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Abstract. Smartphones are prevalent today and store sensitive and

private data. Malicious applications are constant threats to user data

on smartphones as they could sniff or manipulate them by exploiting

software weaknesses in legitimate mobile applications. Static analysis

tools can be used to reduce these risks during development. However, it is

important to know the capability of these tools in order to make informed

decisions and avoid false-sense of security. In this preliminary study we

investigate the detection capability of mainstream vs. Android-specific

tools to guide decision-making during tools’ selection.
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1 Introduction

Smartphone devices are very popular today. These devices aggregate personal data

related to our lifestyle, relationships, finances, professions, locations, recordings,

conversations, preferences, videos and photos [21]. These are very sensitive and

private data. A breach as a result of vulnerabilities in the mobile software

could have devastating impact on the user. Malicious mobile applications could

sniff and manipulate sensitive user data [5] or even launch a denial-of-service

attacks [19]. Despite these challenges, developers often do not code with a mindset
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of attackers because they care more about functionalities. As a result, common

and inadvertent mistakes become exploitable vulnerabilities [5].

Static analysis of the application’s source or object code has been advocated

as a strategy to detect weaknesses [4] during implementation. The goal is to

detect part of the code that could become vulnerable. Static analysis tools (SATs)

are utilized to support developers to identify security risks in their code. The

goal of this research is to assess tools that detect security-related weaknesses in

Android applications. We choose Android because of its open platform and market

dominance. Data from the third quarter of 2016 show Android with 86.8% of

marketshare followed by Apple’s iOS with 12.5% and others (e.g., Windows phone,

Symbian) with 0.7% [6]. In addition, other smartphone platforms have similar

security model, however, Android is claimed to have the most sophisticated

application communication system [5].

In Android, user-installed applications are sandboxed, each runs in a dedicated

process, each has its own private data directory, and employs the least privilege

principle [9]. Android defines four types of components: Activity (user interface),

Service that executes processes in the background, Content Provider for data

sharing, and Broadcast Receiver that responds asynchronously to system-

wide messages. Communication between applications are achieved through a

message passing mechanism (Intent messages). Configuration of application com-

ponents are done in the mandatory manifest file. In order to protect applications,

Android defines four types of permissions: Normal, Dangerous, Signature, and

SignatureOrSystem.

Specific challenges in Androids make static analysis different from regular

Java applications [18]. Android apps run in a special virtual machine named

Dalvik that generate bytecodes differently from regular Java virtual machine.

As a result, static analysis tools must be able to analyze the Dalvik bytecode

when Java source code is not provided. Further, Android apps could have many

entry (Main) points which make them different from regular Java applications.

Additionally, in Android apps, different components have their own lifecycle.

Because these lifecycle methods are not directly linked to the execution flow,

they limit the soundness of some analysis scenarios.

Organizations develop both standard desktop and mobile applications, and

also manage them in a similar Software Configuration Management environment.

Moreover, in agile development and DevOp environments, tools are success factors

that ensure continuous deployment and fast delivery [8]. The tendency is to run

one type of SAT across the code base during a build operation. In our experience,

a common question that practioners have asked us is whether mainstream SATs

are good enough for scanning mobile applications. We are thus interested to

compare non-specific and Android-specific SATs in their capability in terms of

strengths and limitations to detect relevant mobile-related weaknesses. This is

relevant to allow users make informed decisions about what tools to use, how to

use them, and what results to expect. Our mainstream tools are chosen from the

open source community based on availability and accessibility. In this preliminary

study, we concern ourselves with the scope of weaknesses that can be found
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by Android-specific SATs and mainstream SATs. The following two research

questions summarize the problems we partly address in this paper:

RQ1. What are the similarities and differences between mainstream SATs and

Android SATs in the type of weaknesses they detect?

RQ2. What are the runtime costs of executing SATs in mobile apps?

We have used the combination of common weaknesses and enumeration (CWE)

dictionary by MITRE [20] and OWASP top 10 2016 data for our assessment.

The remainder of the paper is organized as follows: In Section 2, we discuss

the approach we have used in this study. Section 3 presents our preliminary

results and provides some discussions of the results. In Section 4, we present an

overview of related studies. Section 5 discusses the limitations and threat to the

validity of our work. Finally, we conclude the paper in Section 6.

2 Approach

2.1 Common Weaknesses in Android Applications and CWE

Selection

Based on OWASP top 10 2016, the most common security risks in mobile

applications are: (1) Improper platform use, (2) Insecure data storage, (3) Insecure

communications, (4) Insecure authentication, (5) Insuficient cryptography, (6)

Insecure authorization, (7) Client code quality issues, (8) Code tampering, (9)

Reverse engineering, and (10) Extraneous functionality [23]. Many empirical

studies have as well validated the existent of these risks in many real-world

Android applications. (see [5, 11, 15, 19])

In this preliminary assessment, we have used 8 weaknesses [20] categories to

assess the selected static analysis tools. Three categories are specific to Android

applications. The rest are general quality weaknesses applicable to all applications.

The rationale behind this choice is to investigate how the tools could detect

weaknesses in the different categories. Additionally, we mapped the selected

CWEs to the OWASP’s top security risk categories.

CWE-927: Use of Implicit Intent for Sensitive Communication

(#3) An implicit intent can be used to transmit data without specifying the

receiver. It is possible for any application to process the intent by using an Intent

Filter for the intent.

CWE-926: Improper Export of Android Application Components

(#1) Android application components (Activity, Service, or Content Provider)

are exported through the manifest file. Exporting components without proper

restriction as to which applications can launch or access the data could result

into integrity, confidentiality and availability issues.

CWE-319: Unencrypted Socket (#3) The study by Enck et al. [11]

shows that certain Android applications include code that use the Socket class

OWASP – Open Web Application Security Project (https://www.owasp.org).

https://www.owasp.org
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directly. Java sockets are potential attack surface as they represent an open

interface to external services.

CWE-921: Storage of Sensititve Data in a Mechanism without Ac-

cess Control (#2) This weakness occurs when applications store sensitive

information in file systems or devices that are not protected. Examples include

memory cards or USB devices.

CWE-359: Exposure of Private Information (‘Privacy Violation’)

(#6) Accessing private data such as passwords or credit card numbers need

explicit authorization. Privacy violation could occur when unauthorized entities

have access to data.

CWE-478: Missing Default Case in Switch Statement (#7) This

weakness occurs when code that uses switch statement omit the default case.

Execution logic may be altered when the system encounters variable value not

handled in the logic. Security issues may happen, if switch logic is used to handle

security decision or is linked to other aspects of code where security decision

happens.

CWE-611: Improper Restriction of XML External Entity Refer-

ence (’XXE’) (#7) Applications that process XML documents could be vul-

nerable to XXE-attacks if proper validations and sanitations are not put in place.

An example is the CVE-2016-6256 XML External Entity(XXE) attack in the

SAP Business One Android Application.

Debug Mode Activated (DMA) (#10) There are cases where production

code is shipped with developer’s configuration. An example is when debug option

is enabled which can lead to disclosure of confidential and senstitive data.

2.2 Selection of tools and applications

Our tool selection was guided by the tools’ availability and ease of use. Both

Emanuelsson and Nilsson [10] and Hofer [14] report on installation as a seemingly

important metric when choosing a static analysis tool. Practitioners can be wary

of tools that are very complicated to set up and use. As a result, the selected

tools are open-source or those available for use without cost and are also easy to

install and use.

We selected FindBugs and FindSecBugs as mainstream tools as they are

widely available and used to assess code weaknesses at industrial settings. We

selected 4 Android SATs that have pre-built libraries and can be easily configured

and executed. Table 1 lists the Android SATs with their URLs. The techniques

utilized by the tools to scrutinize a mobile app are listed in column “Technique”.
The idea of selecting tools using different techniques is to assess their ability to

identify the CWEs related to OWASP’s top risk categories and also evaluate the

runtime costs of each technique.

We choose 7 open-source real mobile applications for assessment. In Table 2,

we present the apps, a short description, the size of the object code, and the

volume of downloads. We selected apps from different domains (e.g., secure

communication, content management, graphics manipulation), and with fairly

large size (0.3M to 6.8M), to expose the tools to a variety of contexts. Moreover,
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Table 1. Android SATs

SAT URL Technique

AndroidLint http://tools.android.com/tips/lint Source code scanner

Amandroid http://pag.arguslab.org/argus-saf Taint analysis

JAADS https://github.com/flankerhqd/JAADAS Taint analysis

Androbugs https://www.androbugs.com/ Object code scanner

they are largely used apps: two of them have more than 1M, one more than 600K,

and two more than 100M downloads. Thus, they are real-world apps which are

being used by users.

Table 2. List of assessed apps

App Description Size (Mb) # Down.

AntennaPod
open-source podcast manager for Android

6.2 >100K
http://antennapod.org/

ConnectBot
SSH, telnet, and terminal emulator

3.8 >1M
https://connectbot.org/

Conversations
XMPP-based instant messaging client

6.8 >10K
https://conversations.im/

iFixit
Online repair guides for consumer electronics and gadgets

6.0 < 5K
https://www.ifixit.com/

KeePassDroid
Password manager

3.7 >1M
http://www.keepassdroid.com/

RingDroid
Ringtone maker

0.344 >100K
https://github.com/google/ringdroid

Zxing
Barcodereader

0.75 >600K
https://github.com/zxing/zxing

2.3 Analysis

We run each tool against the selected Android applications. The results of the

tools are generated in different formats. This presents enormous challenge for

tools’ comparison. In addition, there is no pre-CWE mappings for the Android-

specific tools. As a result, we manually inspect the tools’ messages and map

them to an appropriate CWE wherever applicable. We did not check whether

the result is false positive or not in this study as we are concerned only with

the identification of weakness types identified by each tool. Lastly, we manually

search for the occurence of each weakness categories in the tools’ result for each

application.

3 Preliminary Results and Discussion

We summarise the initial results of our assessments in Table 3. The first column

describes the CWE that is investigated. The second column (merged) lists the

http://tools.android.com/tips/lint
http://pag.arguslab.org/argus-saf
https://github.com/flankerhqd/JAADAS
https://www.androbugs.com/
http://antennapod.org/
https://connectbot.org/
https://conversations.im/
https://www.ifixit.com/
http://www.keepassdroid.com/
https://github.com/google/ringdroid
https://github.com/zxing/zxing
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Table 3. CWE Detected by Tools

CWE
Tools

Apps
FindSecBugs FindBugs AndroidLint Amandroid AndroBugs JAADS

CWE-927: Use of Im-

plicit Intent for Sensi-

tive Communication

X 5 5 5 5 X iFixit, Antenna-

Pod, Conversa-

tions

CWE-926: Improper

Export of Android Ap-

plication Components

5 5 X X X 5 AntennaPod,

iFixit, Zxing

CWE-319: Unen-

crypted Socket

X 5 5 5 5 5 iFixit

CWE-921: Storage of

Sensititve Data in a

Mechanism without Ac-

cess Control

X 5 5 X X X All apps

CWE-359: Exposure

of Private Information

(’Privacy Violation’)

X 5 5 5 5 5 Conversations

CWE-478: Missing De-

fault Case in Switch

Statement

X X 5 5 5 5 Zxing

CWE-611: Improper Re-

striction of XML Ex-

ternal Entity Reference

(’XXE’)

X 5 5 5 5 5 Keepassdroid,

Zxing

Debug Mode Activated

(DMA)

5 5 5 5 X X All apps

Table 4. Execution time of mainstream and Android SATs

Apps FindSecBugs FindBugs AndroidLint Amandroid AndroBugs JAADS

AntennaPod 5min30sec 4min1sec 1min7sec 5h52min39sec 46sec 11min59sec

ConnectBot 3min3sec 2min15sec 0min51sec 1h45min28sec 21sec 6min35sec

Conversations 3min28sec 4min12sec 0min54sec 4h59min22sec 46sec 13min57sec

iFixit 6min54sec 4min46sec 0min22sec 3h15min27sec 22sec 7min1sec

KeePassDroid 6min52sec 5min8sec 15min6sec 0h55min33sec 17sec 5min8sec

RingDroid 3min12sec 1min43sec 0min4sec 0h6min39sec < 1sec 1min43sec

Zxing 4min56sec 3min28sec 1min24sec 0h18min43sec 2sec 2min18sec
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tools and indicate whether the tool finds the stated CWE. The third column lists

the applications where the stated CWE is found. For example, only FindSecBugs

found CWE-319 in iFixit whereas none of the other tools found this weakness in

iFixit. In addition, the weakness was not spotted in the rest of the apps.

From the results, we make the following observations: AndroBugs checks inter-

component communication-based, configuration and deployment weaknesses.

JAADS checks inter-component, communication-based and configuration weak-

nesses. Amandroid analyses inter-component communication; however, users have

to reason about the results. FindSecBugs is tailored for security audit in general

with limited extension to Android applications. For example, it does not analyse

the AndroidManifest.xml file. AndroidLint reports on many quality issues from

its report but miss many specific security issues.

RQ1. What are the similarities and differences between mainstream

SATs and Android SATs in the type of weaknesses they detect?

In this preliminary study, we found FindSecBugs to cover a wide range of the

weakeness categories but missed the topmost important risk (CWE-926) and the

OWASP top #10 (Debug Mode Activated). Mainstream SATs are therefore useful

and necessary to uncover relevant mobile-specific weaknesses but they are not

sufficient. Furthermore, general quality issues can sometimes be very important

when they occur where security decision is being taken (e.g. Missing Default in

Switch). Android-specific tools could not detect the above weakness. In addition,

the Android SATs did not detect CWE-319 (Unencrypted Socket), CWE-359

(Exposure of Private Information), and CWE-611 (Improper Restriction of XML

External Entity Reference). Both OWASP top #1 and #10 are not detected by

any of the mainstream tools but are detected by some Android-specific tools. In

addition, to check the 8 weakness categories requires at least 3 combination of

tools from the mainstream and Android SATs, as a result, we conclude that one

tool is not enough to catch the whole range of weaknesses.

Nevertheless, it would be possible for FindSecBugs and FindBugs to detect

some Android-specific CWEs if the manifest file were analyzed and patterns

particular to Android applications were supported. These relatively simple mod-

ifications would have a beneficial impact on the development of more secure

Android mobile apps because FindSecBugs and FindBugs are widely known and

used at industrial settings.

RQ2.What are the costs of running SATs in mobile apps? Tools’

performance depends on the technique utilized. Taint analysis is more costly than

code scanning for bug patterns. The time to run the selected SATs are presented

in Table 4. We have used a computer running Ubuntu 16.04 LTS equipped with

Intel Core i7-4510, 2GHz CPU, and 15.6 GBytes of RAM. All tools were run

three times and the average time are reported in Table 4. The data for Amandroid

represents the time to run the five different taint analysis provided by the tool.

We report the user value of the Linux time command for all SATs, which

represents the user CPU time. The exception is AndroindLint for which we

used a stop watch. For AntennaPod (in row one of Table 4), on the average,

FindSecBugs took five minutes and 30 seconds, FindBugs took four minutes and
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one second, AndroidLint, one minute and seven seconds, Amandroid, five hours,

52 minutes and 39 seconds, AndroBugs, 46 seconds, and JAADS, 11 minutes

and 59 seconds.

The mainstream tools (FindBugs and FindSecBugs) and AndroidLint take at

most tens of minutes to analyze the code because they scan it for patterns of

possible vulnerabilities. AndroBugs scans the apk for particular patterns, but it

does not scan the whole code. As a result, it requires few seconds to obtain its

report. The most costly tools are those that utilize taint analysis. Amandroid

provides a thorough analysis, but it demands a high runtime cost to obtain the

data. JAADS taint analysis is much faster than Amandroid’s, but its report is

not as comprehensive.

This preliminary data suggest that tools that scan the code for bug patterns

and perform light taint analysis can be utilized during development time. On the

other hand, thorough taint analysis is only fitting in a continuous integration

environment, especially, during overnight builds.

4 Related work

Empirical studies have been conducted to compare the strengths and shortcomings

of SATs [14, 16, 17, 25,27]. In general, they run SAT against a set of programs

with known vulnerabilities. Most of the studies assess performance such as the

precision, recall, true negative rate and accuracy of tools [17,27]; others assess

also the cost of running the tools, e.g. [14,27]. There are also efforts that have

quantitatively evaluated static analysis tools with regards to their performances

to detect security weaknesses in benchmark synthetic code. The Center for

Assured Software (CAS) [22] developed a benchmark test cases with “good code”

and “flawed code” across different languages to evaluate the performance of

static analysis tools and assessed 5 commercial tools. Goseva-Popstojanova and

Perhinschi [12] investigated the capabilities of 3 commercial tools. Their findings

show that the capability of the tools to detect vulnerabilities was close to or

worse than random guessing. Díaz and Bermejo [7] compares the performance

of nine tools mostly commercial tools using the SAMATE security benchmark

test suites. They found an average recall of 0.527 and average precision of 0.7.

They found also that the tools detected different kinds of weaknesses. Charest [3]

compared 4 tools against 4 out of the 112 CWEs in the SAMATE Juliet test case.

The best average performance in terms of recall is 0.46 for CWE89 with 0.21

average precision. All these studies have used real or synthetic code with known

vulnerabilities to detect the performance of the tools. In this study, we have only

investigated whether the tools can detect certain weaknesses with mappings to

MITRE CWEs in the mobile apps.

Android apps have been empirical studied [1,2, 13,24] and various program

analysis techniques for security assessment in Android have been investigated [26].

To the best of our knowledge, there are not studies that investigate similarities

and differences between mainstream and Android-specific SATs. We present the

first step of study to assess how mainstream vs. mobile-specific tools compare in
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detecting top security risks in mobile apps. Currently, we are not focusing on

tools’ performance such as the recall or precision of tools but rather on whether

they are able to detect specific top risks vulnerabilities relevant to Android apps.

Additionally, we are interested in investigating their runtime costs.

5 Limitations and Threats to Validity

Our assessment could not cover the whole spectrum of CWEs that could map

to the OWASP top-10. We have used a selected set of CWEs from MITRE

dictionary and map them to the OWASP top-10 lists. Possibilities exist that

other CWEs not in the list we assessed could map to any of the OWASP top-10.

This phase of our study did not focus on identifying false positives from the

results of the tools. In addition, information about performance metrics such as

recall or precision are not addressed in this study. In our future study, we plan

to identify real weaknesses and also seed artificial weaknesses in the apps to be

able to compute the performance metrics.

We have performed only manual assessment of the tools. This limit the

precision and the scope of analysis we could perform. Our plan includes automatic

and statistic analysis in the next phase.

The CWE we selected did not cover the entire spectrum of weaknesses relevant

for mobile applications beyond the OWASP top-10. Our future work plans to

expand the scope of the CWE for our analysis.

Finally, our preliminary result does not offer a strong conclusion regarding

any of the tools we have assessed. This is a limitation but also a cautious one

because we have not provided the actual performance of the tools but rather their

detection capabilities. However, the result does provide useful advice regarding

the possibilities of Android SATs and mainstream SATs for detecting weaknesses

in mobile applications.

6 Conclusions and Future Work

We report the initial assessment of the SATs capability to detect top security risks

in mobile applications. The verification of the CWEs detected by the tools were

carried out manually which constitutes a threat to the internal validity of the

results. Although we have selected apps with different characteristics, we caution

the reader not to expand the conclusions beyond the set of the selected apps.

In our future work, we plan to automate the collection and analysis of the data

from the apps to reduce the risks to internal and external validity. Additionally,

we intend to conduct statistical analysis of the results to support the conclusions.

We presented the first step of a research on the capability of mainstream and

Android-specific static analysis tools to detect security weaknesses in mobile apps.

The results of a preliminary assessment of two mainstream tools (FindBugs and

FindSecBugs) and 4 Android-specific tools (Amandroid, AndroBugs, AndroidLint,

and JAADS) are presented. These tools were run against 7 real-world mobile

apps.
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In this preliminary study, we found that mainstream tools can cover a wide

range of the weakeness categories; however, important risks may go undetected if

the practitioner rely only on these tools. On the other hand, Android-specific

tools were able to detect top risk weakeness but also miss some general security

and quality issues. The runtime cost of the tools is dependent on the analysis

technique. As expected, data-flow based techniques (e.g., taint analysis) are

more costly than scanning for bug patterns. Our initial assessment indicates that

practitioner cannot prescind from the mainstream tools when developing mobile

apps. Nevertheless, she or he should consider adding Android-specific tools to

cover significant risk categories. In our future work, we aim to conduct a large

scale study of many Android applications and many static analysis tools. We are

also interested in assessing the quality of the tools’ results. For example, what

percentage of the detected OWASP Top 10 risks are false positives.
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