
Exploring the Visualization of Schemas for
Aggregate-Oriented NoSQL Databases?

Alberto Hernández Chillón, Severino Feliciano Morales, Diego Sevilla Ruiz, and
Jesús García Molina

Faculty of Computer Science, University of Murcia
Campus Espinardo, Murcia, Spain

{alberto.hernandez1,severino.feliciano,dsevilla,jmolina}@um.es

Abstract. The lack of an explicit data schema (schemaless) is one of the
most attractive NoSQL database features for developers. Being schema-
less, these databases provide a greater flexibility, as data with different
structure can be stored for the same entity type, which in turn eases
data evolution. This flexibility, however, should not be obtained at the
expense of losing the benefits provided by having schemas: When writ-
ing code that deals with NoSQL databases, developers need to keep in
mind at any moment some kind of schema. Also, database tools usu-
ally require the knowledge of a schema to implement their functionality.
Several approaches to infer an implicit schema from NoSQL data have
been proposed recently, and some utilities that take advantage of inferred
schemas are emerging. In this article we focus on the requisites for the vi-
sualization of schemas for aggregate-oriented NoSQL Databases. Schema
diagrams have proven useful in designing and understanding databases.
Plenty of tools are available to visualize relational schemas, but the vi-
sualization of NoSQL schemas (and the variation that they allow) is still
in an immature state, and a great R&D effort is required to achieve
tools with the desired capabilities. Here, we study the main challenges
to be addressed, and propose some visual representations. Moreover, we
outline the desired features to be supported by visualization tools.

Keywords: NoSQL Databases, NoSQL schema, Schema Visualization

1 Introduction

The NoSQL term (Not SQL/Not only SQL) is used to denote a new genera-
tion of database systems that overcomes the limitations of relational systems
to satisfy the requirements demanded by modern applications. A large num-
ber of companies have already embraced NoSQL databases, and this adoption
will rise considerably in next years, as reported in [1,11]. Actually, the NoSQL

? Work partially supported by the Cátedra SAES of the University of Murcia
(http://www.catedrasaes.org), a research lab sponsored by the SAES company
(http://www.electronica-submarina.com/).

http://www.catedrasaes.org
http://www.electronica-submarina.com/
SFA
Textbox
Copyright © by the paper’s authors. Copying permitted only for private and academic purposes. In: C. Cabanillas, S. España, S. Farshidi (eds.): Proceedings of the ER Forum 2017 and the ER 2017 Demo track, Valencia, Spain, November 6th-9th, 2017, published at http://ceur-ws.org



2 A. Hernández, S. Feliciano, D. Sevilla, J. García Molina

term refers to a varied set of data modeling paradigms, divided on the follow-
ing major categories: document, wide column, key-value stores and graph-based
databases. While object aggregation is the main construct to represent data in
the three former paradigms, graph-based models aim to represent connections
(i.e. references) between objects [14].

The absence of an explicit schema (schemaless approach) is a convenient fea-
ture in most NoSQL systems, because it provides the required flexibility when the
data structure varies often. Being schemaless, the database can store data with
different structure (i.e. schema) for the same entity type (non-uniform data),
and data evolution is favoured due to the lack of restrictions imposed on the
data structure. However, removing the need of declaring explicit schemas does
not have to be confused with the absence of a schema, as a schema is implicit
into stored data and in the application code that deals with the database. The
developers must always keep in mind the schema when they write or maintain
code that is connected to the database. This is an error-prone task, more so when
entities have a degree of variability. Moreover, some NoSQL database tools and
utilities need to know the schema to offer even basic functionality. Therefore, the
flexibility gained by being schemaless should not be at expense of the benefits
provided by having explicit schemas. A growing interest in managing implicit
NoSQL schemas is therefore arising, as evidenced in the schema inference ap-
proaches recently proposed [9,15,17]. Also, some existing relational modeling
tools [4,3,5] are being extended to offer NoSQL modeling capabilities such as
visualizing discovered schemas or database design.

The recent Dataversity report [1] has remarked that data modeling will be a
crucial activity for NoSQL databases and has also drawn attention on the need
for NoSQL tools that provide functionality similar to those available for rela-
tional databases. The authors of this report have identified schema visualization
as an essential capability to be offered by NoSQL modeling tools.

Visualizing database schemas in form of diagrams is useful both to designers
and developers. Designers can express the database structure at a high level of
abstraction and better reason about efficiency and physical layout, and devel-
opers can write better code if they have a model that properly represents the
database schema. Moreover, schema diagrams provide very useful documenta-
tion that facilitates the understanding of an existing database in performing
evolution tasks. In fact, plenty of commercial and open-source modeling tools
exist for relational databases.

While a relational database schema is formed by a set of entities and the
relationships between them, in NoSQL databases several schemas can exist for
the same entity. We refer to this feature as versioned schemas. This complicates
the visualization of the global schema that includes all the entity version schemas
and relationships between them. This issue is normally tackled by (i) showing
entities whose schema is the union of all of its schemas, and (ii) ignoring the
reference relationships between entities [4,3].

This article is focused on the visualization of NoSQL schemas, more specif-
ically, we address the challenges that visualizing versioned schemas raise in the



Exploring the Visualization of Schemas for NoSQL Databases 3

case of aggregate-oriented NoSQL systems. For this, we will work on schemas
inferred by applying the model-driven reverse engineering approach described
in [15]. This schema inference strategy differs from other proposed approaches
in three main characteristics: (i) It discovers all the schemas that the database
stores for each entity, (ii) in addition to aggregation relationships, the reference
relationships among entities are also discovered, and (iii) it represents inferred
schemas in models that conform to an Ecore meta-model. We will define some
possible schemas to be considered for NoSQL databases and we will discuss how
they could be visually represented. We will also show the main design decisions
to be addressed in the implementation of NoSQL schema visualization solutions.
Both the versioned schemas defined and the diagrams proposed for their visual-
ization are original and novel contributions of this paper. Moreover, two utilities
have been implemented to support the diagrams presented here, which allowed
us to experiment with the NoSQL schema visualization.

The remainder of this article is organized as follows. First, we briefly in-
troduce the concept of aggregate-oriented data models and a running example.
Then, we define the set of schemas identified and the diagrams proposed. Next,
we comment the related work. Finally, we present the conclusions drawn from
our work, which will guide our future work.

2 Aggregate-Oriented NoSQL Data Models

Object references and aggregate objects are constructs specifically conceived to
represent complex data, but they are not part of the relational model. Aggregate
objects are usually preferred to object references in the case of NoSQL databases,
because the data is distributed through clusters to achieve scalability, and object
references may involve contacting remote nodes. Thus, aggregate-orientation has
been identified as a characteristic shared by the data models of the three most
widely used NoSQL systems: key-value, document, and wide-column [14].

An aggregate-oriented NoSQL database can be seen as storing a set of semi-
structured objects. Semi-structured data is mainly characterized by its schema-
less nature. A semi-structured object O is composed of one or more fields (at-
tributes or properties) pi: O = {p0, p1, . . . , pm}. Each field pi is specified by a pair
< ni, vi >, where ni and vi denote the name and value of the field, respectively.
The value of a field can be: (i) an atomic value (a number, string, boolean, . . . );
(ii) another object, i.e. an embedded object inside the object which the field be-
longs to; (iii) a reference to another object: This is usually a string or integer that
matches the value of a field in the referenced object; or (iv) an array of values,
which can be homogeneous or heterogeneous. Therefore semi-structured data
has a hierarchical (nested) structure with a root object which can recursively
embed other objects and arrays.

A database system stores data that relate to entities of real the world (i.e any
physical or conceptual thing that exists). Here, an entity labels all the objects
that refer to the same concept (e.g. movie, director, or prize). As indicated above,
the schemaless nature of NoSQL databases allows for different stored objects of



4 A. Hernández, S. Feliciano, D. Sevilla, J. García Molina

the same entity type to have variations in their schemas. Therefore, we will
introduce the notion of entity version to denote each of the sets of objects that,
sharing the same entity label, have a different schema. Each entity will have one
or more entity versions. Versions exist both for root and nested entities.

JSON [8] is a standard human-readable text format widely used to represent
semi-structured data, and used in the majority of aggregate-oriented systems.
Here we introduce a set of JSON objects that represent data about movies, which
will be used throughout this article as an running example of database.

Our database example in Figure 1 is represented as an array that stores the
collections of the Movie and Director entities. There are 3 versions of Movie,
2 versions of Director and Criticism, and one version of Price and Rating. Movie
and Director are root entities; Criticism, Rating, and Prize are embedded into
Movie. We refer to versions of an entity by means of the name of the entity joined
to an unique version number by an underscore (e.g. Movie_3 and Director_1 )

We have supposed that a Movie entity has four common fields: title, year,
director, and genre, and four optional fields: prizes, rating, criticisms, and
running_time. The Director entity has two common fields: name and di-
rected_movies, and the acted_movies optional field. The Criticism embedded
entity has three common fields: color, journalist, and media, and one optional
field, url. The Prize embedded entity has three fields: year, event, and names.
Finally the Rating embedded entity has just two fields: score and voters.

Figure 2 shows the metamodel described in [15] to represent the information
in an inferred schema of an aggregate-oriented data model. It would be formed
by a set of entities that have one or more entity version schemas. Each entity
version schema is composed by one or more properties or fields that are specified
by its name and data type. These properties can be aggregation or reference
relationships (i.e. associations), or attributes whose type can be a primitive type
or tuple (i.e. an homogeneous or heterogeneous array of primitive types). Entities
(and therefore entity versions) can be root or nested.

3 NoSQL Database Schemas

In this section, we shall define the types of schemas that we have identified
for aggregate-oriented NoSQL databases. For each object in the database, an
Object Schema (or type) is obtained by replacing, recursively, the atomic values
of a semi-structured object by an identifier that denote its type (i.e. String,
Number). Therefore, it has the same structure as the described object with
respect to fields, nested objects, and arrays. The schema inference process starts
with this set of object schemas to infer the set of entities and relationships.

In relational databases, an entity has just one schema, and the database
schema is formed by the entities (its only schema) and the relationships between
them. However, in NoSQL databases, the existence of entity versions, each with
variations in their schema, adds a set of new dimensions to the schema definition.

An entity version schema (or simply version schema) is obtained from the
object schema of an entity version by replacing each embedded and referenced



Exploring the Visualization of Schemas for NoSQL Databases 5

{ "rows": [
{ "type": "movie",

"title": "Citizen Kane",
"year": 1941,
"director_id": "123451",
"genre": "Drama",
"_id": "1",
"prizes": [

{ "year": 1941,
"event": "Oscar",
"names": [

"Best screenplay",
"Best Writing"

]},
{ "year": 1941,

"event": "National Board of
Review, USA",

"names": [
"Best Film",
"Top Ten Films"

]}
],
"criticisms": [

{ "journalist": "Roger Ebert",
"media": "Chicago Sun -Times",
"url": "http:// chicago.

suntimes.com/",
"color": "green"

},
{ "journalist": "Richard Brody"

,
"media": "The New Yorker",
"color": "green"

}
]},

{ "type": "movie",
"title": "The Man Who Would Be

King",
"year": 1975,
"director_id": "928672",
"genre": "Adventures",

"_id": "2",
"running_time": 129

},
{ "_id": "3",

"type": "movie",
"title": "Truth",
"year": 2014,
"director_id": "345679",
"genre": "Drama",
"rating":{

"score": 6.8,
"voters": 12682

},
"criticisms": [

{ "journalist": "Jordi Costa",
"media": "El pais",
"color": "red"

},
{ "journalist": "Lou Lumenick",

"media": "New York Post",
"color": "green"

}
]},

{ "name": "Orson Welles",
"directed_movies": ["1"],
"acted_movies": ["1"],
"type": "director",
"_id": "123451"

},
{ "type": "director",

"directed_movies": ["3"],
"name": "James Vanderbilt",
"_id": "345679"

},
{ "type": "director",

"directed_movies": ["2"],
"name": "John Huston",
"_id": "928672"

}
]}

Fig. 1: Movie Database for the Running Example.

objects by the corresponding name of the embedded or target entity version,
respectively. These schemas can specify both root (root version schema) and
embedded objects (embedded version schema). In Figure 3 we show (in JSON
format) the root version schema for the Movie_1 entity version.

A version schema therefore involves four kinds of entity properties: (i) prim-
itive (title, genre, and year); (ii) reference (director_id); (iii) aggregation,
(Prize_1 ); and (iv) array type, that can have one (homogeneous) or more (het-
erogeneous) base types that can in turn be primitive, aggregation, reference, or
another array. The criticisms field is an array of either Criticism_1 or Criti-
cism_2. The relationship type term refers both to the reference and aggrega-
tion types. Note that these two types cause that a schema is either directly or
indirectly related to others. The Movie_1 version schema involves the Crit-
icism_1, Criticism_2, Director_1, and Prize_1 version schemas, and these
schemas might refer in turn to other schemas, so that a schema graph is formed.



6 A. Hernández, S. Feliciano, D. Sevilla, J. García Molina

Fig. 2: NoSQL-Schema Metamodel Representing NoSQL Schemas.

{
"title": "String",
"year": "Number",
"genre": "String",
"director_id": "ref(Director)",
"prizes": "Prize_1",
"criticisms": [

"Criticism_1",
"Criticism_2"

]
}

Fig. 3: Schema for Movie_1 .

{
"title": "String",
"year": "Number",
"genre": "String",
"director_id": "ref(Director)",
"ratings": "Rating_1",
"running_time": "Number",
"criticisms": [

"Criticism_1",
"Criticism_2"

],
"prizes": "Prize_1"

}

Fig. 4: Entity Union Schema for Movie.

An entity schema can be defined as the set of version schemas of a given
entity. Transformations can be performed to this set for it to be useful for dif-
ferent purposes. For instance, sometimes it is interesting to have a “view” of all
the version schemas of an entity. This can be done joining all the properties
contained in the schemas of the entity versions of the entity: An entity union
schema could be constructed with the following rules:

1. For each property whose name appears only in one entity version schema,
add that property to the entity union schema.

2. For each property whose name appears in more than one entity version
schema:



Exploring the Visualization of Schemas for NoSQL Databases 7

(a) If the type of the property is the same in all the entity version schemas
in which it appears, add that property to the entity union schema.

(b) If the type of the property differs in some entity version schemas, collect
the set of different types of the property and build a union type. A
union type of two types T1 and T2, denoted as U(T1, T2), can be defined
as a type that describes both the elements described by T1 and those
described by T2.

Figure 4 shows the entity union schema for the Movie entity of our database
in JSON format.

The usual schema inference for JSON objects in NoSQL systems discovers
schemas that result of the union of the object schemas of each entity version, but
version schemas and entity schemas are not discovered. Therefore the structure
of the schema is similar to those defined for object schemas. We refer to these
schemas as union object schemas. Several strategies are used to solve the problem
of conflicting types when a field belongs to more than one version. For instance,
the type of the field can be the union of all the types encountered, can be
promoted to the Object type [9] or to the String type [13,7].

Finally we shall define two kinds of schemas for aggregate-oriented databases
that involve all the entities:

– Database schema. It is formed by the set of root version schemas that de-
scribe the root entity versions of the database. As a schema recursively de-
pends on the schemas of the embedded or referenced entities, a complete
schema is formed by the set of version schemas of all the entity versions that
exist in the database.

– Entity database schema. It is formed by the entity union schemas that de-
scribe all the root entities of the database.

Next we show how the defined types of schemas could be visually represented.
We will first consider UML class diagrams. These diagrams together with ER
diagrams are traditionally used to represent conceptual and logical relational
schemas. Here, we will show their limitations for NoSQL schemas and the need
for the definition of a specific notation.

4 NoSQL Schema Visualization with UML Class
Diagrams

PlantUML [12] is a drawing tool for visualizing UML diagrams. It provides a
textual language to express the diagrams, that is transformed into DOT code
to be rendered by Graphviz [6]. Using the PlantUML notation we can define
formatting features of diagrams, such as colors and icons for elements. We have
used PlantUML to visualize the three kinds of schemas that can be represented
by using UML class diagrams: version schemas, union entity schemas, and entity
database schemas. Each kind of diagram has been automatically generated by
means of a model-to-text transformation that generates the PlantUML code that
corresponds to the input NoSQL-Schema model.



8 A. Hernández, S. Feliciano, D. Sevilla, J. García Molina

Version Schemas. A version schema can be shown as a UML class diagram. For
instance, Figure 5 shows the root version schema for the Movie_3 entity version.
Each entity version is represented as a class, and a letter within a small circle is
used to distinguish the root entity (“R”) from the embedded entity versions (“V”).
The class name is the entity version name in the inferred schema model. All the
version schemas directly or indirectly nested to the root entity version are shown
by means of unidirectional composite relationships whose name and cardinality
are the same than the corresponding aggregation elements of the schema model.

As explained in [15], the target of a reference is an entity, not an entity
version, therefore a version schema can also include entities, and the “E” letter
is used to label the classes that represent entities. For entities, the diagram
shows the embedded or referenced entities but not entity versions. If an entity
references the root entity version then the reference links are not shown, but the
specification is enclosed after the attribute list in the format: the keyword ref
followed by the entity name and the property name.

Fig. 5: Root Entity Version Schema for Movie_3 Generated with PlantUML.

With this representation, heterogeneous arrays cannot be displayed directly.
We could generate, for example, artificial “union” classes to join all the included
classes in heterogeneous arrays, similarly as how we constructed the entity union
schemas, but this would be more visually intrusive. Or we could generate N
aggregation relationships with numbered suffixes to each of the included classes.
In any case, the hierarchical structure of these schemas can be appropriately
represented with class diagrams.

Entity Union Schemas. We have followed the strategy explained above for vi-
sualizing entities in root version schemas. When several version schemas have
a property with identical name but different type, the union type inferred for
this property can only be visualized if it has only two versions: one includes the
property with a primitive type (or a tuple) and the other one is a relationship,
but the rest of possible unions of types would cause an error because would have
several attributes (or relationships) with the same name and different type (or



Exploring the Visualization of Schemas for NoSQL Databases 9

association end). Figure 6 shows the union schema for the Movie entity, which
includes six attributes, three composite relationships for the Criticism, Prize,
and Rating union schemas, and a reference relationship to the Director entity
union schema. The diagram also shows the relationships of the aggregated or ref-
erenced union schemas, for instance, two reference relationships from Director
to Movie. While the previous diagram showed all the referenced or embedded
entity versions involved in the definition of a version schema for a root entity, the
diagram for an entity union schema only includes entities. Therefore, in the di-
agram in Figure 6 the reference relationships from Director to Movie are shown
because no confusion is caused.

Fig. 6: Entity Union Schema for Movie Generated with PlantUML.

The main limitation of class diagrams for version schemas is the representa-
tion of union types, as several attributes with the same name but different type
are not allowed. Note that the graph-like structure of a entity union schema can
be adequately represented by class diagrams.

Entity Database Schemas. A diagram of the entity database schema is formed
by superposing all the diagrams for root union schemas. It is worth to note that
an entity union schema can be directly or indirectly connected to the rest of
entity union schemas existing in the database, and then such a schema will be
equivalent to the entity database schema. In our running example, this diagram
would be the same as that shown in Figure 6.

5 Visualization of NoSQL Schemas with Specific Notation

Tackling the visualization of NoSQL schemas with UML class diagrams evi-
denced the convenience of defining a specific notation for this purpose because
UML class diagrams cannot represent entity schemas or database schemas, and
visualizing the rest of schemas has the limitations commented in the previous
section. Moreover, the cases in which “sets” of schemas are generated, some kind
of browsing capability is needed to navigate the structure of the database.



10 A. Hernández, S. Feliciano, D. Sevilla, J. García Molina

Therefore, we have developed a diagramming tool that has been specially
designed to visualize NoSQL schemas. This solution took advantage of the fact
that our inference process generates models that conform to an Ecore metamodel
to significantly reduce the development time and effort in relation to create the
editor from scratch. We have used Sirius [16], a robust and powerful tool aimed
to define graphical notations for existing metamodels. The process is as follows:
First, we define the notation for the NoSQL-Schema metamodel by using the
capabilities offered by Sirius for this task. Taking as input the metamodel and
its notation, Sirius generates (i) an editor to create and visualize diagrams of
models that conform to the input metamodel, and (ii) a model injector that
generates a model from the graphical representation. Next, we will comment the
main features of the different diagrams and views created. The tool is available
on the Sirius Gallery.1

Global View Tree. This view shows a tree with three branches: Schemas, Inverted
Index, and Entities, as illustrated in Figure 7. Schemas list all the root entities
with their version schema; given a root version schema, the user can browse their
embedded and referenced schemas. For instance, Figure 7 shows the aggregated
and referenced schemas from the root version schemas of Movie and Director.
Schemas for Director_1 are shown. Inverted Index lists an inverse index of ver-
sions. This kind of index has been defined to navigate from a root or embedded
version schema to all the root version schemas from which it is referenced (for
example, Director_1 is referenced from Movie_1.) Entities list all the entities
that exist in the database. Both root and embedded entities are included in the
list. The user can select an entity to display its entity versions, and then he or she
can inspect their properties and types. These three branches show, in different
form, the information included in the database schema as defined in Section 3.

In this tree, entities, entity versions, and root entity versions are represented
with indicative icons. Also attributes, aggregation and reference relationships.
These icons are used in all the diagrams created to provide a uniform view to the
user. It is possible to navigate from the Global View Tree to the other diagrams
by means of contextual menus.

Database Schema Diagrams represent the information included in a database
schema as shown in Figure 8. With this diagram, the user can see at a glance
(i) the database entities, (ii) the set of version schemas of each entity, and (iii) the
attributes and relationships of each version schema. Version schemas are visual-
ized as rectangles nested into a rectangle that represents the root or embedded
entity schema it belongs to. Aggregation and reference relationships are visual-
ized as a solid line and are tagged as aggregates and references respectively.

Entity Schema Diagrams represent an entity schema as shown in Figure 9. They
are visualized just like database schemas, but with only one entity schema shown,
which can correspond to a root or embedded entity. The Figure shows that
1 https://eclipse.org/sirius/gallery.html.

https://eclipse.org/sirius/gallery.html


Exploring the Visualization of Schemas for NoSQL Databases 11

Fig. 7: Global Schema Tree for the Movie example.

the Movie entity has three versions, and the corresponding version schemas are
shown. For instance Movie_1 aggregates a version schema of the Prize entity,
as well as two version schemas of the Criticism entity, among other references.

Root version schemas and Entity union schemas are visualized with diagrams
similar to those generated with PlantUML in Figures 5 and 6.

6 Related Work

Some well-known modeling tools for relational databases have been recently aug-
mented to offer functionality for NoSQL databases. ER/Studio Data Architect [4]
and DBSchema [3] support a schema discovery process for MongoDB [10], and
visualization of inferred schemas as E/R-like diagrams. The schema discovery
process is applied on a single collection, and the diagram obtained shows the
union entity schema, but references are ignored, that is, the diagram visualizes
the root entity and the directly or indirectly embedded entities. DBSchema al-
lows the references to be added once the discovery task is performed. At this
moment, these tools do not support functionality related to the visualization or
browsing of versioned schemas, with the exception of the entity union schemas.



12 A. Hernández, S. Feliciano, D. Sevilla, J. García Molina

Fig. 8: Database Schema Diagram for the Movies Database.

Fig. 9: Entity Schema Diagram for Movie.

ERwin Unified Data Modeler is a project under development with the aim
of supporting data modeling for relational and NoSQL systems [5]. This tool
will provide data schema discovery and data migration between RDBMS and
NoSQL databases. A data model based on the E/R notation is used to represent



Exploring the Visualization of Schemas for NoSQL Databases 13

relational and NoSQL logical schemas in a unified way. Physical models have
been also defined, which can be automatically generated from a logical model.
A logical model can be automatically extracted and visualized from data. Query
and data production patterns are used to transform logical models into physical
models. However, details about the implementation of this tool are not provided
and versioned schema visualization is not considered.

ExSchema [2] aims to discover schemas for NoSQL stores by applying a static
analysis of the source code of applications that use data management APIs. Dis-
covered schemas are visualized as PDF images that have a large amount of
visual elements. Aggregation and reference relationships are not explicitly dif-
ferentiated, which makes it difficult to visually identify entities and relationships.
Neither versioned schemas nor entity union schemas are addressed.

JSON Discoverer is a tool aimed to infer JSON schemas from JSON-based
Web APIs [7]. Domain models generated correspond to the notion of entity
database schema defined in Section 3, but excluding references between entities.
Schemas are drawn as UML class diagrams. Unlike the tools previously com-
mented, JSON discoverer extracts entity domain models rather union object
schemas, which requires discovering and extracting the involved aggregation re-
lationships. However, the existence of data versions (i.e. versioned schemas) is
not addressed, and the references between objects are not discovered. Note that
this tool is not focused on database schema visualization.

7 Conclusions and future work

Modeling tools for aggregate-oriented NoSQL systems should be designed taking
into account the existence of entity versions. In this article we have explored the
schemas that could be useful to designers and developers and how they could be
visually represented. We have observed that the diagrams proposed for version
schemas and entity union schemas are appropriate and the limitations exposed
for UML class diagrams are solved in the Sirius solution. For entity schemas,
in addition to entity union schemas and browsing version schemas, a tree rep-
resentation that explicitly shows the common and specific properties among the
version schemas could be very useful, and will be studied as a future work. The
database schema diagram shown in Figure 8 is difficult to understand due to
the existence of relationships between entity versions, and may become infea-
sible when entities have more than a few entity versions. Therefore, database
schemas require browsing capabilities and even query languages if the number of
schema versions is high. This is also planned for future work. For entity database
schemas, UML class diagrams are adequate, but properties with the same name
but different type should be allowed. The order of magnitude of the number of
version schemas for entities significantly affects to the mechanisms implemented
around the diagram representation. We have tested some open datasets such
as Stackoverflow, and have found that around a hundred schema versions is
common, but there are also cases with a very large number of schema versions
(tens of thousands) [17]. Therefore, a research effort should be devoted to study



14 A. Hernández, S. Feliciano, D. Sevilla, J. García Molina

the properties needed for the representations to be effective, including, but not
being limited to: i) having views to show version specific properties as well as
entity common properties, ii) allowing the user to establish optional fields (di-
minishing the number of versions), and iii) defining methods to order the views
using statistics such as the number of objects per version, in order to detect
erroneous or undesired versions. Regardless, browsing capabilities are needed to
navigate through entity and version schemas. The visualization tools presented
are available in a GitHub repository.2

References

1. Bacvanski, V., Roe, C.: Insights into NoSQL Modeling: A Dataversity Report.
DataVersity (2015)

2. Castrejón, J.C., Vargas-Solar, G., Collet, C., Lozano, R.: ExSchema: Discovering
and Maintaining Schemas from Polyglot Persistence Applications. In: 2013 IEEE
ICSM. pp. 496–499 (2013)

3. DbSchema: Dbschema web page. http://www.dbschema.com/index_es.html (Vis-
ited March 2017)

4. ER-Studio Web Page. https://www.idera.com/
er-studio-enterprise-data-modeling-and-architecture-tools (2017),
accessed: March 2017

5. CA ERwin Web Page. http://erwin.com/products/data-modeler (2017), ac-
cessed: March 2017

6. GraphViz: GraphViz Visualization Software. http://www.graphviz.org/ (Visited:
March 2017)

7. Izquierdo, J.L.C., Cabot, J.: JSONDiscoverer: Visualizing the Schema Lurking Be-
hind JSON Documents. Knowl.-Based Syst. 103, 52–55 (2016)

8. JSON: JavaScript JSON. http://www.w3schools.com/js/js_json.asp (Visited
March 2017)

9. Klettke, M., Scherzinger, S., Störl, U.: Schema Extraction and Structural Outlier
Detection for JSON-based NoSQL Data Stores. In: BTW. vol. 2105, pp. 425–444
(2015)

10. MongoDB Web Page. https://www.mongodb.com/ (2017), accessed: March 2017
11. NoSQL Market. https://www.alliedmarketresearch.com/NoSQL-market (Vis-

ited November 2016)
12. PlantUML: PlantUML in a nutshell. http://plantuml.com/ (Visited: March 2017)
13. Rückstieß, T.: mongodb-schema npm package. https://www.npmjs.com/package/

mongodb-schema (2016), visited April 2016
14. Sadalage, P., Fowler, M.: NoSQL Distilled. A Brief Guide to the Emerging World

of Polyglot Persistence. Addison-Wesley (2012)
15. Sevilla Ruiz, D., Feliciano Morales, S., García Molina, J.: Inferring Versioned

Schemas from NoSQL Databases and Its Applications. In: 34th International Con-
ference, ER2015, Stockholm, Sweden. pp. 467–480 (2015)

16. Sirius: Sirius official website. https://eclipse.org/sirius/ (Visited March 2017)
17. Wang, L., Hassanzadeh, O., Zhang, S., Shi, J., Jiao, L., Zou, J., Wang, C.: Schema

Management for Document Stores. In: VLDB Endowment. vol. 8 (2015)

2 https://github.com/catedrasaes-umu/NoSQLDataEngineering.

http://www.dbschema.com/index_es.html
https://www.idera.com/er-studio-enterprise-data-modeling-and-architecture-tools
https://www.idera.com/er-studio-enterprise-data-modeling-and-architecture-tools
http://erwin.com/products/data-modeler
http://www.graphviz.org/
http://www.w3schools.com/js/js_json.asp
https://www.mongodb.com/
https://www.alliedmarketresearch.com/NoSQL-market
http://plantuml.com/
https://www.npmjs.com/package/mongodb-schema
https://www.npmjs.com/package/mongodb-schema
https://eclipse.org/sirius/
https://github.com/catedrasaes-umu/NoSQLDataEngineering

	Exploring the Visualization of Schemas for Aggregate-Oriented NoSQL Databases



