
Using ALF within the CoSTest process for Validation of

UML-based Conceptual Schema

Maria Fernanda Granda1, 4, Nelly Condori-Fernández2,3, Tanja E. J. Vos4

1 University of Cuenca, Computer Science Department, Cuenca, Ecuador

fernanda.granda@ucuenca.edu.ec
2 Vrije Universiteit van Amsterdam, Amsterdam, The Netherlands

n.condori-fernandez@vu.nl
3 University of A Coruña, Coruña, Spain

n.condori.fernandez@udc.es
4 Universitat Politècnica de València, PROS Research Centre, Valencia, Spain

{fgranda, tvos}@pros.upv.es

Abstract. The Unified Modelling Language (UML) is widely used for modelling

software systems and its integration with executable languages, such as the

Action Language for Foundational UML (ALF), provides a bridge between the

graphical specification techniques used by mainstream software engineers and

the precise analysis and validation techniques essential for the model-driven

development of information systems. As far as we know, the idea of transforming

Conceptual Schemas (CS) based on UML Class Diagrams into ALF to execute

systematic ALF-based test cases against these CSs and to report defects by

checking logs has not been explored to date. In this paper, we use ALF to create

a testing environment to validate requirements and verify some system properties

at the CS level. We also report on some of the implementation details and design

decisions of our proof-of-concept tool, as well as its limitations and possible use

scenarios.

Keywords: UML to ALF · conceptual schema validation · model validation ·
UML class diagram · CoSTest tool

1 Introduction

In previous work we proposed an approach for testing-based validation of Conceptual

Schemas (CS) in a Model-driven environment [1], in which a group of engineers (e.g.

requirements engineers) specifies requirements models from which the test scenarios

are automatically generated with abstract test cases (i.e. a concrete story of a user-

system interaction and the expected result). These test cases are then used to validate

the requirements in an early phase of software analysis and design (e.g. CS). However,

in order to execute the test cases systematically and automatically against conceptual

schemas, they must be translated into an executable language. In this context, the

Unified Modelling Language (UML) has been widely used to draw models for

analysing, designing and documenting software that can then be written/transformed

mailto:ernanda.granda@ucuenca.edu.ec
mailto:n.condori-fernandez@vu.nl
mailto:n.condori.fernandez@udc.es
SFA
Textbox
Copyright © by the paper’s authors. Copying permitted only for private and academic purposes.
In: C. Cabanillas, S. España, S. Farshidi (eds.):
Proceedings of the ER Forum 2017 and the ER 2017 Demo track,
Valencia, Spain, November 6th-9th, 2017,
published at http://ceur-ws.org

2

into any programming language. One of the crucial issues when creating precise,

standard UML models was the imprecision of semantics specified in the UML standard.

This issue was finally addressed with the adoption by the Object Management Group

(OMG) in 2008 of the Foundational UML (fUML) specification (an executable subset

of UML) and the Action Language for fUML (ALF) adopted in 2010. These standards

allow the UML model to be represented both graphically and textually (while

preserving its semantic level) [2], e.g. with the Eclipse-based open-source UML

modelling tool Papyrus1. Papyrus provides the ability to execute fUML models, thanks

to its model execution platform Moka2, which makes it possible to interact with an

execution and analyse the manipulated values. However, this tool is limited by not

having access to ALF source-level debugging, which would make it a lot easier to test

complex behaviour [2] as well as execute several test cases and analyse the logs in a

systematic testing process. Since the open-source ALF Reference Implementation3 is

distributed without a graphical tool, it allows executable models to be written

completely textually in ALF. This opens up the possibility of using ALF to

automatically and systematically execute a set of test cases against CS and analyse their

execution trace in order to detect defects at the conceptual schema level. For this

solution to be viable a transformation from UML to ALF is also required.

The paper describes the automatic transformation of a UML class diagram (CD) into

ALF language in the context of the CoSTest tool 4 for the systematic testing of

conceptual schemas. The resulting translated model is semantically equivalent to the

original, meaning that the contract semantics (i.e. pre and post conditions), derived

features, operation bodies, and association class are implemented as elements of the

ALF units. The paper’s contributions are: (1) Translating UML into ALF; (2) Using

ALF as a language for writing/executing test cases. We also evaluated these

transformations by using our freely available CoSTest validation tool with eight CS.

The paper is structured as follows: Section 2 introduces a simple but representative

example of the UML CD-based CS used. Section 3 summarizes the background.

Section 4 reviews related work. Section 5 describes the mapping rules between UML

and ALF notation by describing its application to the example. Section 6 gives an

overview of the last phase of CoSTest to generate ALF based-test cases, as well as

execution details of our validation approach. Section 7 demonstrates the application of

the transformations to ALF in eight CS. Section 8 discusses the design decisions,

limitations and alternative applications of the approach. The conclusions and future

work are outlined in Section 9.

2 Motivating Example

To show how ALF supports the validation in the CoSTest tool, we will use a simple

model of an order from the domain of e-commerce. The first thing to decide is the

1 https://eclipse.org/papyrus/
2 http://wiki.eclipse.org/Papyrus/UserGuide/ModelExecution
3 http://modeldriven.github.io/Alf-Reference-Implementation/
4 https://staq.dsic.upv.es/webstaq/costest.html

3

information that needs to be kept on an order and how this is related to information on

the customer placing the order. This can be clearly represented by using a UML class

diagram, such as the one shown in Figure 1 with part of an Order CS using an UML

class diagram. This diagram was entered graphically using the Papyrus tool and it

models an order as recording the date it was received, prepayment and dispatch status,

and has a set of order lines, each of which specifies the quantity of a certain product

included in the order. It also shows that an order is placed by a single customer (i.e.

corporate or personal customer), who may make many orders over time. Each of these

orders has several order lines, each of which refers to a single product, with net price

and quantity available. Each customer has a name and address. A personal customer

also has a credit card number and a corporate customer has a contact name, credit rating

and credit limit. The products are identified by a name in a language, a description and

a url.

Fig. 1. A partial view of order example CS

In addition, there is also behaviour associated with the classes shown in the diagram.

Suppose, for instance, that you would like to compute the total of the Order, along with

a new_OrderLine operation that adds a new line item for a given Product and updates

the total appropriately. To do this, the newOrderLine will use a new

property_getPrice_derivation operation on the OrderLine, which will be derived from

the related constraint. Finally, a derived association pendingDispatch calculates the

customer orders that are pending dispatch.

3 Background

3.1 Executable Conceptual Schema using ALF

Since the executable CS of a system should describe its structure and behaviour. A class

diagram is the UML’s main building block and shows structural elements of the system

at an abstract level (e.g. class, association class), their properties (owned attribute),

relationships (e.g. association and generalization) and operations [3]. On the other

hand, the behavioural part, is specified by characterizing how event execution can come

4

about (unfold). In UML, this is done by collaboration, sequence, activity and state chart

models, as well as the textual specification of methods.

In this context, an executable model is at the next higher layer of abstraction,

abstracting away both specific programming languages and decisions about the

organization of the software (e.g. data structure and partitioning) so that a specification

built in Executable UML can be deployed in various software environments without

change [4]. A key ingredient of any Executable UML variant is the use of an Action

language (type of pseudocode) that allows designers to completely specify fine-grained

behavioural aspects of the model (e.g. to define the behaviour of a method of a class).

ALF is a platform-independent language that works at the same semantic level as the

rest of the UML-based CS. This means that actions allow directly a manipulation of the

elements of the conceptual schema (no assumptions are made about middleware,

implementation language or software design policy) and they are capable of being

translated into different implementations for different platforms and languages.

In this paper we propose to use a UML-based Class diagram and derive part of the

CS behaviour from the constructor operations, constraints, invariants, pre and post

conditions represented in the class diagram by translating them into ALF code as part

of the specification of a method (i.e. constraints and invariants) or a conditional inside

of the method specification (i.e. pre and post conditions).

3.2 CoSTest process for validating Conceptual Schemas

We developed an early testing technique supported by the CoSTest tool to validate

requirements at model level [5]. Figure 2 provides an overview of how CoSTest

operates by covering three main phases: (i) test suite generation, (ii) CS under test

generation, (iii) test execution and report generation with the faults detected and the

coverage analysis. The red frame corresponds to the work presented in this paper.

i) Test Suite Generation. This phase supports the semi-automatic generation of test

cases using a model-driven process. The first two steps of this process are explained in

detail in a previous work [1]: (1) transform a Requirements Model (i.e. system

requirements at business level) into Test Model (i.e. contains information about the test

items and their order of precedence); (2) transform the Test Model into Test Scenario

Model identifying the different sequences of events (i.e. test paths) from test model; (3)

generate the test values for test cases; (4) transform each test scenario into Test case

scripts (ALF script), which contains the abstract test cases; (5) select the type of test

cases (e.g. positive test cases only or including negative test cases); (6) generate

concrete and executable test cases into ALF textual specifications; and (7) prioritize

and select the test cases for execution based on mutation testing [6]. Steps 5-6 are

explained in greater detail in Section 6. Figure 2 shows some artefacts used in our Order

example.

ii) Generation of the Executable Conceptual Schema under test. In this phase the

executable CS using ALF is generated (see Step 8 in Figure 2) using the UML-to-ALF

transformation described in Section 5. Then (Step 9), we can parse the CS before

starting the execution of CS in the testing process (see Section 5).

5

Fig. 2. Overview of the CoSTest process for CS validation

Fig. 3. Example of artefacts used in the test case generation for Order example

iii) Test Execution. In this phase the test cases are executed against the CS and a list

of defects and a coverage analysis are reported (see Steps 10 and 11 in Figure 2). Further

information is given in Section 6.

4 Related Work

Although there are a number of studies addressing the verification of UML models that

include actions [7] [8] [9] [10], only some of them [11] [12] [13] are aligned with the

ALF action language standard.

6

The Papyrus tool [14][2], an open-source UML tool under the Eclipse Modelling

Project uses ALF to validate UML models. This tool has executable modelling

capabilities including: (1) creating a complete program as a graphical UML class

model, with detailed behavioural code written textually using ALF; (2) synchronizing

the graphical representation of a UML class with its textual representation in ALF; (3)

concurrent execution of an activity and (4) debugging an executing activity. This means

a user (modeller/analyst/tester) can manually enter the tests as an activity diagram to

perform the testing and debugging process. There is also a work [14] that provides

feedback and lessons learned by the Papyrus team regarding the implementation and

use of the fUML with ALF from the perspective of domain-specific users. Research

has also been carried out [15][16] on using fUML and ALF as the basis for specifying

the semantics of domain-specific modelling languages. However, to authors’

knowledge, there is no possibility of automatically obtaining a full version of the UML

model in ALF code from these tools.

This paper describes the use of ALF for generating/writing executable test cases as

well as for transforming a UML CD-based CS in an executable model. These ALF-

based artefacts are then used within the CoSTest process for validation of UML-based

Conceptual Schemas by executing the test cases against the executable CS in an ALF-

based testing environment. We also report on the usefulness of our UML-to-ALF

transformation and its parsing to validate a set of mutation operators [17] and a mutation

tool [18] implemented with the intention of evaluating the effectiveness of the test cases

generated by CoSTest [6] and to prioritize them.

5 Generation of Executable Conceptual Schema using ALF

We use the ALF language as a notation for representing UML CD-based CS and for

reasoning about this model. To obtain the result outlined in the previous section we

defined a model-to-text transformation of UML to ALF, which we describe in this

section. The mapping is specified as an Acceleo5 transformation included in CoSTest

and we outline here its points of interest. Table 1 provides information about the main

transformations according to the ALF standard.

For derived associations, we add an attribute to the class (e.g. sequence) and create

a getter operation (e.g., association_<DerivedAssociationName>_derivation). We then

attach the operation generated from the constraint expression to the getter. Figure 4

shows highlighted with red rectangles the ALF code for the pendingDispatch derived

association of our example. All the examples given in this section have been translated

into ALF using our ALF translator implemented in CoSTest, and executed using the

fUML execution engine.

We decided to use the Reference Implementation6 as an fUML engine because (1) it

is based on the reference implementation and (2) it provides an execution log. Thanks

to (1) we have confidence in its conformity to the fUML specification. And (2) means

5 https://www.eclipse.org/acceleo/
6 http://modeldriven.github.io/fUML-Reference-Implementation/

7

that systematic testing (i.e. reviewing hundreds of logs) is simpler than with the Moka7

implementation, which is more suitable for an interactive testing.

Table 1. An overview of the mappings between UML element and ALF code

UML element Example of concrete syntax in ALF

Package is translated into an ALF package with

the classes and associations that conform it.

package <CS name> {

public class <class name> [specializes <class name>];

…

public assoc <association name>;

… }

Class is translated into ALF unit with attributes,

operations, parameters and the constructor

method for creating new object instances.

Inheritance poses a particular problem in

translating UML to ALF, since a subclass is

dependent on its superclass, and this is an

operation dependence since creation of a subclass

instance requires invocation of its superclass

constructor (i.e. super). The inheritance relations

are translated into ALF by using the specializes

clause.

namespace <CS name> {

class <class name> [specializes <class parent name>];

public <attribute name>:data type;

…

@Create <class name> (in <attribute name: data type>,

…)

 { super.<class parent name> (parameter1, …);

 <method statements> }

… // specification of methods

public <operation name> (in <parameter name: data

type>, …)

 { <method statements> } }

Association is translated into ALF unit, which

creates a new link (i.e. an instance of an

association) in the association with end values

object1 (with role1) and object2 (with role2).

namespace <CS name> {

assoc <association name> {

 public ‘role1’: Object1[1];

 public ‘role2’: Object2 [*]; }

Aggregation: In order to guarantee that the

particular semantics of composition is preserved

(transitive propagation of properties, lifetime

dependence between the related entities, etc), the

aggregation is translated using the compose

clause

namespace <CS name> {

assoc <association name> {

 public ‘role1’: Object1[1];

 public ‘role2’: compose Object2;

}

Constraints are included in the UML models

using mechanisms such as body, pre and post

conditions. These mechanisms need to be

translated into ALF elements (i.e. operation

method, method conditional) to be executable.

public <operation name> (in <parameter name: data

type>, …)

 { if <condition> { <statements>}

 else { <statements>}

 … //method statements }

The transformation of UML CD-based CS into ALF is performed in two steps:

1. Model-to-text transformation translates the UML CD-based CS into ALF units.

This transformation is written in Acceleo code. It takes as inputs an UML CD-based

CS, and gives as output an ALF -based CS. The resulting ALF-based CS contains

the elements generated from the transformation of all CS elements given as input.

7 https://wiki.eclipse.org/Papyrus/UserGuide/ModelExecution

8

Fig. 4. Example of a derived association translated to ALF of the Order example

2. ALF unit parsing. Semantically, ALF maps the CS to the Foundational UML

(fUML [19]) subset. The resulting ALF-base CS is semantically equivalent to the

original one. Then fUML provides the virtual machine for the execution of the ALF

units. Further details can be found in the ALF Reference Implementation.

The current version of our ALF transformation supports most UML CD constructs with

the following notable exceptions: (1) features required to specify abstractions could be

added with relatively little work; (2) transformation of OCL constraints. Currently, the

UML CD-based CSs used in our approach use directly the ALF language to specify the

constraints. But, there is an approach enabling OCL and fUML Integration by

transformation that could be used to address this issue [20].

We applied our ALF -based tool to check the generation of CoSTest test cases and

measure their effectiveness in several subject CS [6]. In addition, we conducted

research [18][17] into using UML-to-ALF transformation as the basis for specifying

valid mutation operators and parsing mutants in the context of our validation tool for

UML CD-based CS.

6 Generation and Execution of Test Cases using ALF

The last step executed in CoSTest to generate test scenarios (see Section 3.2) is the

transformation into ALF code of the abstract test cases (e.g. services, triggers,

assertions and links exemplifying the interaction of actors with the system) using

Acceleo, which are concretized with values entered by the tester or generated from the

data model. The result of this transformation is a test suite with concrete and executable

ALF-based test cases.

In ALF, an executable test case is an activity that provides the specification of

parameterized behaviour as the coordinated sequencing of subordinate ALF units

including assertions which describe how the model should behave. A CS can

demonstrate semantic correctness and completeness with its requirements specification

if no assertion is violated when executing the test suite.

Correctness covers both syntactic correctness (right or well-formedness syntax) and

semantic correctness (right meaning and relations relative to the knowledge about the

domain) [21]. Completeness is to have all the necessary information according to the

purpose of modelling [21]. Incompleteness of the UML CD-based CS can also be

detected via testing of the translated ALF, enabling particular test scenarios to be

executed. For example, in the Order CS specification the lack of an invariant to ensure

9

that creditCardNumber of a PersonalCustomer class is unique can be identified by

instantiating two PersonalCustomer with the same credit card number, if the scenario

is executed without reporting an error then the invariant is required, otherwise the CS

contains the invariant (the required invariant is context PersonalCustomer inv

UniqueCreditCard: body: PersonalCustomer->isUnique e(e.creditCardNumer)).

The semantic correctness of UML-CD-based CS with respect to a domain can also

be checked against the evaluation of constraints. Then the elements exercised in the test

cases can be used to identify other defects, such as redundant (e.g. duplicated element)

and extraneous (e.g. CS elements not used by test cases) elements.

A test suite generated by CoSTest contains hundreds of test cases, so that this

automatic generation could not have been produced without ALF.

CoSTest generates three kinds of test cases and focuses on instantiation semantics

of UML Structures to test:

1. The occurrence of events. An event is the execution of some operation (method) of

the CS, which may have several kinds of defects, of which the following can be

highlighted: (a) the pre-conditions of the event may not allow the occurrence of valid

events. (b) the post-conditions may not precisely define the intended effect of events.

(c) the method of an operation may produce a state that does not satisfy the CS

invariants.

AssertTrue (“Object created”, order_ instanceof Order);

AssertTrue("Association Created", order_.orderlines->size()>0);

2. The non-occurrence of events. For the set of constraints defined in the CS to be

correct and complete, not only must the constraints be satisfied by valid CS states,

but those constraints must also rule out invalid states. Testing the CS may be a

practical mean of detecting missing constraints. This is done by setting up one or

more test cases, with a state established in the requirements as invalid, such as values

of the range, minimum cardinality violation, unique value violation for class

attributes, followed by an assertion that the state does not satisfy at least one CS

constraint. For example, when an attribute of an object should be unique (e.g. unique

name for Customer) CoSTest generates a test case including two instances of this

object (customer in our example) with the same value in the unique attribute (i.e.

name) and test the required constraint with an assertion as follows:

customer_=new Customer (p_atrname=”name”, p_atraddress=”Address1”);

customer2_=new Customer (p_atrname=”name”, p_atraddress=”Address2”);

AssertFalse (“Not Exist”, customer_ instanceof Customer);

3. The contents of CS objects. It is often useful to include an assertion on the current

state of an object instance in the CS in a test case. The purpose may be to check that

one or more derivation rules derive the expected results, or that a navigational

expression yields the expected results or that the effect of one or more events implies

an expected result in the CS object instance. For example, CoSTest generates the

following two assertions to test the derivation rules corresponding to the total

derived attribute (in Order class) and the pendingDispatch derived association of our

example (see Figure 1).

10

AssertEqual(“property_total_derivation”, order_.total, order_.

orderLines->collect e(e.price)->reduce Sum);

AssertEqual (“association_pendingDispatch_derivation”, customer_.

pendingDispatch, customer_.orders->select e(e.dispatched=false));

The oracle and test goal of each test case is derived from the type of test cases selected

(i.e. positive or negative). The expected value (oracle) for the positive test cases

(assertionEqual or assertionTrue) is “true” and with negative conditions the False

assertion (assertionFalse) must be true, otherwise the test case fails. The test cases are

then evaluated by using these oracles and goals included in the test cases. A test case

returns the verdict Pass (if the assertion is satisfied), Fail (if the assertion is not satisfied)

or Inconclusive (if it was not possible to execute all the statements previous to the

assertion). When the verdict of the assertion is Fail or Inconclusive, the execution trace

(i.e. ALF execution log) is analysed to report the defects by using the information

shown in Table 2.

Table 2. Relationship between fault and defect reported by CoSTest

Fault reported by execution of the ALF code Defect Reported by CoSTest

propertyAccessExpressionFeatureResolution Missing or private Association

instanceCreationExpressionConstructor Missing Class (or private)

behaviorInvocationExpressionReferentConstraint Missing Operation (or private)

propertyAccessExpressionFeatureResolution Incorrect Association

linkOperationExpressionArgumentCompatibility Incorrect Association Ends

instanceCreationExpressionConstructorlessLegality Incorrect Constructor

assignmentExpressionSimpleAssignmentTypeConformance Incorrect Parameter Data Type

tupleNullInput in a createlink statement Incorrect null Value in Association

tupleNullInput in an operation statement Incorrect null Value in Parameter

instanceCreationExpressionDataTypeCompatibility Incorrect Operation Signature

behaviorInvocationExpressionArgumentCompatibility Incorrect Parameter Data Type

superInvocationExpressionOperation Incorrect Super Class

The information included in Table 2 was obtained by means of analysis of the faults

reported in the logs and the defects injected in the CS.

7 Application of ALF within the CoSTest process

In order to evaluate the syntactic correctness and completeness of the transformation

rules to ALF used in CoSTest (i.e. for CSUT and executable test cases), we applied our

UML-to-ALF transformation (see steps 8 and 9 in Figure 2) and our generator of ALF-

based test cases (see step 6 in Figure 2) to eight CSs. In particular, this experiment took

as input CSs containing a variety of characteristics that can be present in UML CD-

based CS, including classes, relations (i.e. association, composite aggregation, and

generalization) and different types of constraints (i.e. pre-condition, post-condition and

body condition). These CSs were of different sizes and domains (e.g. information

11

systems, games). On case is taken from industrial (i.e. IM), others CSs were found in

the literature (i.e. [22], [23], [24], [25] and [26]). The different CSs were specified using

UML2 and Papyrus8 tools. Table 3 shows the number of the ALF-based test cases and

test scenarios generated for different CSs by CoSTest. Test suites used in this study

include tests checking all the CS class operations and constraints. Table 4 summarizes

the characteristics (i.e. UML class diagram elements) of these CSs.

This experiment let us to evaluate the transformation rules of the CoSTest by

verifying the syntactic correctness and evaluating the completeness of the transformed

CSUT. Then, the results obtained by parsing for these transformations to ALF (i.e.

CSUT and test cases) were 100% well-formed and complete. These CSs are publicly

available in the project website https://staq.dsic.upv.es/webstaq/costest.html, so that,

the test cases can be again generated and the experiment can be replicated with the

CoSTest tool.

Table 3. Details of the ALF-test suites generated by CoSTEst for Subject CS

Conceptual Schema # Test Scenarios # Test Cases

Video Club system (VC) 1 36

Medical Treatment system (MT) 1 28

Sudoku Game (SG) 2 90

Expense Report system (ER) 3 88

Online Conference Review system (OCR) 3 51

Super Stationary system (SS) 2 62

Photography Agency system (PA) 3 162

Incident Management system (IM) 50 115

Table 4. Elements of the Subject Conceptual Schemas

Element VC MT SG ER OCR SS PA IM

Classes 5 6 11 7 10 9 15 6

Attributes 19 26 26 36 61 44 43 29

Derived Attributes 2 0 6 6 1 1 33 0

Operations 8 13 19 24 16 32 30 13

Parameters 27 43 48 75 77 91 82 51

Associations 4 5 6 8 10 9 19 4

Derived Associations 0 0 2 0 0 0 0 0

Composite Aggregations 0 0 3 0 0 0 0 0

Constraints 16 9 19 21 14 12 45 8

Generalizations 0 0 4 0 3 0 0 0

ALF units 10 12 27 16 21 19 35 11

In order to validate the subject CSUT by executing test cases against them, we

injected faults into subject CSs and executed the CoSTest testing process (see steps 8-

8 https://eclipse.org/papyrus/

12

11 in Figure 2). Then, defects such as missing (e.g. class, attribute, constraint,

operation, association), incorrect (e.g. operation, parameter) and extraneous elements

(e.g. derived attribute, attribute) were reported by CoSTest. These data are outside the

scope of this paper, so that, more detailed information on the testing process (e.g.

injected defects, founded defects) can be found in [6].

8 Discussion

Conceptual schemas are particularly useful in discussions with problem domain

stakeholders. They are straightforward to understand and a lot of detail can be presented

in a well-laid-out, compact diagram. For most people, this is far easier to understand

than large blocks of text or written descriptions. However, in order to execute a large

number of test cases (i.e. hundreds of them) in a systematic way by exercising different

test scenarios and elements of the UML CD-based CS and then to report the defects

found, we require a tool that allows us to execute a set of test cases against a CS, so we

used ALF in the context of CoSTest tool as the execution environment that provides

the ability to execute UML models and report their defects systematically. A tool such

as CoSTest, which is based on ALF for representing UML CD-based CD, has two main

usage scenarios:

1. Verifying well-formed UML models by parsing. The syntax of the language

provides the rules for how to construct well-formed statements. The semantics of the

language provides the specification of the meaning of well-formed statements. Users

(analysts/modellers/testers) could therefore use our ALF–based tool for verifying

that a model is actually well-formed. This model can be a conceptual schema under

test, as in our validation approach, or a mutant model used to evaluate mutation

operators [17], to implement a mutation tool [18] and to evaluate the effectiveness

of the test cases of a tool such as CoSTest [6].

2. Validating UML models by execution. CoSTest performs verification and

validation of UML CD-based CS. This means the tool performs correctness and

completeness checks on sets of elements of a CS as well as the elements covered in

the test cases are used to identify other defects such as redundant (e.g. duplicated

element) and extraneous (e.g. CS elements not used by test cases) elements.

Finally, there is still a long way to go to bring ALF tooling to a level comparable with

other existing professional environments that execute and test CS, such as placing

breakpoints into ALF specifications, which would make it a lot easier to test and debug

complex behaviour.

9 Conclusions and Future Work

ALF and fUML are relatively new standards for building further executable UML

specifications and their implementations have only appeared recently. So far, however,

most fUML-based execution tooling has been intended to primarily address needs for

13

system simulation and analyse the behaviour of the model with values manipulated by

a tester.

In this paper we have shown that ALF could be used to validate requirements at

model level by systematically executing a set of the ALF-based tests. To do so, in

Section 2 we described a simple UML CD-based CS built in Papyrus, which was then

translated into ALF using a transformation we had developed. The result was a model

of a system ready to be tested (i.e. executable) using the CoSTest tool and a set of the

ALF-based test cases generated by it. The tool is able to report defects (i.e. syntactically

incorrect elements) by parsing the CS, missing and incorrect elements by executing the

model, as well as redundant and extraneous elements by coverage analysis of the testing

process. We have also used our ALF-based approach in other scenarios to evaluate

mutation operators [17], to implement a mutation tool [18] and to evaluate the

effectiveness of the test cases of a tool such as CoSTest [6].

We have also reported some limitations of the current ALF-based tool from user

feedback. We hope the issues that are related to the standards will be addressed by the

Executable UML Working Group in the near future, so that technological

improvements resulting from these refinements of the standards can be integrated in the

future development of CoSTest. In addition, we will do a comparative analysis of the

use of other languages to write the test scripts.

Acknowledgments
This work is supported by SENESCYT of the Republic of Ecuador, Spanish Ministry

of Economy, Industry, Competitiveness and the Generalitat Valenciana under the

projects the PGE (TIN2016-78011-C4-1-R), FEDER (TIN2013-46238-C4-3-R),

TIN2016-80811-P and PROMETEO II/2014/039, and cofinanced with ERDF.

References
1. Granda, M.F., Condori-Fernandez, N., Vos, T.E.J., Pastor, O.: Towards the automated

generation of abstract test cases from requirements models. In: 1st International Workshop

on Requirements Engineering and Testing. pp. 39–46. IEEE, Karlskrona, Sweden (2014).

2. Seidewitz, E., Tatibouet, J.: Tool Paper : Combining Alf and UML in Modeling Tools – An

Example with Papyrus –. In: OCL@MoDELS. pp. 105–119 (2015).

3. Object Management Group: Unified Modeling Language (UML). (2015).

4. Mellor, S.J., Balcer, M.J.: Executable UML: A Foundation for Model-Driven Architecture.

Addison Wesley (2002).

5. Granda, M.F., Condori-fernández, N., Vos, T.E.J., Pastor, Ó.: CoSTest : A tool for Validation

of Requirements at Model Level. In: 25th International Requirements Engineering

Conference - Tool Demo (2017).

6. Granda, M.F., Condori-Fernández, N., Vos, T.E.J., Pastor, Ó.: Effectiveness Assessment of

an Early Testing Technique using Model-Level Mutants. In: 21st International Conference

on Evaluation and Assessment in Software Engineering. , Karlskrona, Sweden (2017).

7. Graw, G., Herrmann, P.: Transformation and Verification of Executable UML Models.

Electron. Notes Theor. Comput. Sci. 101, 3–24 (2004).

8. Hansen, H.H., Ketema, J., Luttik, B., Mousavi, M., Van de Pol, J., Marchi dos Santos, O.:

Automated Verification of Executable UML Models. In: International Symposia on Formal

Methods for Components and Objects. pp. 225–250 (2010).

14

9. Laurent, Y., Bendraou, R., Baarir, S., Gervais, M.-P.: Formalization of fUML : An

Application to Process Verification. In: International Conference on Advanced Information

Systems Engineering. pp. 347–363 (2014).

10. Xie, F., Levin, V., Browne, J.C.: Model Checking for an Executable Subset of UML. In: 16th

IEEE International Conference on Automated Software Engineering (2001).

11. Lai, Q., Carpenter, A.: Defining and Verifying Behaviour of Domain Specific Language with

fUML Categories and Subject Descriptors. In: Proceedings of the Fourth Workshop on

Behaviour Modelling - Foundations and Applications (2012).

12. Micskei, Z., Konnerth, R., Benedek, H., Semeráth, O., Vörös, A., Varró, D.: On Open Source

Tools for Behavioral Modeling and Analysis with fUML and Alf. In: 1st Workshop on Open

Source Software for Model Driven Engineering. pp. 31–41 (2014).

13. Planas, E., Cabot, J., Gómez, C.: Lightweight and static verification of UML executable

models. Comput. Lang. Syst. Struct. 46, 66–90 (2016).

14. Guermazi, S., Tatibouet, J., Cuccuru, A., Dhouib, S., Gérard, S., Seidewitz, E.: Executable

Modeling with fUML and Alf in Papyrus : Tooling and Experiments. In: 1st International

Workshop on Executable Modeling. pp. 3–8 (2015).

15. Tatibouët, J., Cuccuru, A., Sébastien Gérard, Terrier, F.: Formalizing Execution Semantics

of UML Profiles with fUML Models. In: International Conference on Model Driven

Engineering Languages and Systems. pp. 133–148 (2014).

16. Mayerhofer, T., Langer, P., Wimmer, M.: xMOF : A Semantics Specification Language for

Metamodeling. In: Satellite Events of MODELS (2013).

17. Granda, M.F., Condori-Fernandez, N., Vos, T.E.J., Pastor, Ó.: Mutation Operators for UML

Class Diagrams. In: CAiSE (2016).

18. Granda, M.F., Condori-fernández, N.: A Model-level Mutation Tool to Support the

Assessment of the Test Case Quality. In: ISD (2016).

19. Object Management Group: Semantics of a Foundational Subset for Executable UML

Models (fUML). (2012).

20. Massimo, T., Jouault, F., Saidi, Z., Delatour, J.: Enabling OCL and fUML Integration by

Transformation. In: European Conference on Modelling Foundations and Applications. pp.

156–172 (2016).

21. Mohagheghi, P., Dehlen, V., Neple, T.: Definitions and approaches to model quality in

model-based software development - A review of literature. Inf. Softw. Technol. 51, 1646–

1669 (2009).

22. España, S., González, A., Pastor, Ó., Ruiz, M.: Technical Report Communication Analysis

and the OO-Method : Manual Derivation of the Conceptual Model the SuperStationery Co.

Lab Demo. , Valencia (2011).

23. España, S., González, A., Pastor, Ó., Ruiz, M.: Integration of Communication Analysis and

the OO-Method: Rules for the manual derivation of the Conceptual Model. , Valencia (2011).

24. Tort, A., Olivé, A.: Case Study: Conceptual Modeling of Basic Sudoku,

http://guifre.lsi.upc.edu/Sudoku.pdf.

25. Tort, A.: A Basic Set of Test Cases for a Fragment of the osCommerce Conceptual Schema,

http://hdl.handle.net/2117/6130.

26. Planas, E., Olivé, A.: The DBLP Case Study, http://guifre.lsi.upc.edu/DBLP.pdf.

