SECBENCH: A Database of Real Security
Vulnerabilities

Sofia Reis! and Rui Abreu?

! Faculty of Engineering of University of Porto, Portugal
2 IST, University of Lisbon & INESC-ID, Portugal

Abstract. Currently, to satisfy the high number of system require-
ments, complex software is created which turns its development cost-
intensive and more susceptible to security vulnerabilities. In software
security testing, empirical studies typically use artificial faulty programs
because of the challenges involved in the extraction or reproduction of
real security vulnerabilities. Thus, researchers tend to use hand-seeded
faults or mutations to overcome these issues which might not be suit-
able for software testing techniques since the two approaches can create
samples that inadvertently differ from the real vulnerabilities and thus
might lead to misleading assessments of the capabilities of the tools. Al-
though there are databases targeting security vulnerabilities test cases,
one database contains only real vulnerabilities, the other ones are a mix
of real and artificial or even only artificial samples. Secbench is a database
of real security vulnerabilities mined from Github which hosts millions of
open-source projects carrying a considerable number of security vulner-
abilities. We mined 248 projects - accounting to almost 2M commits -
for 16 different vulnerability patterns, yielding a Database with 682 real
security vulnerabilities.

Keywords: Security, Real Vulnerabilities, Database, Open-Source Soft-
ware, Software Testing

1 Introduction

According to IBM’s X-Force Threat Intelligence 2017 Report [, the number of
vulnerabilities per year has been significantly increasing over the past 6 years.
IBM’s database counts with more than 10K vulnerabilities in 2016 alone. The
most common ones are cross-site scripting and SQL injection vulnerabilities —
these are two of the main classes that incorporate the Open Web Application

Copyright (© 2017 by the paper’s authors. Copying permitted for private and academic
purposes.

In: M.G. Jaatun, D.S. Cruzes (eds.): Proceedings of the International Workshop
on Secure Software Engineering in DevOps and Agile Development (SecSE 2017),
published at hitp://ceur-ws.org

71

Security Project (OWASP)’s [2] 2017 Top-10 security risks. The past years have
been flooded by news from the cybersecurity world: exposure of large amounts
of sensitive data (e.g., 17M of zomato accounts stolen in 2015 which were put
up for sale on a dark web marketplace only now in 2017), phishing attacks
(e.g., Google Docs in 2017), denial-of-service attacks such as the one experienced
last year by Twitter, The Guardian, Netflix, CNN and many other companies
around the world; or, the one that possibly stamped the year, the ransomware
attack which is still very fresh and kept hostage many companies, industries
and hospitals information. All of these attacks were able to succeed due to the
presence of security vulnerabilities in the software that were not tackled before
someone exploit them. Another interesting point reported by IBM is the large
number of unknown vulnerabilities (the so-called zero-day vulnerabilities), i.e.,
vulnerabilities that do not belong to any known attack type/surface or class
which can be harmful since developers have been struggling already with the
known ones.

Most software development costs are spent on identifying and correcting de-
fects [3]. Several static analysis tools (e.g., Infer, Find Security Bugs, Symbolic
PathFinder, WAP, Brakeman, Dawnscanner and more) are able to detect secu-
rity vulnerabilities through a source code scan which may help to reduce the
time spent on those two activities. Unfortunately, their detection capability is
not the best yet (i.e., the number of false-negatives and false-positives is still
high) and sometimes even comparable to random guessing [4].

Testing is one of the most important activities of software development life-
cycle since it is responsible for ensuring software’s quality through the detection
of the conditions which may lead to software failures. In order to study and
improve these software testing techniques, empirical studies using real security
vulnerabilities are crucial [5] to gain a better understanding of what tools are
able to detect [6]. Yet, performing empirical studies in software testing research
is challenging due to the lack of widely accepted and easy-to-use databases of
real bugs [7I8] as well as the fact that it requires human effort and CPU time
[5]. Consequently, researchers tend to use databases of hand-seeded vulnerabili-
ties which differ inadvertently from real vulnerabilities and thus might not work
with the testing techniques under evaluation [9T0]. Although there are databases
targeting security vulnerabilities test cases, only one of them contains real vul-
nerabilities (Safety-db), the other ones are a mix of real and artificial or even
only artificial samples.

This paper reflects the results from mining 248 projects from Github for 16
different patterns of security vulnerabilities and attacks which led to the creation
of Secbench, a database of real security vulnerabilities for several languages that
is being used to study a few static analysis tools. The main idea is to use our
database to test static analysis tools, determine the ones that perform better
and possibly identify points of improvement on them. Thus, developers may
be able to use the tools on the Continuous Integration and Continuous Deliv-
ery (CI/CD) pipeline which will help decrease the amount of time and money
spent on vulnerabilities’ correction and identification. With this study, we aim

72

to provide a methodology to guide mining security vulnerabilities and provide
database to help studying and improving software testing techniques. Our study
answers the next questions:

— RQ1 Is there enough information available on open-source repositories to
create a database of software security vulnerabilities?

— RQ2 What are the most prevalent security patterns on open-source reposi-
tories?

More information related to Secbench is available at https://tqrg.github.
io/secbench/. Our database will be publicly available with the vulnerable ver-
sion and the non-vulnerable version of each security vulnerability (i.e., the fix of
the vulnerability).

The paper is organized as follows: in Section 2, we present the existing related
work; in Section 3, we explain how we extracted and isolated security vulnera-
bilities from Github repositories; in Section 4, we provide statistical information
about Secbench; in Section 5, we discuss results and answer the research ques-
tions. And, finally, in Section 6, we draw conclusions and discuss briefly the
future work.

2 Related Work

This section mentions the existing related work in the field of databases created
to perform empirical studies in the software testing research area.

The Software-artifact Infrastructure Repository (SIR) [§] provides
both real and artificial real bugs. SIR provides artefacts in Java, C/C++ and
C# but most of them are hand-seeded or generated using mutations. It is a
repository meant to support experimentation in the software testing domain.

The Center for Assured Software (CAS) created artificial test cases - Juliet
Test Suites - to study static analysis tools. These test suites are available through
National Institute of Standards and Technology (NIST)H The Java suite has
25,477 test cases for 112 different Common Weakness Enumerations (CWEs)]
and the C/C++ suite has 61,387 test cases for 118 different CWEs. Each test
case has a non-flawed test which will not be caught by the tools and a flawed
test which should be detected by the tools.

CodeChecker] is a database of defects which was created by Ericsson with
the goal of studying and improving a static analysis tool to possibly test their
own code in the future. The OWASP Benchmar| is a free and open Java test
suite which was created to study the performance of automated vulnerability
detection tools. It counts with more than 2500 test cases for 11 different CWEs.

https://samate.nist.gov/SRD/testsuite.php
https://cwe.mitre.org/
https://github.com/Ericsson/codechecker
https://www.owasp.org/index.php/Benchmark#tab=Main

https://tqrg.github.io/secbench/
https://tqrg.github.io/secbench/
https://samate.nist.gov/SRD/testsuite.php
https://cwe.mitre.org/
https://github.com/Ericsson/codechecker
https://www.owasp.org/index.php/Benchmark#tab=Main

73

Defects4j[7] is not only a database but also an extensible framework for
Java programs which provides real bugs to enable studies in the software test-
ing research area. They started with a small database containing 375 bugs from
5 open source repositories. The researchers allow the developers to build their
framework on top of the program’s version control system which adds more bugs
to their database. Safety-dt]is a database of python security vulnerabilities col-
lected from python dependencies. The developers can use continuous integration
to check for security vulnerabilities in the dependencies of their projects. Data is
to be analyzed by dependencies and their security vulnerabilities or by Common
Vulnerabilities and Exposures (CVE)H descriptions and URLs.

Secbench is a database of only real security vulnerabilities for several differ-
ent languages which will help software testing researchers improving the tools’
capability of detecting security issues. Instead of only mining the dependencies
of a project, we mine security vulnerabilities patterns through all the commits of
Github repositories. The test cases - result of the patterns mining - go through
an evaluation process which tells if it will integrate the final database or not.

3 Extracting And Isolating Vulnerabilities From Github
Repositories

This section describes the methodology used to obtain real security vulnerabili-
ties, from the mining process to the samples evaluation and approval. The main
goal of this approach is the identification and extraction of real security vulner-
abilities fixed naturally by developers on their daily basis work. The research
for new methodologies to retrieve primitive data in this field is really important
due to the lack of databases with a considerable amount of test cases and lack
of variety for different defects and languages to support static analysis tools
studies.

The first step was the identification of a considerable amount of trending
security patterns (Section . Initially, the main focus was the Top 10 OWASP
2017 and other trending security vulnerabilities such as memory leaks and buffer
overflows which are not much prevalent between web applications. Thereafter,
more patterns were added and we still have place for much more. For each
pattern, there is a collection of words and acronyms which characterizes the
security vulnerability. These words were mined on commits’ messages (syntactic
analysis), in order to find possible candidates to test cases. Every time the tool
identified a pattern, the sample was saved on the cloud and the informations
attached (e.g., sha, url, type of security vulnerability) on the database. The
candidates’ search to our database is performed automatically using a crawler
in Python responsible for matching our patterns with commits’ messages.

As seen in Figure[l] after saving the initial data, a manual diagnosis (Section
is performed on two different types of information retrieved by our tool:

https://github.com/pyupio/safety-db
https://cve.mitre.org/

https://github.com/pyupio/safety-db
https://cve.mitre.org/

74

VULNERABILITY FIX?

O 0 © O
VULNERABILITY

Samples
) Google Cloud

m Syntactic

Analysis in

Commits

o

GitHub o
g ,

Vulnerabilities P
. Mining Tool
Python

Data

Redis

VULN?
Vulns Samples Get Vulns Vulns Data vt
Google Cloud Python Redis

2 B & [-
g

Manual Diagnosis

Fig. 1: Workflow to extract and identify real security vulnerabilities

— Commit’s message, to validate if the message actually represents the fix
of vulnerability or a false-positive;

— Source code, to identify if the pieces of code responsible for the potential
vulnerability and its fix exist or not;

Both are validated manually in order to integrate the final database. If a
sample is totally approved, then its information will be updated on the database
and, consequently, the test case (Section [3.2)) is added to the final database.

3.1 Patterns - Extracting/Detecting Vulnerabilities

The goal was mining for indications of a vulnerability fix or patch committed
by a developer on a Github project. The first step was the identification of a
considerable amount of trending security patterns (Section based on annual
security reports from IBM[I], OWASP[2] and ENISA[IT]; cybersecurity news and
sites where common security vulnerabilities are reported (e.g., CVE and CWE).
In order to understand if the chosen patterns were prevalent on Github, Github
BigQuery and Github searches through the search engine were used which led
to a good perception of what patterns would be more difficult to collect.

For each pattern, a regular expression was created joining specific words from
its own domain and words highlighting a tackle. In order to represent the tackling

75

of a fix, words such as fiz, patch, found, prevent and protect were used (Figure
Example 1). In certain cases, such as the pattern iap, it was necessary to
adjust this approach due to nature of the vulnerability. This pattern represents
the lack of automated mechanisms for detecting and protecting applications.
So, instead of the normal set, another words were used: detect, block, answer
and respond (Figure [2] Example 2). It was necessary to adapt the words to each
type of vulnerability. To really specify the patterns and distinguish between them
more specific words were added. For example, to characterize cross-site scripting
vulnerability tokens like cross site scripting, xss, script attack and many others
were used.

growp#t [T E 2 R ——
i detect

rem block

 (r— attack
answer pr— —v—< >—
H i ‘expolit

respond

patch

found

prevent

rouy

attack 3 r—
—< any character
expolit e

(2)

Fig. 2: Two examples of different regular expressions (Patterns)

First, we tried to create patterns for the Top 10 OWASP 2017 and then
we extended the tool to others that can be found on our website: https:
//tqrg.github.io/secbench/patterns.html. Besides words related to each
pattern, we added to the miscellaneous pattern (misc) the identification of dic-
tionaries of common vulnerabilities or weaknesses (using regular expressions able
to detect the IDs: CVE, NVD or CWE) or any cases where the message contains
indications of a generic security vulnerability fix.

1D [Pattern ‘
injec Injection

auth Broken Authentication and Session Management
XSS Cross-Site Scripting

bac Broken Access Control

smis Security Misconfiguration

sde Sensitive Data Exposure

iap Insufficient Attack Protection

csrf Cross-Site Request Forgery

ucwkv Using Components with Known Vulnerabilities
upapi Underprotected APIs

Table 1: Top 10 2017 OWASP

https://tqrg.github.io/secbench/patterns.html
https://tqrg.github.io/secbench/patterns.html

76

’ID \Pattern ‘
ml Memory Leaks

over Overflow

rl Resource Leaks

dos Denial-of-Service
pathtrav Path Traversal

misc Miscellaneous

Table 2: Other Security Issues/Attacks

3.2 Test Cases Structure

Every time a pattern is found in a commit by the mining tool, a test case is
created. The test case has 3 folders: V¢;, with the non-vulnerable source code
from the commit where the pattern was caught (child), V,,; with the vulnera-
ble source code from the previous commit (parent) which we consider the real
vulnerability; and, Vg s with two folders, added and deleted, where the added
lines to fix the vulnerability and the deleted lines that represent the security
vulnerability are stored (Figure [3).

PARENT DIFF CHILD

--- +4+ u

Added Deleted

vwvul vaiff Vfix

TEST CASE

Fig. 3: Difference between Vyiy, Viyw and Vg

3.3 Sample Diagnosis

After obtaining the sample and its information, a manual diagnosis was per-
formed on two different kinds of information retrieved from Github (commit’s
message and source code). For each single candidate, we evaluated if the message
really reflected indications of a vulnerability fix because some of the combinations

7

represented by the regular expressions can lead to false positives, i.e., messages
that do not represent the actual vulnerability fix. The example presented in Fig-
ure [4] shows not only how the mining tool finds two candidates matching the
over pattern (red boxes) but also how those two samples were finally diagnosed.
The first reflects a real security vulnerability (buffer overflow) but the second
one represents a CSS issue (i.e., not a security vulnerability). Thus, the second
example is pointed out as non-viable and automatically not considered for the
final database.

staging: fbtft: [Fix] buffer pverflowl vulnerability

Module copies a user supplied string (module parameter) into a buffer
using strncpy() and does not check that the buffer is null terminated.

Replace call to strncpy() with call to strlcpy() ensuring that the 0
buffer is null terminated.

Signed-off-by: Tobin C. Harding <me@tobin.cc>

Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> SECURITY ISSUE
b master T vaa2 . v4.12-rcl

u tcharding committed with gregkh on Feb 15

[Fix| logo[overflow]for medium width 0

' master (#14)

E_:'? ZachGawlik committed on Jan 26 CSS ISSUE

Fig.4: Commits’ messages diagnosis example

If the analysis succeeds (first message, Figure @, then the code evaluation is
performed through the diff source code analysis. Hopefully, the researcher is ca-
pable of isolating manually the functions or problems in the code responsible for
the fix and the vulnerability. During the study, several cases were inconclusive,
mainly due to the difficulties in understanding the code structure or when the
source code did not reflect the message. Normally, these last cases were pointed
out has non-viable, except when there was something that could be the fix but
the researcher did not get it. In that case, they were put on hold as a doubt
which means that the case needs more research.

To validate the source code much research was made on books, security
cheatsheets online, vulnerabilities dictionary websites and many other sources of
knowledge. Normally, the process would be giving a first look at the code trying
to highlight a few functions or problems that could represent the vulnerability
and then make a search on the internet based on the language, frameworks and
information obtained by the diff. The example presented below is easy to iden-
tify because the socket initialized in the beginning needs to be released before
the function returns on the two different conditions (line 282 and 292) otherwise

78

we have two resource leaks. It was not always like this, sometimes it was really
difficult to understand where the issues were due to the source code complexity.

sock = socket(sa-sa_fanily, SOCK_STREAM, 0):| // SOCKET INITIALIZATION sock = socket(sa->sa_fanily, SOCK_STREAM, 0);

if (0 > sock) {
210g(ZLOG_SYSERROR, "failed to create new listening socket: socket()");
return -1;

¥

setsockopt(sock, SOL_SOCKET, SO_REUSEADDR, &flags, sizeof(flags));

if (wp->listen_address_domain == FPU_AF_UNIX) {
if (fpn_socket_unix_test_connect((struct sockaddr_un)sa, socklen) ==
0 {
210g(2L06_ERROR, "An another FPH instance seens to already
Uisten on %s", ((struct sockaddr_un *) sa)->sun_path);
// SOCKET NEEDS TO BE CLOSED BEFORE RETURN
return -1;
b
unlink(((struct sackaddr_un) sa)-»sun_path);
saved_umask = unask(0777 ~ wp->socket_mode) ;

}

if (0 > bind(sock, sa, socklen)) {
210g(ZL0G_SYSERROR, "unable to bind listening socket for address 'ss'",
wp->config->listen_address);
if (up->listen_address_donain == FPM_AF_UNIX) {
unask(saved_umask) ;
}
/1 SOCKET NEEDS TO BE CLOSED BEFORE RETURN
return -1;

if (0 > sock) {
210g(ZLOG_SYSERROR, "failed to create new listening socket: socket()");
return -1;

¥

setsockopt(sock, SOL_SOCKET, SO_REUSEADDR, &flags, sizeof(flags));

if (wp->listen_address_domain == FPU_AF_UNIX) {
if (fpm_socket_unix_test_connect((struct sockaddr_un)sa, socklen) ==
0 ¢
210g(ZLOG_ERROR, "An another FPH instance seems to already
Uisten on %s", ((struct sockaddr_un *) sa)-»sun_path);
+ close(sock) ;
return -1;
b
unlink(((struct sackaddr_un) sa)-»sun_path);
saved_unask = unask(8777 ~ wp->socket_mode) ;

}

if (0 > bind(sock, sa, socklen)) {
210g(ZL0G_SYSERROR, "unable to bind listening socket for address 'ss'",
wp->config->listen_address) ;
if (wp->listen address_domain == FPN_AF_UNIX) {
unask(saved_umask) ;
}
+ close(sock);
return -1;

Fig. 5: Example of two resource leaks identification

Besides the validation, the set of requirements presented below needs to be
fulfilled, in order to approve a test case as viable to the final test suite:

— The vulnerability belongs to the class where it is being evaluated
If it does not belong to the class under evaluation the vulnerability its put on
hold for later study except if the class under evaluation is the Miscellaneous
class which was made to mine vulnerabilities that might not belong to the
other patterns; or, to catch vulnerabilities that may skip in other patterns
due to the limitations of using regular expressions in these cases.

— The vulnerability is isolated
We accepted vulnerabilities which additionally include the implementation
of other features, refactoring or even fixing of several security vulnerabilities.
But the majority of security vulnerabilities founded are identified by the file
names and lines where they are positioned. We assume all V¢;, is necessary
to fix the security vulnerability.

— The vulnerability needs to really exist
Each sample was evaluated to see if it is a real vulnerability or not. During
the analysis of several samples commits that were not related to security
vulnerabilities and fixes of vulnerabilities, i.e., not real fixes were caught.

3.4 Challenges

These requirements were all evaluated manually, hence a threat to the validity as
it can lead to human errors (e.g., bad evaluations of the security vulnerabilities

79

and adding replicated samples). However, we attempted to be really meticulous
during the evaluation and when we were not sure about the security vulnerability
nature we evaluated with a D (Doubt) and with R (Replica) when we detected a
replication of another commit (e.g., merges or the same commit in other class).
Sometimes it was hard to reassign the commits due to the similarity between
patterns (e.g., ucwkv and upapi). Another challenge was the trash (i.e., commits
that did not represent vulnerabilities) that came with the mining process due to
the use of regular expressions.

4 Empirical Evaluation

In this section, we report the results that we obtained through our study and
answer the research questions.

4.1 Database of Real Security Vulnerabilities

This section provides several interesting statistics about Secbench that were ob-
tained during our study. Our database contains 682 real security vulnerabilities,
mined from 248 projects - the equivalent to 1978482 commits - covering 16 dif-
ferent vulnerability patterns (Tables [[] and [2).

In order to obtain a sample which could be a good representative of the pop-
ulation under study, it was ensured that the top 5 of most popular programming
languages on Github and different sizes of repositories would be covered. Due
to the large amount of Github repositories (61M) and constant modification,
it is very complicated to have an overall of the exact characteristics that the
sample under study should have in order to, approximately, represent the do-
main under study. According to a few statistics collected from the Github blog]
and GitHut]] some of the most popular programming languages on Github are
JavaScript, Java, Python, Ruby, PHP, CSS, C, C++, C# and Objective-C. We
tried to, mainly, satisfy the top 5 of most popular programming languages on
Github (i.e., with higher number repositories): JavaScript (979M), Java (790M),
Python (510M), Ruby (498 M) and PHP (458M). Other than covering the top
5, we also tried to have a good variety of repositories sizes since Github has
repositories from different dimensions. Our database has repositories with sizes
between 2 commits and 700M commits. It would be expected that the result of
mining larger repositories would easily lead to more primitive data. But since
the goal is to have a good representation of the whole Github, it is necessary to
also contain smaller repositories, in order to reach balanced conclusions and pre-
dictions. Github has a wide variety of developers whose programming skills can
be good or bad. This can be a threat to test cases quality. But we are not able to
identify repositories quality in an automated way yet. Also, due to the structure
of Github, the main limitation that we were not able to tackle was dealing with

https://github.com/blog/2047-1language-trends-on-github
http://githut.info/

https://github.com/blog/2047-language-trends-on-github
http://githut.info/

80

samples with more than one parent. Sometimes in our manual diagnosis, we de-
tected samples with 4 or 5 parents (e.g., merges). We tacked the issue analyzing
each single parent to detect the one containing the potential vulnerability.

Throughout our diagnosis process, we were able to identify several CVE
identifiers. Thus, 105 out of the 682 security vulnerabilities are identified using
the CVE identification system. These 105 vulnerabilities belong to 98 different
CVE classes for 12 different years (e.g., CVE-2013-0155 and CVE-2017-7620).
The identifier for weaknesses (CWE) was never identified through our manual
diagnosis which reflects the information retrieved by Github’s search engine: only
12K of commits’ messages containing CWE but 2M for CVE.

[Year 2017 [2016 [2015 2014 [2013 [2012 [2011 [2010 2009 [2008 [2007 [2006 |
#CVE[4 20 [13 22 16 [9 9 [2 3 [1 1]

Table 3: Vulnerabilities identified with CVE

SecBench includes security vulnerabilities from 1999 to 2017, being the group
of years between 2012 and 2016 the one with the highest value of accepted
vulnerabilities (especially 2014 with a percentage of 14.37%). This supports the
IBM’s X-Force Threat Intelligence 2017 Report [I] where it was concluded that
in the last 5 years the number of vulnerabilities per year had a significant increase
compared with the other years. The decrease of security vulnerabilities in the
last 2 years, it definitely does not reflect the news and security reports. However,
these reports contain all kinds of software and the study is only performed on
open-source software.

1999 0.44%

2001 1§ 0.15%

2002 0.88%

2003 1.32%

2004 0.44%

2005 132%

2006 293%

2007 6.6%

2008 3.37%

2009 3.37%

2010 7.33%

2011 7.48%

2012 11.88%

2013 12.9%
2014 14.37%
2015 10.7%

2016 10.26%

2017 4.25%

9% of vulns accepted

Fig. 6: Distribution of real security vulnerabilities per year

81

swift§ 0.15%

9% of vulns accepted

Fig. 7: Distribution of real security vulnerabilities per language

The decrease can reflect the concerns of the core developers within making the
code public since the number of attacks is increasing and one of the potential
causes can be the code availability. Except for 2000, we were able to collect
test cases from 1999 to 2017. The last 5 years (excluding 2017) were the years
with the higher percentage of vulnerabilities. The sample covers more than 12
different languages being PHP (42.38%), C (23.75%), and Ruby (12.9%) the
languages with the higher number of test cases (Figure 7). This supports the
higher percentage of security vulnerabilities caught for injec (16.1%), zss (23.4%)
and ml (12.8%) - Figure |§| - since C is a language where memory leaks are
predominant and Ruby and PHP are scripting languages where Injection and
Cross-Site Scripting are popular vulnerabilities. Although the database contains
94 different languages, it was only possible to collect viable information for 12
different languages.

4.2 Research Questions

As mentioned before, there are several automated tools that can scan security
vulnerabilities on source code. Yet, their performance is still far from an ac-
ceptable level of maturity. To find points of improvement it is necessary to study
them using real security vulnerabilities. The primary data for this kind of studies
is scarce as we discussed on Section [2| so we decided to first evaluate if there is
enough information on Github repositories to create a database of real security
vulnerabilities (RQ1). And if yes, what are the security patterns we can most
easily find on open source repositories (RQ2).

82

- RQ1: Is there enough information available on open-source
repositories to create a database of software security vulnerabilities?

To answer this question, it was necessary to analyze the distribution of real secu-
rity vulnerabilities across the 248 mined Github repositories. As a result of our
mining process for the 16 different patterns (Table[), 62.5% of the repositories
contain vulnerabilities (VRepositories) and 37.5% contained 0 vulnerabilities.

[# Vulns||#Repositories|Repositories(%)|

>0 155 62.5%
=0 93 37.5%
[Total | 248 I 100% \

Table 4: Mined Vulnerabilities Distribution

After mining the repositories, the manual evaluation was performed where
each candidate had to fulfil a group of requirements (Section. As we can see
on Table|5| the percentage of success, i.e., repositories containing vulnerabilities,
decreases to 54.19%. The approximate difference of 8% is due to the cleaning
process made through the evaluation process where a human tries to understand
if the actual code fixes and represents a security vulnerability or not. Although
the decrease from one process to another, we can still obtain a considerable
percentage (> 50%) of VRepositories containing real vulnerabilities.

[#£AVulns||# VRepositories|[VRepositories(%)|

>0 84 54.19%
=0 71 45.81%
[Total | 155 | 100% \

Table 5: Accepted Vulnerabilities (AVulns) Distribution

In the end, we were able to extract vulnerabilities with an existence ratio
of ~ 2.75 (682/248). The current number of repositories on Github is 61M, so
based on the previous ratio we can possibly obtain a database of ~ 168 millions
(167750K) of real security vulnerabilities which is ~ 246 thousand (245968)
times higher than the current database. Between 2 and 3 months, we were able
to collect 682 real security vulnerabilities for 16 different patterns with a resulting
success of 54.19% of vulnerabilities accepted. Thus, we can conclude that it is
possible to extract a considerable amount of vulnerabilities from open source
software to create a database of real security vulnerabilities that will highly
contribute to the software security testing research area. Due to the constant
change and dimension of Github, the lack of information about the domain and
the small size of the sample under study, it may not be plausible to take this
conclusion. However, based on results obtained we believe the answer to this
question is indeed positive.

83

There are enough vulnerabilities available on open-source repositories to
create a database of real security vulnerabilities.

- RQ2: What are the most prevalent security patterns on open-source
repositories?

This research question attempts to identify the most prevalent security patterns
on open-source repositories.

After mining and evaluating the samples, the results for 16 different patterns
were obtained being the two main groups the ones presented on Figure 8] Top
10 OWASP and others. zss (20.67%), injec (14.81%) and ml (12.46%) are the
trendiest patterns on OSS which is curious since injec takes the first place on Top
10 OWASP 2017 [2] and zss the second. ml does not integrate into the top ten
because it is not a vulnerability normally found on web applications. Injection
and Cross-Site Scripting are easy vulnerabilities to catch since the exploits are
similar and exist, mainly, due to the lack of data sanitization which oftentimes
is forgotten by the developers. The only difference between the two is the side
from where the exploit is done (server or client). Memory leaks exist because
developers do not manage memory allocations and deallocations correctly. These
kind of issues are one of the main reasons of dos attacks and regularly appeared
on the manual evaluations, even in the misc class. Although these three patterns
are easy to fix, the protection against them is also typically forgotten. Another
prevalent pattern that is not considered is misc because it contains all the other
vulnerabilities and attacks found that do not belong to any of the chosen patterns
or whose place was not yet well-defined. One example of vulnerabilities that you
can find on misc (14.37%) are vulnerabilities that can lead to timing attacks
where an attacker can retrieve information about the system through the analysis
of the time taken to execute cryptographic algorithms. There is already material
that can possibly result in new patterns through the misc class analysis.

Although auth (6.6%) is taking the second place on Top 10 OWASP 2017,
it was not easy to find samples that resemble this pattern maybe because of
the fact that highlighting these issues on Github can reveal other ones in their
session management mechanisms and, consequently, leading to session hijacking
attacks. The csrf (4.99%) and dos (6.16%) patterns are seen frequently among
Github repositories: adding protection through unpredictable tokens and fixing
several issues which lead to denial-of-service attacks. The most critical patterns
to extract are definitely bac (0.29%), which detects unproved access to sensitive
data without enforcements; upapi (1.03%), which detects the addition of mech-
anisms to handle and answer to automated attacks; and, smis (1.32%) involving
default information on unprotected files or unused pages that can give unau-
thorized access to attackers. 11 (1.76%) is another pattern whose extraction was
hard. Although, memory leaks are resource leaks, here only the vulnerabilities
related to the need of closing files, sockets, connections, etc, were considered.

84

injec 14.81%
auth 6.6%
xss 20.67%

} : T T : . : : . T —
0 2 4 6 8 10 12 14 16 18 20
% of vulns accepted
Top 10 owasp [l oTHERS

Fig. 8: Distribution of real security vulnerabilities by pattern

The other patterns (e.g., sde, iap, ucwkv, over and pathtrav) were pretty com-
mon during our evaluation process and also on our Github searches. The over
pattern contains vulnerabilities for several types of overflow: heap, stack, inte-
ger and buffer. Another interesting point here is the considerable percentage of
iap (2.49%), which normally is the addition of methods to detect attacks. This
is the first time that iap makes part of the top 10 OWASP 2017 and still, we
were able to detect more vulnerabilities for that pattern, than for bac which was
already present in 2003 and 2004. From 248 projects, the methodology was able
to collect 682 vulnerabilities distributed by 16 different patterns.

The most prevalent security patterns are Injection, Cross-Site Scripting
and Memory Leaks.

5 Conclusions & Future Work

This paper proposes a database, coined Secbench, containing real security vulner-
abilities. In particular, Secbench is composed of 682 real security vulnerabilities,
which was the outcome of mining 248 projects - accounting to almost 2M com-
mits - for 16 different vulnerability patterns.

The importance of this database is the potential to help researchers and
practitioners alike improve and evaluate software security testing techniques. We
have demonstrated that there is enough information on open-source repositories
to create a database of real security vulnerabilities for different languages and
patterns. And thus, we can contribute to considerably reduce the lack of real
security vulnerabilities databases. This methodology has proven itself as being

85

very valuable since we collected a considerable number of security vulnerabilities
from a small group of repositories (248 repositories from 61M). However, there
are several points of possible improvements, not only in the mining tool but
also in the evaluation and identification process which can be costly and time-
consuming.

As future work, we plan to augment the amount of security vulnerabilities,
patterns and languages support. We will continue studying and collecting pat-
terns from Github repositories and possibly extend the study to other source
code hosting websites (e.g., bitbucket, svn, etc). We will also explore natural
processing languages, in order to introduce semantics and, hopefully, decrease
the percentage of garbage associated with the mining process.

References

1. IBM: IBM X-Force threat intelligence index 2017. Technical report, IBM Security
Department USA (March 2017)

2. OWASP: OSWAP top 10 - 2017: The ten most critical web application security
risks. Technical report, The OWASP Foundation (February 2017) Release Candi-
date.

3. Tassey, G.: The economic impacts of inadequate infrastructure for software testing.
Technical report, National Institute of Standards and Technology (May 2002)

4. Goseva-Popstojanova, K., Perhinschi, A.: On the capability of static code analysis
to detect security vulnerabilities. Inf. Softw. Technol. 68(C) (December 2015)
18-33

5. Briand, L.C.: A critical analysis of empirical research in software testing. In: First
International Symposium on Empirical Software Engineering and Measurement
(ESEM 2007). (Sept 2007) 1-8

6. Briand, L., Labiche, Y.: Empirical studies of software testing techniques: Chal-
lenges, practical strategies, and future research. SIGSOFT Softw. Eng. Notes
29(5) (September 2004) 1-3

7. Just, R., Jalali, D., Ernst, M.D.: Defects4j: A database of existing faults to enable
controlled testing studies for java programs. In: Proceedings of the 2014 Interna-
tional Symposium on Software Testing and Analysis. ISSTA 2014, New York, NY,
USA, ACM (2014) 437-440

8. Do, H., Elbaum, S., Rothermel, G.: Supporting controlled experimentation with
testing techniques: An infrastructure and its potential impact. Empirical Softw.
Engg. 10(4) (October 2005) 405-435

9. Just, R., Jalali, D., Inozemtseva, L., Ernst, M.D., Holmes, R., Fraser, G.: Are
mutants a valid substitute for real faults in software testing? In: Proceedings of
the 22nd ACM SIGSOFT International Symposium on Foundations of Software
Engineering. FSE 2014, New York, NY, USA, ACM (2014) 654665

10. Pearson, S., Campos, J., Just, R., Fraser, G., Abreu, R., Ernst, M.D., Pang, D.,
Keller, B.: Evaluating and improving fault localization. In: ICSE 2017, Proceed-
ings of the 39th International Conference on Software Engineering, Buenos Aires,
Argentina (May 2017)

11. ENISA: Enisa threat landscape report 2016. Technical report, European Union
Agency for Network and Information Security (January 2017)

	SECBENCH: A Database of Real Security Vulnerabilities

