2)
(particularly that the conclusion be octa′(x, y)), there are finitely many possibil-
ities of the total cumulative effect on assignments for a distinct pair of variables
x, y along a branch; each of these can be analyzed separately. All other cases
must be approximated either by one of these assignments or by a random value.10

Possibility 1 x := x+A and y := y +B;
Possibility 2 x := − x+A and y := − y +B;

10 In some cases, the cumulative effect of assignments of different forms may lead to one
of the three possibilities above, in which case, they do not have to be approximated.
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present absent

x− y ≤ a a ≤ u1

a ≤ −l2 +∆2
u1 ≤ −l2 +∆2

x− y ≥ b l1 ≤ b
−u2 +∆2 ≤ b

−u2 +∆2 ≤ l1

x+ y ≤ c c ≤ u2

c ≤ −l1 +∆1
u2 ≤ −l1 +∆1

x+ y ≥ d l2 ≤ d
−u1 +∆1 ≤ d

−u1 +∆1 ≤ l2

x ≤ e e ≤ u3

e ≤ −l3 + A
u3 ≤ −l3 + A

x ≥ f l3 ≤ f
−u3 + A ≤ f −u3 + A ≤ l3

y ≤ g
B > 0

u4 ≥ g + B u4 = +∞

y ≥ h
B < 0

l4 ≤ h+ B l4 = −∞

Fig. 1: Sign of only x is reversed in assignment.

Possibility 3 x := − x+A and y := y +B.

Possibility 4 x := A and y := y +B.

Possibility 5 x := A and y := − y +B.

Possibility 6 x := A and y := B.

Because of space limitations, we discuss below the third possibility corre-
sponding to the above example. The table in Figure 1 corresponds to the third
case, Other tables are included in [32].

The parametric verification condition in this third case is:

((l1 ≤ x− y ≤ u1 ∧ l2 ≤ x+ y ≤ u2 ∧ l3 ≤ x ≤ u3 ∧ l4 ≤ y ≤ u4) ∧ α)⇒
(−u1 +∆1 ≤ x+ y ≤ −l1 +∆1 ∧ −u2 +∆2 ≤ x− y ≤ −l2 +∆2

∧ − u3 +A ≤ x ≤ −l3 +A ∧ l4 −B ≤ y ≤ u4 −B),

where ∆1 = A − B,∆2 = A + B, α is a conjunction of parameter-free atomic
formulas from loop tests and branch conditions. These calculations have to be
done once and for all and stored in a table. As an illustration, consider the case
of how lower and upper bounds on x − y are affected by the test x − y ≤ a
in this third case. This is depicted in the Figure 1; the white octagon to the
lower right side corresponds to the hypothesis octagonal constraints, the blue
octagon is the result of assignments, with the red line corresponding to x−y ≤ a.
(l1 ≤ x−y ≤ u1∧x−y ≤ a∧γ) =⇒ (l2 ≤ −x+A+y+B ≤ u2∧δ), where γ and
δ are the remaining subformulas in the antecedent and conclusion, respectively,
of the above verification condition in which atomic formulas expressing lower
and upper bounds on x− y do not appear. The entry a ≤ u1 ∧ a ≤ (−l2 −∆2)
in the table in Figure 1 is the condition on u1, l2 for the above portion of the
verification condition to be valid. If x−y ≥ b is also present, then the entry from
the table gives constraints on l1, u2 to be l1 ≤ b ∧ −u2 − ∆2 ≤ b; if x − y ≥ b
is absent instead, then the constraint on l1, u2 is −u2 − ∆2 ≤ l1. There is an
entry in the table for every possible atomic formula depending upon whether it
is present or absent in α.
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For the example discussed in the previous section, the constraint a ≤ 4 ≤
b∧c ≤ 6 ≤ d∧e ≤ −2 ≤ f ∧g ≤ 10 ≤ h is generated from the initial assignments
to the variables. Using the tables in [32], constraints on the parameters are
obtained for each branch. For the branch x + y ≥ 0 ∧ y ≥ 6, A = 0, B =
−1, ∆1 = 1, ∆2 = −1, we get the entry from the table to be g ≤ 0 ∧−f + 1 ≤ 0
and due to the absence of any upper bound on y+x, we get the entry h ≤ −e+1.
Since there is no condition on x−y, we get f ≤ −g−1 and −h−1 ≤ e; similarly,
there is no condition on x, giving the constraint a + b = 0. However, y has a
condition, namely y ≥ 6 and B < 0, which gives c ≤ 5; however, there is no
upper bound condition on y, and since B is negative, no additional condition on
parameters is imposed.

For the second branch corresponding to the condition y + x ≥ 0 ∧ ¬(y ≥ 6)
(which also imply x ≥ −5 ∧ y − x ≤ 10) 11, we similarly get from the table
constraints g ≤ 0 ∧ e + 1 ≤ 0 ∧ h ≤ f + 1 due to y + x ≥ 0, and 5 ≤ d ∧ −d ≤
c∧5 ≤ −c; in addition, we also get a ≤ −6 due to x ≥ −5 and 10 ≤ −e∧−h−1 ≤
−f ∧ 10 ≤ −g − 1 due to y − x ≤ 10. Collecting all the constraints together:

(e ≤ −10 ∧ f ≥ 1 ∧ g ≤ −11 ∧ h ≥ 10 ∧ a ≤ −6 ∧ b ≥ 4 ∧ c ≤ −5 ∧ d ≥ 6) ∧

(−1 ≤ e+ h ≤ 1 ∧ g + f ≤ −1 ∧ b+ a = 0 ∧ −1 ≤ h− f ≤ 1 ∧ d+ c ≥ 0).

Values of a, b, c, d, e, f, g satisfying the above constraint result in an octago-
nal invariant for the loop in the above program, since the verification conditions
generated from its two branches are valid for these values. By obtaining the
maximum possible values for parameters standing for lower bounds and mini-
mum possible values for parameters standing for upper bounds, the strongest
possible invariant for the above program is generated. Making the lower bound
parameters as large as possible, and the upper bound parameters as small as
possible:

e = −10, f = 9, g = −11, h = 10, a = −6, b = 6, c = −5, d = 6.

The corresponding invariant is

−10 ≤ x− y ≤ 9 ∧ −11 ≤ x+ y ≤ 10 ∧ −6 ≤ x ≤ 6 ∧ −5 ≤ y ≤ 6.

The correctness of the table entries (i.e., they generate correct parameter con-
straints in the sense that the parametric constraints after quantifier-elimination
imply the table entries) can be verified. The reader would have noticed from
the above examples as well as the tables that the constraints on parameters are
also octagonal. In [32], a method for generating the strongest possible octagonal
invariant from parametric constraints so generated is presented.

The following theorem is proved in [32].

Theorem 5. Octagonal loop invariants of programs with simple loops (with no
nesting of loops) can be automatically derived using the geometric quantifier
elimination heuristics proposed above in O(k ∗ n2) steps, where n is the number
of program variables and k is the number of program paths.

11 These new conditions on the variables can be derived by local propagation.
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We believe that similar analysis can be performed for a wider subclass of
linear constraints. Particularly, we are investigating template polyhedra in which
the linear expression is fixed (e.g., 2 ∗ x − 3 ∗ y + z) with its lower and upper
bounds being parameters.

5 Termination Analysis using templates, especially for
generating nonlinear polynomial ranking functions

Template based approaches for generating ranking functions have been proposed
in the literature. The approach we have been pursuing follows the same pattern
as the one for loop invariant generation. We illustrate it using two examples:

Example 5. var x, y, z: integer end var
〈x, y, z〉:=〈a, b, 0〉;
while y > 0 do

if y mod 2 = 0 then y := y
2

else y := y−1
2 ; z := z + x;

end if
x := 2x;
end while

This example is quite trivial for showing termination since y is always de-
creasing. A termplate based approach will start with a linear template involving
the program variables: Ax+By+Cz+D. Can we find parameter values such that
the above polynomial strictly decreases over the integers in every iteration of the
loop as well as it is always nonnegative (for well-foundedness of the ordering).

For it to be nonnegative always, initially it must be Aa + Bb + D ≥ 0.
In every iteration, for the branch when the test y mod 2 = 0 succeeds then
(Ax+By+Cz+D) > (2Ax+B y

2 +Cz+D); for the second branch, y mod 2 6=
0] =⇒ (Ax + By + Cz + D) > (2Ax + B y−1

2 + C(z + x) + D. The constraint
from the first branch simplifies to (y > 0 ∧ y mod 2 = 0) =⇒ −Ax + B y

2 > 0
for all x. This implies that A must be 0 but B is a positive number, thus B > 0.

This information can be used to analyze the second branch: (y > 0∧y mod 2 6=
0) =⇒ B y−1

2 − Cx > 0; this implies C to be 0. The template for the ranking
function simplifies to By,B > 0 or simply y after normalizing it.

This approach works very well for termination analysis using polynomial
ranking functions (which includes both linear and nonlinear), evaluating to nat-
ural numbers or integers bounded from below.

Consider however the following example which is quite interesting from the
perspective of termination analysis.

Example 6. var n: integer end var
while n > 1 do

if n mod 2 = 0 then n := n
2 else n := n+ 1;

end while
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It can be shown that no polynomial ranking function can be used to show
termination of the loop above even though the program does terminate as should
be obvious to the reader. No ranking function involving exponentiation works
either. However the function n + 2(n + 1) mod 2 serves as a ranking function;
such a template can be constructed/hypothesized by analyzing the program and
finding all functions other than the polynomial operations appearing in it (such
as mod 2) for possible use to generate templates.

6 Interpolant Generation using Quantifier Elimination

In [31], we were among the first ones to establish a direct connection between
interpolant generation and quantifier elimination; in hindsight, this relationship
seems obvious and trivial. To give a brief overview, given two formulas α and β
such that α =⇒ β, a Craig interpolant is a formula γ on symbols common to
α as well as β such that α =⇒ γ ∧ γ =⇒ β. Existence of such interpolants
was proved by Craig [13]. If uncommon symbols can be eliminated from α (or
equivalently β), an interpolant can be generated from the result. It is not essential
for the underlying theory to admit full quantifier elimination for the quantifier-
free theory of equality of uninterpreted function symbols: for example, there is
no formula equivalent to f(a) = b in which f does not appear.

In [31], we used quantifier elimination based approach for generating inter-
polants for quantifier-free theories of complex data structures such as finite lists,
finite sets, finite arrays, finite bags, theory of free constructors, etc. Interpolants
are generated from a combination of theories using Nelson and Oppen frame-
work assuming each of the component theories have an algorithm for generating
interpolants. In fact, Nelson and Oppen had insight that for convex theories it
suffices to use equality interpolants on common variables [39].

We have been pursuing this approach based on quantifier elimination for de-
veloping algorithms for generating interpolants of varying strengths. It is easy
to see that interpolants are closed under conjunction and disjunction: if γ1 and
γ2 are interpolants of an (α, β) pair, then γ1 ∧ γ2 as well as γ1 ∨ γ2 are also
interpolants of (α, β). Interpolants for an (α, β) form a lattice under strict im-
plication ordering with the strongest interpolant (which can be generated from
α) and the weakest interpolant (which can be generated from β).

Many interpolant based methods for system analysis, for instance, methods
for generating invariants, abstraction refinement in software model checking,
generalization of Bradley’s IC3 method for proving safety properties, depend
upon the quality of interpolants generated. What interpolant is used can often
determine the quality of invariant generated as well as affect the convergence
of invariant generation algorithms. Very little is understood about the relation-
ship between the kind of interpolants used and the performance and output of
invariant generation algorithms.

As will be demonstrated below, in our approach, a proof of α =⇒ β is not
needed whereas almost all methods proposed in the literature rely on a proof
(either direct or refutation); further interpolants generated using these methods
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not only differ in how they analyze proofs [15] but they also depends upon the
proof being used (as there can be many proofs of α =⇒ β).

As from α, interpolants can be generated from β by eliminating its uncommon
symbols; there is an advantage in generating interpolants from α since all other
interpolants can be computed by the implicating relation on α, which is easier
than the inverse of implication relation. If the interpolant generated from α is the
strongest, it can serve as an interpolant not only for β but the set of all formulas
which are implied by α insofar as the only common symbols of such a formula
with α remain the same. In other words, a single quantifier elimination on α
can result in an interpolant that works for a family of many distinct β’s. In that
sense, even if quantifier elimination is expensive, its cost can often be amortized
over a large class of such formulas implied by α. That can especially be useful if
in an CEGAR like approach, refinements of abstractions only involve common
symbols of α and β. Even if an incomplete quantifier elimination algorithm is
used to perform quantifier elimination to generate an interpolant, it serves as an
interpolant for all the formulas implied by the interpolant.

We illustrate some of these ideas for two quantifier-free subtheories: theory
of equality over uninterpreted symbols and theory of octagonal formulas over the
integers, rationals or reals.

6.1 Theory of equality of uninterpreted symbols (EUF)

This theory is interesting not only because it is extensively used in our method
for generating interpolants for quantifier-free theories of container data struc-
tures [31], but also because an interpolation algorithm must eliminate uncommon
function symbols.

The input to the algorithm is a satisfiable α which is assumed to be a con-
junction of equations and disequations on ground terms involving constants and
nonconstant function symbols (henceforth called function symbols contrasting
with constants). There are three phases in the algorithm. The first phase is to
generate congruence closure, much like in [33]. All uncommon constants which
are equivalent to common constants are eliminated by substitution. At the end
of this phase, equations and disequations can be divided into two parts: (i) those
containing only common symbols, and (ii) those containing at least one uncom-
mon symbol that cannot be eliminated just by substitution.

The second phase is the most interesting in which uncommon function sym-
bols as well as uncommon constants appearing as arguments to even common
function symbols are eliminated. The result of this phase is in general a col-
lection of Horn clauses in which an uncommon symbol can be eliminated only
under some conditions. This phase differs completely from a congruence closure
algorithm.

The final phase is interpolant generation: two possibilities are discussed. In
the first possibility, uncommon symbols are eliminated but in general, this step
can lead to an exponential blow-up, both in the number of steps as well as the
size of an interpolant generated. In the second possibility, uncommon symbols
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are presented in a solved form. This step can be executed in polynomial time,
much as phase 2 and phase 1.

1. Flattening: As in Kapur’s congruence closure algorithm [33], flatten non-
constant terms by introducing new constants so that all equations and dis-
equations in α are of the form:

f(c1, . . . ck) = d, c = d or c 6= d.

The first type of an equation is called an f -equation or a function equation;
the second type of an equation is a constant equation.
All the new constant symbols introduced to stand for flattened subterms
(which are nodes of a dag representation of terms in α) are classified to be
either common or uncommon based on symbols appearing in them. With
innermost traversal of nonconstant subterms in α, any new constant symbol
introduced to stand for a nonconstant term that includes an uncommon
symbol is labeled uncommon. A new constant symbol introduced to stand for
a nonconstant term consisting of common symbols only is labeled a common
symbol. So a new constant is uncommon iff it stands for a flat term which
has an uncommon symbol.
If there is an f -equation f(c1, · · · ck) = d in which f, c1, · · · ck are com-
mon symbols and d is an uncommon symbol, then introduce a new common
symbol, say e, and replace the above equation by two equations f -equation
f(c1, · · · ck) = e purely in common symbols and d = e.
It is easy to see that every f -equation has only common symbols or at least
one of f, c1, · · · ck in the nonconstant term is an uncommon symbol.

2. Phase I: Elimination of uncommon constants: Process constant equa-
tions to generate equivalence classes of constants using union-find (or bal-
anced tree data structure) to generate constant congruence. Pick from every
equivalence class, a representative as follows: (i) if an equivalence class con-
tains common constants, pick any common constant; (ii) if an equivalence
contains only uncommon constants, then pick any uncommon constant. It is
important to pick a common constant as a representative whenever that is
possible.
Replace each constant symbol in the disequations and remaining equations
including f -equations by the representative of its equivalence class.
This eliminates all uncommon constants which have common constants as
their representatives. From an equivalence class which has an uncommon as
well as a common constant, discard all uncommon constants as they are not
needed in interpolant generation.

3. Deduction of additional equalities: If there are two f -equations with
identical left sides, then add the equation generated by equating their right
sides.
Repeat Step 2 followed by Step 3 until no new equalities are generated.
The result of these steps is the ground congruence closure including singleton
equivalence classes.
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4. Phase II: Elimination of uncommon function symbols: If a function
symbol f is uncommon, then from every distinct pair of f -equations, generate
a Horn clause as follows: Given two distinct equations f(c1, . . . , ck) = d and
f(e1, . . . , ek) = h, generate a Horn clause of the form
(c1 = e1 ∧ · · · ∧ ck = ek) =⇒ d = h,
after normalizing, i.e., delete trivial equations in the hypothesis as well as
delete the clause if the conclusion is trivial or in the equivalence relation
generated by the hypotheses.
If k = 0, then update the equivalence relation on constant symbols repeatedly
applying Steps 2 and 3 above. If k > 0 and the Horn clause has only common
constants, then it is included in the interpolant, like other equations and
Horn clauses with common symbols.
If a Horn clause has only common constants in the hypothesis but the con-
clusion only has a nonconstant symbol on one side, then it can be used as a
rewrite rule to eliminate this uncommon symbol.

5. Exposing uncommon constants underneath common function sym-
bols: Uncommon constants appearing as arguments in an f -equation can be
eliminated by exposing even when f is a common symbol. For any pair of
f -equations which have as arguments uncommon constants, generate a Horn
clause as was done for uncommon function symbols above. In principle, this
step can be performed irrespective whether any uncommon constant is an ar-
gument in an f -equation or not but we apply it only if there is an uncommon
constant hiding under f as it can unnecessarily generate more complex inter-
polants, particularly Horn clause interpolants, which are not the strongest.
At this step, the result is: a subset of equations and disequations purely
in common symbols, and hence a part of an interpolant, and a subset of
equations, disequations and Horn clauses in which at least one uncommon
symbol appears.

6. Phase III: Eliminating Uncommon symbols conditionally
At this step, uncommon symbols can only be eliminated conditionally, which
can significantly contribute to the complexity of computing an interpolant.
An alternative explored later is to keep such uncommon symbols in solved
form so that they can be eliminated as required by an application in which
interpolants are being used.

7. Deleting uncommon constants that cannot be eliminated
If for some uncommon constant, there is no Horn clause with a conclusion
relating this uncommon symbol to some other symbol, then eliminate all
clauses in which this uncommon symbol appears since these clauses cannot
be used any further to generate an interpolant.

8. Eliminating uncommon constants by conditional rewriting: Using a
conditional equation (c1 = e1 ∧ · · · ∧ ck = ek) =⇒ d = h, where d (equiva-
lently, h) is the only uncommon symbol and all other symbols are common, d
(respectively, h) can be conditionally eliminated from other equations, con-
ditional equations and disequations in which d appears. For every such con-
ditional equation which can eliminate d, such rewriting must be performed.
It is easy to see that this can lead to an exponential blow-up. If there is only
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one such conditional equation for d, then the exponential blow-up can be
avoided as such a case is not much different from unconditional elimination.
As in the case of unconditional elimination, replacing an uncommon sym-
bol can lead to new equalities as well as conditional equations. The above
two steps are then repeated until no uncommon symbol can be completely
eliminated or there are no Horn clauses left relating uncommon symbols.

9. Generating an interpolant: The result of the above steps after repeated
applications is: (i) the set of equations, disequations and conditional equa-
tions purely in common symbols, (ii) conditional equations each of which has
an uncommon symbol in its hypothesis which has been eliminated elsewhere.
An interpolant is the set of equations, Horn clauses and disequations purely
in common symbols including new common symbols. This representation
generates compact interpolants.

An interesting example The above algorithm is illustrated using the following
example from [20] in which α = {f(z1, v) = s1, f(z2, v) = s2, f(f(y1, v), f(y2, v)) =
t} in which v is the only uncommon symbol and f as well as constants z1, z2, y1, y2, s1, s2, t
are common.

After flattening, α = {f(z1, v) = s1, f(z2, v) = s2, f(y1, v) = n1, f(y2, v) =
n2, f(n1, n2) = t} with n1, n2 being the new uncommon symbols along with v
from the input.

Since there are no constant equations, no equivalence classes on constants
are generated (which is the same as each equivalence class containing a singleton
constant).

Even though f is a common function symbol, uncommon symbols are hiding
under f as its arguments in f -equations. Applying the step to expose uncommon
symbols, we have, Horn clauses generated from the above rules:
{1. z1 = z2 =⇒ s1 = s2, 2. z1 = y1 =⇒ n1 = s1, 3. z1 = y2 =⇒ n2 =

s1, 4. (z1 = n1 ∧ v = n2) =⇒ s1 = t, 5. z2 = y1 =⇒ n1 = s2, 6. z2 = y2 =⇒
n2 = s2, 7. (z2 = n1 ∧ v = n2) =⇒ s2 = t, 8. y1 = y2 =⇒ n2 = n1, 9. (y1 =
n1 ∧ v = n2) =⇒ n1 = t, 10. (y2 = n1 ∧ v = n2) =⇒ n2 = t}.

An analysis of the above Horn clauses reveals that while there are Horn
clauses to rewrite and eliminate uncommon symbols n1, n2 but there is none
for eliminating v. Because of this observation, all equations and Horn clauses in
which v appear can be deleted, and the only 4th equation in the input along
with Horn clauses 1, 2, 3, 5, 6, 8 are left.

Both n1 and n2 can be successively eliminated. The second Horn clause has
only common symbols in the hypothesis and the conclusion has an uncommon
symbol that can be replaced by a common symbol. So this conditional rewrite
can be applied wherever n1 appears. Below, only some relevant steps are shown.

2. z1 = y1 =⇒ n1 = s1 simplifies n1 to s1 under z1 = y1. Horn clause
5 simplifies giving 11. (z1 = y1 ∧ z2 = y1) =⇒ s1 = s2; This Horn clause is
subsumed by 1 and hence is deleted.

8 simplifies to 12. (y1 = y2∧z2 = y1) =⇒ n2 = s1; the equation f(n1, n2) =
t simplifies to 13. z1 = y1 =⇒ f(s1, n2) = t.
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Clause 3 is used to simplify: Clause 6 simplifies to (z2 = y2 ∧ z1 = y2) =⇒
s1 = s2 which is subsumed by 1. 12 simplifies to: 14. (y1 = y2 ∧ z1 = y2 ∧
z2 = y1) =⇒ s1 = s1) which is discarded. The f -equation 13 simplifies to
(z2 = y1 ∧ z1 = y1) =⇒ f(s1, s2) = t. And so on.

After replacement of n1, n2 using Horn clauses 2, 3, 5, and 6, the result purely
in common symbols is:

{1. z1 = z2 =⇒ s1 = s2, (z1 = y1 ∧ z2 = y2) =⇒ f(s1, s2) = t, (z2 =
y1 ∧ z1 = y2) =⇒ f(s2, s1) = t, (z1 = y1 ∧ z1 = y2) =⇒ f(s1, s1) = t, (z2 =
y1 ∧ z2 = y2) =⇒ f(s2, s2) = t}, which is the interpolant generated from α by
removing an uncommon symbol v.

The above example can be generalized to: α = {f(z1, v) = s1, f(z2, v) =
s2, · · · , f(zk, v) = sk, g(f(y1, v), f(y2, v), · · · , f(yk, v)) = t} with the only un-
common symbol v and z1, · · · , zk, y1, · · · , yk, s1, s2, · · · sk, t are constant common
symbols. α is of size O(k). A pure interpolant would be of exponential size and
is of the form

∧
(zj1 = yi1 ∧ zj2 = yi2 · · · ∧ · · · zjk = yik) =⇒ g(su1 , · · · , suk

) = t
for various possible sets of s1, · · · , sk.

It may however be possible to avoid exponential blow-up by encoding non
unary function symbols by currying them. This aspect would be investigated in
a forthcoming paper [30].

Pseudo-Interpolants In order to avoid exponential blow-up. we introduce
pseudo-interpolants which can have uncommon symbols with conditional substi-
tutions for them in a solved form, very similar to solved form for substitutions
in unification problems. The situation here is more complex because of condi-
tional substitutions whereas in the case of standard unification (over the empty
theory), complete subterm sharing using a dag representation of fully shared
subterms suffices to avoid exponential blow-up.

A pseudo-interpolant is a finite set of equations and conditional equations
purely in common symbols along with a finite set of conditional substitutions
and a total (could be partial) ordering on uncommon symbols based on the con-
ditional dependency of uncommon symbols among themselves. The idea here is
to determine the order in which uncommon symbols would be conditionally elim-
inated by Horn clauses in the conditional elimination step above. More details
will be provided in a forthcoming paper [30].

Pseudo interpolants for the example discussed in the previous subsection
would be the rules:{1, 2, 3, 5, 6, 8} and {f(n1, n2) = t} with the ordering n2 > n1
in which 2, 5 are used to eliminate n1 followed by 3, 6 to eliminate n2; the ordering
n1 > n2 also works. The result would be the same as the interpolant given in
the previous subsection.

v A pseudo-interpolant is thus an intermediate form where some uncommon
symbols are eliminated only if needed in an application where interpolants are
needed.
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6.2 Complexity Analysis

The flattening step can be done in O(n) where n is the size of the graph represen-
tation of the input terms (with full sharing). In general there are O(n) constant
symbols after flattening, corresponding to a constant for every node in the graph
representation.

The constant congruence step and associated processing of replacing con-
stants by their representatives can be done easily in O(n∗ log(n)) (but its amor-
tized complexity is O(n ∗ α(n)), almost linear, since α here is the inverse of
Ackermann’s function.

Horn clauses of size k, where k is the maximum arity of a function symbol,
(or constant size if all nonunary function symbols are encoded using the single
binary function apply as proposed in [40]) can be generated in O(n2) steps.

The most expensive step is that of conditional rewriting primarily because
for a single uncommon symbol, there can be multiple Horn clauses equating the
uncommon symbol under different conditions. This can result in an exponential
blow-up if uncommon symbols are completely eliminated; the above example
illustrates this: for n1 there are two conditional Horn clauses used to eliminate
it; similarly n2 is eliminated by two conditional Horn clauses.

In contrast, a pseudo-interpolant can be generated in O(n3). Perhaps this
complexity can be improved substantially by exploiting the structure of Horn
clauses. But a (pure) interpolant only in common symbols can require exponen-
tially many steps as the following example illustrates.

To our knowledge, this is the first complexity analysis of interpolant genera-
tion algorithms in the literature. Furthermore, the above complexity results are
for generating the strongest possible interpolants from α without having access
to a proof of α =⇒ β (which can in general be of higher complexity than
interpolant generation if the complexity of proof generation is also included in
the complexity analysis of interpolant generation).

Another interesting byproduct of the proposed approach is that a conditional
congruence (completion) relation algorithm can be generated from a finite set of
conditional Horn clauses from which another Horn clause can be easily decided
by simplification. A paper explaining the algorithm is under preparation.

Some examples from the literature on Interpolant generation for EUF
There are many algorithms proposed in the literature for generating interpolants
from refutation proofs of α ∧ ¬β including those in [19, 37, 17].

To compare the interpolants generated from the above algorithm with those
in the literature (particularly McMillan’s [37] and Tinelli et. al’s [17]), consider
Example 3.1 in Tinelli et al’s paper. α = {z1 = x1, x1 = z2, z2 = x2, x2 =
f(z3), f(z3) = x3, x3 = z4, f(z2) = x2, x2 = z3} and β = {z1 = y1, y1 =
f(z2), f(z2) = y2, y2 = z3, z3 = y3, z2 = y2, y2 = f(z3), y3 6= z4}.

Common symbols are {f, z1, z2, z3, z4}. So other symbols from α must be
eliminated which are all nonfunction symbols, so it can be done easily by con-
gruence closure on constants.
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The constant congruence gives equivalence classes: {z1, x1, z2, x2, z3} and
{x3, z4}; wlog, let z1 and z4 respectively be the representative. In f -equations,
constants are replaced by their representatives: {f(z1) = z1, f(z1) = z4, f(z1) =
z1}, from which the equality z1 = z4 is deduced merging the two equivalence
classes. x1, x2, x3 are then deleted from the equivalence classes.

Deleting uncommon symbols, the interpolant is: {z2 = z1, f(z1) = z1, z4 =
z1, z3 = z1}, whereas McMillan’s algorithm (as reported in Tinelli et al’s paper)
produces {z1 = z2, z2 = f(z3), f(z3) = z4}, and Tinelli et al’s algorithm gives
{z1 = z4}. The interpolant generated by our algorithm implies the interpolants
generated by both McMillan’s as well as Tinelli et al’s algorithms and is stronger.

Also consider Example 4.3 in Tinelli et al’s paper: α = {x1 = z1, z2 =
x2, z3 = f(x1), f(x2) = z4, x3 = z5, z6 = x4, z7 = f(x3), f(x4) = z8} and
β = {z1 = z2, z5 = f(z3), f(z4) = z6, y1 = z7, z8 = y2, y1 6= y2}.

Commons symbols are {f, z1, z2, z3, z4, z5, z6, z7, z8} and {x1, x2, x3, x4} are
uncommon symbols to be eliminated from α.

Using our algorithm, the constant equivalence relation is:
{{x1, z1}, {x2, z2}{x3, z5}, {x4, z6}{z3}{z4}, {z7}, {z8}}, let z1, z2, z5, z6, z3, z4, z7, z8
respectively be the representatives of the equivalence classes. Replacing constants
in f -equations gives: f(z5) = z7, f(z6) = z8, f(z1) = z3, f(z2) = z4,.

There is no need to generate any Horn clauses since none of the f -rules has
any uncommon symbol. The interpolant is: {f(z1) = z3, f(z2) = z4, f(z5) =
z7, f(z6) = z8}. The interpolant reported for McMillan is: (z1 = z2 ∧ (z3 =
z4 =⇒ z5 = z6)) =⇒ (z3 = z4 ∧ z7 = z8), whereas for Tinelli et al’s algorithm,
it is: (z1 = z2 =⇒ z3 = z4) ∧ (z5 = z6 =⇒ z7 = z8).

Our interpolant uses f since it is a common symbol as well. Suppose we
wanted an interpolant without f , then we will generates Horn clauses thus elim-
inating f to give: (z1 = z2 =⇒ z3 = z4)∧(z1 = z5 =⇒ z3 = z7)∧(z1 = z6 =⇒
z3 = z8) ∧ (z2 = z5 =⇒ z4 = z7) ∧ (z2 = z6 =⇒ z4 = z8) ∧ (z5 = z6 =⇒
z7 = z8). However, this unnecessarily increases the size of the interpolant as well
as generating a weaker interpolant whereas this rule is necessary if the function
symbol is uncommon and must be eliminated.

Example in Figure 4 of Tinelli et al’s paper [17]: α = {x1 = z1, z3 =
f(x1), f(z2) = x2, x2 = z4} and β = {z1 = y1, y1 = z2, y2 = z3, z4 = y3, f(y2) 6=
f(y3)}. Common symbols are: {f, z1, z3, z3, z4}. Constant congruence is {{x1, z1}, {x2, z4}}.
Replacing constants by representatives in f -equations gives {f(z1) = z3, f(z2) =
z4}. The interpolant Iα is thus {f(z1) = z3, f(z2) = z4}, the same as the one pro-
duced by McMillan’s algorithm; in contrast, Tinelli et al produced z1 = z2 =⇒
z3 = z4 which would be generated by our algorithm if an interpolant without f
is desired.

As the above examples illustrate, our algorithm produces the strongest in-
terpolant and is also theoretically more efficient.

6.3 Interpolant Generation for Octagonal Formulas

In this section, we use quantifier elimination to generate interpolants for a con-
junction of octagonal formulas over integers (or reals or rationals).
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Consider α, a finite satisfiable conjunctions of a xi + b yi ≤ c, where a, b ∈
{−1, 0,−1} but c ∈ Z. Given a set of symbols xi’s and yj ’s declared to be local
to α, our goal is to eliminate them from α to get a projection which is a formula
purely in the remaining symbols. This is done by eliminating one symbol at a
time and generating a new set of octagons formulas as follows12:

Elim xi: For every pair of octagon atoms a xi + b yj ≤ c and −a xi + b′ yk ≤ d,
generate a new octagon literal by adding them, thus eliminating xi: b yI+b′ yj ≤
c + d. This is done for all such pairs including symbol constraints in which yk
does not appear.

Normalization: In the special case when yi = yj , the above can give 2yi ≤ c+d
or −2yi ≤ c + d which must be normalized by dividing c + d by 2 and taking
the integer floor (in case of computing a projection over the reals or rationals,
simple divison is performed). This inference is also called tightening.

Repeat this process until all local symbols are eliminated generating an in-
terpolant Iα from α. Before applying the above rules, preprocessing is performed
to simplify x − x ≤ c to T if c is nonnegative, and F otherwise; b x − b′ y ≤
c∧b x−b′ y ≤ d is simplified to b x−b′ y ≤ min(c, d). After the uncommon sym-
bols are eliminated and octagonal formulas in which uncommon symbols appear
are removed, the result is an interpolant.

Let α have n symbols and m octagonal atoms, then it puts an upper bound
on the number of octagonal atoms which are O(n2). If k symbols need to be
eliminated, the worst case complexity of interpolant generation is O(k ∗ n2).
Many heuristics are possible which can reduce the complexity further.

We discuss below the case when octagonal formulas are over integers as that
is more interesting.

Comparison with Griggio’s Algorithm Below, we illustrate the algorithm
on examples mostly taken from Griggio’s thesis [19] (see also [5]) and show differ-
ences between their algorithm and our algorithm. Griggio performed a detailed
analysis of an unsatisfiable set of octagonal formulas and considered its different
partitions into α and β to illustrate the intricacies of his graph based algorithm.
Following Miné who introduced two variables x+ and x− for every variables x
to stand for +x and −x, to respectively and transforming every octagonal for-
mula into two difference constraints of the form u − v ≤ c, a set of octagonal
formulas can be represented as a weighted difference graph. If this graph has a
negative cycle, then the constraint set is unsatisfiable. Even when the graph has
a 0 weight cycle, then sometimes formulas can be unsatisfiable over the integers.

Without giving all the details of Griggio et al’s algorithm, some character-
istics of Griggio’s examples are (i) when represented as a graph of difference
constraints, it is unsatisfiable but with a 0 weight cycle and (ii) his algorithm
generates a conditional interpolant for some partitions even though the same

12 It will be interesting to develop an efficient method for simultaneously eliminating
multiple symbols; as of now we have not succeeded in developing such a method.
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refutation proof is used. Griggio showed the behavior of his algorithm to generate
interpolants based on different subsets of common symbols of various partitions.

Consider Ex. 4.26 of the two formulas from Griggio’s thesis [19] (pp. 146-147)
(Example 5 in [5]): α = {x1−x2 ≥ −4, −x2−x3 ≥ 5, x2 +x6 ≥ 4, x2 +x5 ≥
−3} and β = { −x1 + x3 ≥ −2, − x4 − x6 ≥ 0, − x5 + x4 ≥ 0}.

In contrast, in our approach, we identify x2 as the symbol to be eliminated
from α, since it is local to α only. We do not care of a refutation proof of
α ∧ β. Using the Elim rule to eliminate x2 from complimentary literals, we get
{−x3+x5 ≥ 2, x1+x6 ≥ 0, x1+x5 ≥ −7, −x3+x6 ≥ 9}, leaving no other pairs
of octagon formulas with a positive x2 and a negative x2. Since every literals
of α includes x2, nothing from α is included in the interpolant, with the result
being Iα = {−x3 + x5 ≥ 2, x1 + x6 ≥ 0, x1 + x5 ≥ −7,−x3 + x6 ≥ 9}. It can be
checked that Iα is implied by α and is inconsistent with β.

Griggio’s algorithm generated a conditional interpolant: (−x6−x5 ≥ 0) =⇒
(x1 − x3 ≥ 3), which is implied by Iα since −x6 − x5 ≥ 0 with x1 + x5 ≥
−7 ∧ x1 + x6 ≥ 0 with tightening gives x1 ≥ −3; similarly, −x6 − x5 ≥ 0
with −x3 + x5 ≥ 2 ∧ −x3 + x6 ≥ 9 with tightening gives −x3 ≥ 6; from x1 ≥
−3 ∧ −x3 ≥ 6, we get x1 − x3 ≥ 3. Further, the interpolant generated by
the proposed algorithm is strictly stronger than Griggio’s interpolant. Griggio’s
observation on p. 146 is correct that the first two octagonal formulas in our
interpolant is not an interpolant since it is not inconsistent with β even though
they are implied by α but including two additional octagonal formulas shown
above produces the strongest interpolant. We consider this as a major weakness
of proof-based interpolant generation algorithms.

Other Examples In this section, we discuss almost all the examples from [19,
5] to illustrate differences as well as superiority of our algorithm particularly the
quality of interpolants generated.

Consider example 1 in [5] (also Ex. 4.17 in [19]) which can be done over
the rationals because of a negative weight cycle, and thus does not require any
complex analysis of the negative cycle.

α = {−x2 − x1 + 3 ≥ 0, x1 + x3 + 1 ≥ 0,−x3 − x4 − 6 ≥ 0, x5 + x4 + 1 ≥ 0}
and β = {x2 + x3 + 3 ≥ 0, x6 − x5 − 1 ≥ 0, x4 − x6 + 4 ≥ 0}. The uncommon
symbol to be eliminated from α is x1: its elimination gives an interpolant: Iα =
{−x2 + x3 + 4 ≥ 0,−x3 − x4 − 6 ≥ 0, x5 + x4 + 1 ≥ 0}.

If we eliminate the uncommon symbol x6 from β: Iβ = ¬(x2 + x3 + 3 ≥
0 ∧ x4 − x5 + 3 ≥ 0). In contrast, Cimatti et al. reported (−x2 − x4 − 2 ≥
0 ∧ x5 − x3 − 5 ≥ 0), which is strictly implied by Iα and hence weaker than Iα,
and which also implies Iβ . Griggio reported in his thesis (p. 135) that McMillan’s
algorithm for linear arithmetic over the rationals would generate an even more
complicated interpolant which is not even an octagon: −x2−x4+x5−x3−7 ≥ 0
which is also strictly implied by the interpolant generated by our algorithm.
Further, in contrast to McMillan’s algorithm as well as Griggio’s algorithm,
our algorithm will always generate a conjunction of octagoal formulas as an
interpolant. This demonstrates that it is often possible to devise more efficient
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quantifier elimination heuristics for subtheories producing succinct and elegant
results.

Let us now consider the examples used by Griggio et. al. [5] to illustrate
different case analysis of 0-weight cycles. The case above in our view, illustrates
the most complex case. The other three cases, which are relatively easy, are
illustrated below.

Example 2 (Example 4.20 in [19]): α = {x3−x1 ≥ −2,−x6−x4 ≥ 0, x4−x5 ≥
0}, and β = {x1 − x2 ≥ −4, − x2 − x3 ≥ 5, x2 + x6 ≥ 4, x2 + x5 ≥ −3},
reversing α and β from the running example. x4 is eliminated from α to give:
x3 − x1 ≥ −2,−x5 − x6 ≥ 0 as Iα; this result is the same as in [19].

Example 3 (Example 4.22 in [19]) : α = {x1 − x2 ≥ −4, x2 + x6 ≥ 4, −
x4 − x6 ≥ 0, − x1 + x3 ≥ −2} and β = { − x2 − x3 ≥ 5, x2 + x5 ≥
−3, x4 − x5 ≥ 0}. The symbols local to α are x1, x6. Eliminating them gives:
Iα = {x3 − x2 ≥ −6, x2 − x4 ≥ 4}, again the same as reported by [5].

Example 4: α = {x1−x2 ≥ −4, x2+x6 ≥ 4, −x1+x3 ≥ −2, −x2−x3 ≥ 5}
and β = { x2 + x5 ≥ −3, − x5 + x4 ≥ 0, − x4 − x6 ≥ 0}. The symbols local
to α are x1, x3. Eliminating them gives: Iα = {−x2 ≥ 0, x2 + x6 ≥ 4}; the result
reported in [5] is −x2 + x6 ≥ 4, which is a weaker interpolant.

The following example 4.24 from [19] can be quite revealing as well: α =
{x1−x2 ≥ −4, x2+x6 ≥ 4, −x1+x3 ≥ −2, −x2−x3 ≥ 5, x2+x5 ≥ −3} and
β = {−x6−x4 ≥ 0, x4−x5 ≥ 0} with common symbols being x5, x6. Eliminating
x1, x2, x3 one by one, gives {x6 ≥ 4, x5 ≥ −3}, which is the strongest interpolant
generated from α. In this case, since β is smaller and simpler and furthermore,
only one symbol x4 needs to be eliminated, so an interpolant ¬(−x6 − x5 ≥ 0),
which is equivalent to x5 +x6 > 0, can be easily generated which is weaker than
the one generated from α. Clearly, the interpolant from α which are conditions
on single variables is more likely to be useful and efficient in applications.

In our approach, an interpolant generated is always a conjunction of oc-
tagonal formulas. It is easy to see that (i) the strongest interpolant is also a
conjunction of octagonal formulas and further, (ii) our algorithm generates this
octagonal formula as an interpolant. More details will be provided in a forth-
coming paper [30].

This algorithm is typically faster since it is only considering α and not at-
tempting to generate a refutational proof of α ∧ β and more importantly, gen-
erates a simpler interpolant for a family of β’s. As stated above, the worst case
complexity of the algorithm is O(k ∗ n2) where k symbols need to be eliminated
from n symbols in α. Typically the number of octagonal atoms in α is much
smaller than O(n) in which the complexity is O(k ∗m2).

6.4 Interpolant generation for concave quadratic nonlinear
polynomial constraints using linearization

In [18] we have developed an efficient method for generating quadratic polyno-
mial interpolants for concave quadratic polynomial formulas (both pure as well
as combined with uninterpreted symbols). The key idea is to generalize Mozkin’s
transposition theorem using a linearization technique. This is an illustration of
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using specialized heuristics for quantifier elimination for a subclass of nonlinear
polynomial constraints under certain conditions. An efficient version has also
been developed and implemented using semi-definite programming thus com-
bining symbolic and numerical techniques. More details can be found in [18] for
a theoretical framework and for a preliminary implementation which can handle
almost all numeric relational abstract domains found useful in the abstract in-
terpretation approach. More details and its possible applications can be found
in [18, 50, 49]

7 Generating Abductors in Saturation based approach
for strengthening Invariants

In [16], we have developed a saturation based approach for checking whether a
given annotation at a program location indeed holds. The technique attempts
to use the annotation in verification conditions of the program to establish that
they are preserved over all possible program paths (or can lead to proofs of
other annotations in the program). Consider the case of an annotation inside a
loop body with a loop invariant as being an instance. To check whether such an
annotation is indeed invariant, one way is to use the inductive assertion approach
advocated by Floyd and Hoare, and check whether all basic cycles through that
annotated location inside the loop body preserve the assertion.

Consider the following simple example that is quite instructive.

Example 7. var x, y, z: integer end var
x := 0, y := 0, z := 9;
while x ≤ N do

x := x+ 1; y := y + 1; z := z + x− y;
end while

Then z ≤ 0 is a loop invariant. Since z ≤ 0 6=⇒ z + x − y ≤ 0, it is not
inductive. It can, however, be strengthened to z ≤ 0 ∧ x − y ≤ 0 which is true
initially as well as preserved by the body of the loop.

The saturation based approach for checking whether a given annotation α
is a loop invariant, it attempts to show that the annotation α is inductive by
generating verification condition of the form (α ∧ cond) =⇒ β, every possible
possible basic cycle through the loop entry, where cond is either true or a formula
generated from tests along that cycle. Since that is not so in this case, it attempts
to find ψ, which we call abductor of (α ∧ cond) and β , such that ((α ∧ cond) ∧
ψ) =⇒ β; there can in general be infinitely many such ψ’s with the simplest
trivial one being false which gives little information about the behavior of the
loop. However, there are other nontrivial abductors including x − y ≤ 0 using
which z ≤ 0 can be shown to an invariant since z ≤ 0 ∧ x− y ≤ 0 is inductive.

Quantifier elimination can be used to find such abductors as follows: To show
(α ∧ ψ) =⇒ β is valid (after abstracting cond to be true as above) equivalent
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to computing ψ that implies α =⇒ β. Eliminating some common variables
from α =⇒ β can give a simpler formula which ψ must imply. For the above
example, ψ must imply (z ≤ 0) =⇒ (z + x − y ≤ 0); eliminating z from
¬(z ≤ 0 ∧ (y − x − z) < 0 gives ¬(y − x < 0) which is y − x ≥ 0, equivalently
x− y ≤ 0; any ψ that is stronger than x− y ≤ 0 is such an abductor including
x− y ≤ 0 itself.

We are actively exploring this approach using such approximations based on
quantifier elimination heuristics.

8 Challenges for Symbolic Computation and SMT
Communities

The first part of this paper reviewed our research on generating linear and non-
linear polynomial relations as invariants of programs; both approaches discussed
above invariants rely on symbolic computation algorithms of high complexity
– typically doubly exponential in the number of variables (and degree of poly-
nomials). While many ideal theoretic operations needed in the ideal-theoretic
approach can be implemented using Gröbner basis algorithm, there is never any
need to compute a complete Gröbner basis for invariant generation given that
any basis of the ideal of invariants suffices. Wheres Gröbner basis computations
resulting from invariant generation for many nontrivial examples can be easily
calculated as demonstrated in [44], complete quantifier elimination algorithms
for the theory of real closed fields based on cylinderical algebraic decompositions
(CAD) as implemented in QEPLOG or REDLOG do not work at all even for
very simple examples such as the ones discussed in earlier sections. We have ex-
perienced similar problems in our attempts to use QEPLOG and REDLOG for
generating invariants for hybrid system problems (such as the oil-pump problem)
or for interpolant generation for nonlinear polynomial constraints.

As demonstrated, many other program analysis problems can be formulated
as quantifier elimination problems. This includes termination analysis by gen-
erating ranking functions, invariant generation using counter example guided
abstraction refinement approach [6, 1], a generalization of IC3 approach consid-
ered extremely effective for hardware verification [3, 21, 2, 4] where interpolants
need to be generated, abductive inference methods for invariant generation as
in [16] for inductive invariant generation.

8.1 Addressing the Complexity Barrier

As we have tried to suggest above, many problems related to static analysis of
loop programs can be formulated in terms of quantifier elimination. However,
quantifier elimination is derided by our community because of high complexity
of elimination methods be they on an algebraically closed field or the real closed
field. It is our contention that most researchers nevertheless end up proposing
heuristics for restricted quantifier elimination disguising them under different
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often fancy terminology. To put it more mildly, we have yet to see any new pro-
posal that is totally independent of the use of quantifier elimination. In this note,
we have called a spade a spade by opening admitting that our approaches
heavily rely on quantifier elimination; however, we are always attempting to find
heuristics exploiting the special structure of formulas being addressed and liv-
ing with incompleteness. In [34] as well as [32], we have shown how quantifier
elimination problems can be effectively solved even by hand for many formu-
las arising in quantifier elimination based approach for automatically generating
loop invariants. That is in sharp constrast to our unsuccessful attempts to use
quantifier elimination software tools, especially for the theory of real closed field,
even for the case when parametric shapes are linear constraints with parameters.
For polynomial equalities, even parametric Gröbner basis algorithms appear to
be an overkill.

As shown in [34, 32], it often suffices to find sufficient conditions on param-
eters which ensure that the verification conditions arising from all the paths
are valid; such conditions, while incomplete, are often strong enough to gener-
ate meaningful invariants insofar as sufficient conditions are not too weak. For
octagonal invariants, results using our approach are comparable or sometimes
even better than those produced by the tool Interproc based on the abstract
interpretation approach [23].

Approximating program behavior to ensure that verification conditions gen-
erated can be efficiently analyzed pays off; this is also the case in the abstract
interpretation framework for generating transfer functions.
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eration using Gröbner Bases. Symp. on Principles of Programming Languages,
2004.

47. H. Sheini and K. Sakallah. A scalable method for solving satisfiability of integer
linear arithmetic logic. In Theory and Applications of Satisfiability Testing, pages
68–81. Springer, 2005.

48. W. Wu. Basic principles of mechanical theorem proving in geometries. J. of
Automated Reasoning, 2:221–252, 1986.

49. H. Zhao, N. Zhan, and D. Kapur. Synthesizing switching controllers for hybrid
systems by generating invariants. In Proc. Festchrift Symp. in honor of He Jifeng,
pages 354–373, 2013.

50. Hengjun Zhao, Naijun Zhan, Deepak Kapur, and Kim G. Larsen. A ”hybrid” ap-
proach for synthesizing optimal controllers of hybrid systems: A case study of the
oil pump industrial example. In Dimitra Giannakopoulou and Dominique Méry,
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