
Metamodeling Lightweight Data Compression
Algorithms and its Application Scenarios

Juliana Hildebrandt1, Dirk Habich1, Thomas Kühn2, Patrick Damme1, and
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Abstract. Lossless lightweight data compression is a very important
optimization technique in various application domains like database sys-
tems, information retrieval or machine learning. Despite this importance,
currently, there exists no comprehensive and non-technical abstraction.
To overcome this issue, we have developed a systematic approach using
metamodeling that focuses on the non-technical concepts of these algo-
rithms. In this paper, we describe COLLATE, the metamodel we developed,
and show that each algorithm can be described as a model conform-
ing with COLLATE. Furthermore, we use COLLATE to specify a compression
algorithm language COALA, so that lightweight data compression algo-
rithms can be specified and modified in a descriptive and abstract way.
Additionally, we present an approach to transform such descriptive algo-
rithms into executable code. As we are going to show, our abstract and
non-technical approach offers several advantages.

1 Introduction

The continuous growth of data volumes is still a major challenge for efficient
data processing. This applies not only to database systems [1, 2], but also to
other areas, such as information retrieval [3, 4] or machine learning [5]. With
growing capacities of the main memory, efficient analytical in-memory data pro-
cessing becomes viable [6, 7]. However, the gap between computing power of the
CPUs and main memory bandwidth continuously increases being now the main
bottleneck [1]. To overcome this issue, the mentioned application domains have
a common approach: (i) encode values of each data attribute as sequence of inte-
gers using some kind of dictionary encoding [1, 8] and (ii) apply lightweight data
compression algorithms to each sequence of integer values. Besides reducing the
amount of data, operations can be directly performed on compressed data [1, 9].

For the lossless compression of a sequence of integer values, a large corpus of
lightweight algorithms has been developed [1, 3, 4, 9–13, ?]3. In contrast to heavy-
weight algorithms, like arithmetic coding [14], Huffman [15], or Lempel Ziv [16],
lightweight algorithms achieve comparable or even better compression rates [1, 3,

3 Without claim of completeness.
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4, 9–13, ?]. Moreover, the computational effort for (de)compression is lower than
for heavyweight algorithms. To achieve these unique properties, each lightweight
compression algorithm employs one or more basic compression techniques such
as frame-of-reference [9, 11] or null suppression [1, 13], that allow the appropri-
ate utilization of contextual knowledge like value distribution, sorting, or data
locality. Every single algorithm is important and has its field of application [17].
This is true not only for current, but also for future algorithms.

Our Contributions and Outline. Despite this importance, there exists cur-
rently no comprehensive and non-technical abstraction for this domain. There-
fore, the algorithms are only presented technically. However, this makes both
the selection as well as the adaptation of algorithms to the respective context
difficult. To overcome that, we have developed an approach using metamodel-
ing that focuses on the non-technical concepts of lightweight data compression
algorithms. Thus, our main contributions in this paper are:
1. We present our metamodeling approach with regard to separation of concerns

by summarizing (i) the core results of our algorithm analysis and (ii) the
derived metamodel called COLLATE in Section 2.

2. We apply COLLATE to develop a compression algorithm language COALA in
Section 3. This allows us to specify and modify lightweight data compression
algorithms in a descriptive and non-technical way. Additionally, we present
an approach to transform such descriptive algorithms into executable C/C++
code.

3. We evaluate our language and execution approach using case studies in Sec-
tion 4. In particular, we show (i) that we are able to describe existing as
well as new algorithms with COALA and (ii) that our transformation approach
produces correct executable code.

We close this paper with related work and a conclusion in Sections 5 and 6.

2 Metamodeling Lightweight Compression Algorithms

In this paper, we limit our discussion to lossless lightweight integer compression.
But the described approach applies to decompression as well. Before we intro-
duce COLLATE, we summarize the results of our algorithm analysis with regard to
common non-functional aspects.

2.1 Properties of Data Compression Algorithms

To compress a finite sequence of integer values losslessly, all available com-
pression algorithms use the following five basic techniques: frame-of-reference
(FOR) [9, 11], delta coding (DELTA) [12, 13], dictionary compression (DICT)
[1, 9], run-length encoding (RLE) [1, 13], and null suppression (NS) [1, 13]. FOR
and DELTA represent each value as the difference to a certain given reference
value (FOR) respectively to its predecessor value (DELTA). DICT replaces each
value by its unique key given by a dictionary. The objective of these three well-
known techniques is to represent the original data as a sequence of small integers,



which is then suited for actual compression using the NS technique. NS is the
most well-studied kind of all lightweight compression techniques. Its basic idea is
the omission of leading zeros in the bit representation of small integers. Finally,
RLE tackles uninterrupted sequences of occurrences of the same value, so called
runs. In its compressed format, each run is represented by its value and length.
Thus, the compressed data is a sequence of such pairs.

Generally, these five techniques address different data levels. While FOR,
DELTA, DICT, and RLE consider the logical data level, NS addresses the phys-
ical level of bits or bytes. This explains why lightweight data compression algo-
rithms are always composed of one or more of these techniques. In the following,
we denote the techniques from the logical level as preprocessing techniques for
the physical compression with NS. These techniques can be further divided into
two groups depending on how the input values are mapped to output values
(often called codewords). FOR, DELTA, and DICT map each input value to
exactly one integer as output value (1:1 mapping). The objective is to achieve
smaller numbers that can be better compressed on the bit level. In RLE, not
every input value is necessarily mapped to an encoded output value, because a
successive sub-sequence of equal values is encoded in the output as a pair of run
value and run length (N:1 mapping). The NS technique is either a 1:1 or an N:1
mapping depending on the implementation [18].

The genericity of these basic techniques is the foundation to tailor the al-
gorithms to different data characteristics. The NS technique has been studied
most extensively. There is a very large number of specific algorithms showing the
diversity of the implementations for a single technique. The pure NS algorithms
can be divided into the following classes [18]: (i) bit-aligned, (ii) byte-aligned,
and (iii) word-aligned. While bit-aligned NS algorithms try to compress an in-
teger using a minimal number of bits, byte-aligned NS algorithms compress an
integer with a minimal number of bytes (1:1 mapping). The word-aligned NS
algorithms encode as many integer values as possible into 32-bit or 64-bit words
(N:1 mapping). The logical-level techniques have been usually investigated in
connection with the NS technique [17].

Concluding, a lightweight data compression algorithm is always a combina-
tion of one or more of these basic techniques. The algorithms differ greatly in
how they apply the individual techniques. This great variability results from
the multitude of opportunities in which the input sequence of integers can be
subdivided. For each subsequence, the algorithms analyze the contained values
to optimize the application of the basic techniques.

2.2 COLLATE Metamodel

Thus, subdivision and specific application of the five basic techniques are im-
portant aspects of each lightweight data compression algorithm. For the specific
application, the algorithms usually determine parameters for each subsequence
and with the help of the calculated parameter values, the techniques are special-
ized for the subsequences.
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Fig. 1: COLLATE Metamodel.

COLLATE Concepts. To describe every single one of these lightweight compres-
sion algorithms, we identified five core concepts as highlighted in gray boxes in
Fig. 1. Because compression algorithms are often characterized by a hierarchical
data subdivision, we used the composite design pattern as foundation. Thus,
each algorithm is a Compression, which is associated with one Tokenizer, zero
to one Parameter Calculator, one Encoder or one further Compression, and
one Combiner. The different concepts fulfill the following tasks:
Recursion: This concept is responsible for the hierarchical data subdivision

and for applying the included concepts in the Recursion on each data sub-
sequence.

Tokenizer: This concept is responsible for dividing an input sequence into finite
subsequences or single values.

Parameter Calculator: The optional concept Parameter Calculator deter-
mines parameter values for finite subsequences or single values. The specifi-
cation of the parameter values is done using parameter definitions. Parame-
ters can be calculated on the logical as well as the physical level.

Encoder: The fourth concept determines the encoded form (codewords) for in-
teger values to be compressed at bit level. The concrete encoding is specified
using functions representing the basic techniques on the logical and physical
data level.

Combiner: The Combiner arranges the encoded values (codewords) and the cal-
culated parameters for the output representation.

Concept Properties. The concepts Recursion as well as Combiner should be
clear enough. For the Tokenizer concept, we identified three classifying char-
acteristics. The first one is data dependency. A data independent Tokenizer

outputs a special number of values without considering the value itself, while a
data dependent Tokenizer is used in case the decision about how many values
to output is led by the knowledge of the concrete values. For example, a data
dependent Tokenizer is necessary for the technique RLE, where the Tokenizer

output depends on the values themselves. A second characteristic is adaptivity.
A Tokenizer is adaptive if the calculation rule changes depending on previously
read data. The third property is the necessary input for decisions. Most Tok-

enizers need only a finite prefix of a data sequence to decide how many values
to output. The rest of the sequence is used as further input for the Tokenizer

and processed in the same manner. Only those Tokenizers are able to process
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data streams with potentially infinite data sequences. Moreover, there are Tok-

enizers requiring the whole (finite) input sequence to decide how to subdivide
the sequence.

Parameters are often required for the compression. Therefore, we introduce
the Parameter Calculator concept, which follows special rules (parameter def-
initions) for the calculation of several parameters. There are different kinds of
parameter definitions. We often need single numbers like a common bit width
for all values or mapping information for dictionary based encodings. We call
a parameter definition adaptive, if the knowledge of a calculated parameter for
one token (output of the Tokenizer) is needed for the calculation of parameters
for further tokens at the same hierarchical level. For example, an adaptive pa-
rameter definition is necessary for DELTA. Calculated parameters have a logical
representation for further calculations including encoding of values and option-
ally a representation at bit level, because on the one hand they are needed to
calculate the encoding of values, on the other hand they mostly have to be stored
additionally to allow the decoding.

The Encoder processes an atomic input, where the output of the Param-

eter Calculator and other parameters are additional inputs. The input is a
token that cannot or should not be subdivided anymore. In practice the Encoder
mostly obtains a single integer value to be mapped into a binary code (1:1 map-
ping techniques). An exception is RLE as N:1 mapping technique, where the
Parameter Calculator maps a sequence of equal values to its run length and
the Encoder maps the sequence to the special value. Equally to parameter defi-
nitions, the Encoder calculates a logical representation of its input value and a
bit encoding.

2.3 Interaction of COLLATE Concepts

Besides the single concepts, we are also able to specify (i) the interactions of the
concepts and (ii) the data flow through the concepts for lightweight data com-
pression algorithms as illustrated in Fig. 2. The dashed lines highlight optional
data flows. In general, this arrangement can be used as metaobject protocol for



Recursion

Parameter Calculator
ref : in 7→ in.min,

in 7→ in.bin(32)
width : in 7→ in.max− ref,

in 7→ in.bin(32)

Recursion

Tokenizer in 7→ 32

Combiner (in32 o width o ref)∗

Encoder
val : in 7→ in− ref,

in 7→ in.bin(width)

Tokenizer in 7→ 1

Combiner in32

1 value

re
f,

w
id

th

tail

tail
subsequence

compressed sequence

input sequence in

1 coa la {
2 Algorithm (
3 ”FORBP32” ,
4 Recursion (
5 Tokenizer ( in => 32) ,
6 ParameterCalculator (
7 ParameterDefinition [ Int ] (

’ r e f ,
in => i n . m in ,
in => i n . b i n (32)

) ,
8 ParameterDefinition [ Int ] (

’w i d th ,
in => ( in.max − ’ r e f + 1) .bw,
in => i n . b i n (32)

)
9 ) ,

10 Recursion (
11 Tokenizer ( in => 1) ,
12 ParameterCalculator ( ) ,
13 Encoder (

in => in − ’ r e f ,
in => i n . b i n ( ’width )

) ,
14 Combiner( in => in )
15 ) ,
16 Combiner( in => in o ’width o ’ r e f )
17 )
18 )
19 }

.

Fig. 3: Graphical and COALA Code for FORBP32.

lightweight compression algorithms and each algorithm conforms to this inter-
action of the specific concepts.

3 Application Scenarios

The goal of this section is to show different application scenarios of COLLATE. In
detail, we apply COLLATE (i) to design and describe algorithms in an abstract
way as models, (ii) to define a compression algorithm language COALA for an
unambigious, declarative non-technical specification of algorithms, and (iii) to
transform descriptive algorithms into executable code.

3.1 Algorithms as Models

Generally, each lightweight data compression algorithm can be modeled as an
instance of the COLLATE metamodel. To show that, we use a self-constructed algo-
rithm called FORBP32 as a running example. This algorithm does not occur in
recent literature. But it works well in the case when (i) values have a good local-
ity (consecutive values in the same range), (ii) there are no single huge outliers
and when (iii) the absolute size of values to compress does not matter. FORBP32
combines the frame-of-reference (FOR) technique at the logical level to achieve



smaller numbers which are afterwards compressed using binary packing. Binary
packing (BP) is a kind of null suppression, where a common bit width is used
for the encoding of values within a finite subsequence [12]. Thus, in FORBP32, a
common reference value and bit width are calculated for each subsequence of 32
integer values and stored with 32 bits each before the 32 encoded values follow.

We can model FORBP32 by specifying all COLLATE concepts as depicted in
Fig. 3. Like any algorithm model, FORBP32 is a Recursion. It consists of a To-

kenizer outputting 32 integer values independently in each subsequence, which
is formalized by the function (in 7→ 32), a Parameter Calculator, where (i)
the calculation rule for the reference value as the minimum of each subsequence,
expressed by the mapping (in 7→ in.min) and (ii) its binary encoding with 32
bits (in 7→ in.bin(32)) are determined by a parameter definition. Also (i) the
calculation rule for the bit width on the basis of the range of 32 values, expressed
by (in 7→ in.max−ref) and (ii) its encoding with 32 bits specify a further param-
eter definition. At the end, the Combiner arranges bit width, the reference value
and the corresponding sequence of 32 encoded integer values. This is expressed
by ((in32o width o ref)

∗
), which means that the binary representations of the

reference value and the bit width are followed by the encoding of 32 data values
for every block of 32 values. Instead of an Encoder, we use a further Recur-

sion, where the processing of a subsequence containing 32 values is done. This
processing consists of a Tokenizer outputting single values and an Encoder,
which (i) calculates the difference of a data value and the reference value and
(ii) encodes the result with the number of bits determined before the Combiner

constructs the sequence of 32 encoded compressed integer values.
At this point, we can draw three conclusions. First, the FORBP32 algorithm

can be expressed by the colluding concepts according to COLLATE. The same can
be shown for a wide range of lightweight compression algorithms. Second, the
models/algorithms can be easily adjusted. An example is the adjustment of the
subdivision in 32, 64 or 128 values, which results in new algorithms. Third,
new algorithms can be designed applying user-specified calculation rules for the
logical as well the physical data level as shown by FORBP32.

3.2 Compression Algorithm Language COALA

To simplify the coding of lightweight data compression algorithms, we designed
a domain-specific language called COALA allowing a declarative and non-technical
specification. COALA is based on COLLATE and offers the opportunity to express
instances of concepts as higher-order functions – concepts are functions taking
functions as parameters. We decided to embed COALA into the host language
Scala4, because Scala is a high level programming language, which is object-
oriented as well as functional and which treats higher-order functions are first
class citizens. The advantage of this embedding is that COALA inherits many of
the features and benefits of Scala [19]. Thus, we are able to use the higher-
order function behavior of Scala to instantiate our five COLLATE concepts with an

4 Scala Programming Language - https://www.scala-lang.org



adjustment by functions. This leads to a declarative description of algorithms as
shown below.

The COALA code of the FORBP32 example algorithm is depicted on the
right side of Fig. 3, which is more or less a 1:1 mapping of the corresponding
model. Each COLLATE concept is implemented using a domain-specific higher-
order function of COALA. For example, the higher-order function tokenizer rep-
resents the COLLATE concept Tokenizer. In FORBP32, this tokenizer contains
a mapping function from the input sequence in to the number 32 as function
parameter. Here, we declare that the input sequence has to be subdivided in sub-
sequences, where each subsequence contains 32 values. We do not specify how
to do it, which is the difference between a declarative and an imperative pro-
gramming approach. Another example is the definition of the parameter named
‘ref, which determines the minimum of a sequence and encodes it with 32 bits.
It can be described by ParameterDefinition[Int](‘ref, in => in.min, in

=> in.bin(32)), because the parameter definition is characterized by a name,
a mapping from the input sequence to a logical (integer) value, which can be
used for further calculations, and a mapping from the logical value to the binary
encoding with 32 bits as indicated by the predefined function in.bin(32).

To further support the declarative approach of COALA, the data flow and the
interaction of the concepts are implicitly realized using the COLLATE metaobject
protocol as illustrated in Fig. 2. Therefore, we omit an explicit data flow coding
in COALA. All major and minor concepts shown in Fig. 3 can be fully expressed by
higher-order functions. In summary, FORBP32 is expressed by 10 concepts con-
taining 10 simple lambda functions in a declarative way. The code is expressive
and easy to understand, since it complies with the model instance. Furthermore,
the code is without any technical detail about the how.

Concluding, with COLLATE we have a systematic approach to understand, to
model and to adapt compression algorithms. The compression algorithm lan-
guage COALA allows us to express these algorithms in a descriptive and non-
technical way. Adaptations for reasons of optimization like the justification of
the data subdivision, calculation of parameters, or the order of the compressed
values can be implemented by changing single values without considering side
effects. On the contrary, this could occur by changing native executable code.

3.3 Transformation of COALA Code to Executable Code

Our COALA approach allows designers of lightweight data compression algorithms
to specify their algorithms in a novel declarative and domain-specific way. To
execute such declarative algorithms, we transform COALA code into executable
C/C++ code using generative programming [20]. Our generative programming
approach for this transformation is based on the COLLATE concepts and is realized
using Scala macros [21].

Generally, we defined a fixed transformation for each COLLATE concept de-
pending on the properties as described in Section 2. We illustrate our approach
using the running example algorithm FORBP32. The resulting C/C++ code is
depicted in Fig. 4. Fundamentally, a COALA Algorithm is transformed into a



1 in l ine u in t32 t min ( u in t 32 t ∗ i n , i n t c n t r , i n t s tep ) { . . . }
2 in l ine u in t32 t max( u in t 32 t ∗ i n , i n t c n t r , i n t s tep ) { . . . }
3 // algorithm
4 s i z e t forbp32 ( u in t 32 t ∗ i n , i n t l e n g t h , u i n t 32 t ∗out ) {
5 // I n i t i a l i z a t i o n
6 u in t 32 t ∗ i n i t o u t = out ;
7 i n t b i t counte r = 0 ;
8 // Parameter Declaration Level 0
9 i n t r e f ;

10 i n t width ;
11 // Recursion and Tokenizer Level 0
12 i n t step0 = 32 ;
13 for ( i n t c0 = 0 ; c0 < l ength ; c0 += step0 ) {
14 // Parameter Calcu lat ion Level 0
15 r e f = min ( i n , c 0 , s tep0 ) ;
16 width = bw(max( i n , c 0 , s tep0 ) − r e f + 1 ) ;
17 // Encoding Parameters
18 ∗out |= r e f << b i t counte r ;
19 out = . . .
20 b i t counte r = . . .
21 . . .
22 // Recursion and Tokanizer Level 1
23 i n t step1 = 1 ;
24 for ( i n t c1 = c0 ; c1 < c0 + step0 ; c1 += step1 ) {
25 // Encoding Data
26 ∗out |= ( in [ c1 ] − r e f ) << b i t counte r ;
27 out = . . .
28 b i t counte r = . . .
29 }
30 }
31 return out + ( b i t counte r != 0 ) − i n i t o u t ;
32 }

Fig. 4: Generated C/C++ Code for FORBP32.

C/C++ generic function, which expects (i) an array with 32-bit integer values to
be compressed, (ii) its length, and (iii) an output array as function parameters.
Thus, we specify that we represent the input sequence of integers as an array
on the execution level and the further processing has to be done on this array
structure. Furthermore, each algorithm returns the word size of the compressed
values. For our FORBP32, the generated C/C++ function starts with lines 4-7
and ends with line 31-32 in Fig. 4.

An algorithm is always a Recursion iterating over the input. For this reason,
the Recursion concept is always mapped to a loop iterating over an array in
our case. For the exact loop specification, the following Tokenizer has to be
included. In FORBP32, we have two similar cases. Both cases are nested. There-
fore, the nested recursions and tokenizers are also mapped to nested loops with
fixed step widths of 32 and 1. This is done in lines 12-13 and 23-24 in Fig. 4.

The Tokenizers in FORBP32 are very simple, but it is also possible to
calculate the steps in Tokenizers as a function of parameters or data dependent.
This is necessary for example for the RLE technique. The corresponding C/C++
transformation is illustrated in Fig. 5.

Parameter Calculator: For the algorithm FORBP32, the reference value
and the bit width have to be calculated for each subsequence of 32 values. This is
done for the logical value within the outer loop. The generated code is depicted in
lines 15-16 in Fig. 4, where each aggregation function respectively other operation



1 in l ine i n t ca l c 1 ( u in t 32 t ∗ i n , s i z e t l ength ) { . . . }
2 . . .
3 i n t step1 = ca l c1 ( in + 0 , l ength − 0 ) ;
4 for ( i n t c0 = 0 ; c0 < l ength ; c0 += step1 ) ) {
5 . . .
6 step1 = ca l c1 ( in + c 0 , l ength − c0 ) ;
7 }

Fig. 5: Realization of a Data Dependent (Adaptive) Tokenizer.

used in COALA is mapped to a predefined C/C++ function respectively a C/C++
operator, shown in lines 1-2.

The code for the Encoder is transformed in the same way. In addition to cal-
culations at the logical level, calculations on the physical level are still needed.
The physical calculations are always transformed into bit shift operations. The
binary encoding of 32 values with the same bit width is done as depicted in
lines 26-28, the binary encoding of the parameters in lines 18-21. The transfor-
mation of the Combiner results in the code position of the physical parameter
and data encoding. In our case, first the parameters are written to the output
in lines 18-21 and afterwards the data values.

To summarize, the transformation of COALA code to executable C/C++ is
mainly driven by the transformation of the single COLLATE concepts. On the one
hand, lightweight data compression algorithms iterate over the input integer
sequence and subdivide it in subsequences or single values, which is specified by
Recursion and Tokenizer. Thus, both concepts have to be considered jointly
for the translation. On the other hand, the other concepts are more or less
independent, only the order must be maintained. This is necessary to establish
the necessary data flow as depicted in Fig. 2.

4 Case Studies

With the help of two use cases, we want to highlight the applicability and the
advantages of our language as well as our execution approach. While the first
use case considers an existing algorithm, the second use case evaluates our self-
constructed algorithm FORBP32.

Existing Null Suppression Algorithm There is a large variety of lightweight
data compression algorithms implementing only the null suppression (NS) tech-
nique. The pure NS algorithms can be divided into the following classes [18]: (i)
bit-aligned, (ii) byte-aligned, and (iii) word-aligned. To show the applicability
of our approach for these kinds of algorithms, we decided to use the existing
byte-oriented algorithm varint-SU [4]. The algorithm suppresses leading zeros
for each single integer by determining the smallest number of 7-bit units that
are needed for binary representation without losing any information. To support
decoding, the 7-bit number is stored as additional descriptor. This is done in a
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1 coa la {
2 Algorithm (
3 ”VarintSU” ,
4 Recursion (
5 Tokenizer ( in => 1) ,
6 ParameterCalculator (
7 ParameterDefinition [ Int ] (

’ u n i t s ,
in => in.bw (7) ,
in => in .unary011

)
) ,

8 Encoder (
in => i n ,
in => i n . b i n ( ’ u n i t s ∗ 7 ) ) ,

9 Combiner(
in => z ip ( L i s t ( (1 , ’ u n i t s ) , (7 , in ) ) )

)
10 )
11 }

(a) COALA Code
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Fig. 7: Evaluation of varint-SU [12].

unary way by placing a single parameter bit at the high end of a 7-bit unit as
depicted in Fig. 6.

The algorithm specification in COALA is shown in Fig. 7(a). As we can see,
the descriptive code consists of eleven code lines. The Tokenizer subdivides the
input sequence into single integer values (indicated by in => 1). For each value,
the Parameter Calculator determines the number of necessary 7-bit units us-
ing an appropriate function. The determined number is used in the subsequent
Encoder to compress the integer value. The Combiner subdivides the bit level
representation of the input value into several 7-bit units and arranges the bits
of the encoded data and the descriptor.

Table 1: Comparison of the Code Sizes for varint-SU.

Absolute measures Relative measures

COALA Generated Lemire COALA/Generated CoALa/Lemire

Lines of Code 11 36 47 31% 23%
Number of Characters 220 953 908 23% 24%

For this algorithm, a native C/C++ implementation of Lemire exists [12]. Ta-
ble 1 compares the code size of our descriptive COALA specification with the gener-
ated C/C++ code and the native implementation. While our generated code has
36 lines of code, the native implementation has 47,because the native implemen-
tation uses mainly means of case distinctions. In contrast, our COALA description
has eleven lines of code, which is only 23% to 31% of the size of the executable
code. The same applies to the number of characters as depicted in Fig. 1. Fur-
thermore, we compared the compression result of our generated C/C++ code
with the result of the Lemire implementation for different input sequences using
our compression benchmark framework [22]. In all cases, the results are identical
which is a clear indicator for the correctness of our generated executable code.

In addition to the comparison of the code sizes, we also compared the runtime
behavior of our generated and the native variant. The runtime comparison was
done on a standard server with an Intel Core i5 2.9GHz and 8GB main memory.
Both compression algorithms are executed single-threaded and compiled with
g++ 4.2.1 using the optimization flag -O3. In the experiment, we varied the num-



ber of integer values to be compressed, thereby the compressed representations
randomly vary between one and four 7-bit units per integer value. We report
compression speeds in million integers per second (mis) as it is usually done
in that domain [17]. As we can see in Fig. 7(b), our generated code performs
poorly compared to the native implementation, whereas our generated code is
approximately 7 times slower. The reason is that we are doing bit encoding with
a loop, which is avoided in the native implementation by explicitly unrolling the
loop. We included that unrolling concept in our transformation concept leading
to a comparable compression speed as illustrated in Fig. 7(b). Some other opti-
mization steps are case distinctions as well as avoidance of bit shift calculations,
of copying, and of branching. However, these effects must be investigated more
closely, which we will do in future work.

This analysis has been carried out for various NS algorithms, all of which
have led to similar results. Therefore, we can draw the following conclusions:
1. Our COALA language can be used to specify NS algorithms in a descriptive

and non-technical way, whereby those descriptions are much shorter than
any imperative and technical implementation.

2. Our transformation approach produces correct executable codes, which are
comparable to native implementations on a code size basis. The currently
generated code is slower than native code, but we are convinced of being
able to achieve comparable performance with automatical optimizations.

Novel and Self-Constructed Algorithms: As shown with FORBP32, we
are able to specify and modify novel lightweight data compression algorithms
with COALA. Furthermore, COALA algorithms can be executed with the help of our
transformation approach. The COALA code of FORBP32 is much smaller than
any executable code, because the COALA code includes only non-technical details.
This leads to more clearance and understandability.

5 Related Work

To the best of our knowledge, there exists only a high-level modularization con-
cept for data compression in the domain of data transmission [23]. That scheme
subdivides compression methods merely in (i) a data model adopting to data
already read and (ii) a coder encoding the incoming data by means of the calcu-
lated data model. In that work, the area of conventional data compression was
considered. Here, a multitude of approaches like arithmetic coding [14] Huff-
man [15] or Lempel-Ziv [16] exists. These classical algorithms achieve high com-
pression rates, but the computational effort is high. Therefore, these techniques
are usually denoted as heavyweight. The modularization concept of [23] is well-
suited for this kind of heavyweight algorithms, but it does not adequately reflect
different properties of the lightweight algorithms. For example, it does not sup-
port a sophisticated segmentation or a multi-level hierarchical data partitioning.

Additionally, a wide range of metamodels and domain-specific languages for
various applications domains has been proposed. Hitherto, none of them has
considered the field of lightweight data compression. Considering the fact that



lightweight data compression algorithms are an important optimization tech-
nique in different application domains, COLLATE and the domain-specific language
COALA are more than important.

6 Conclusion

The continuous growth of data volumes is still a major challenge for efficient
data processing. To tackle this challenge with regard to in-memory data pro-
cessing, application domains like databases, information retrieval or machine
learning follow a common approach: (i) encode values of each data attribute as
sequence of integers using some kind of dictionary encoding and (ii) apply loss-
less lightweight data compression algorithms to each sequence of integer values.
Aside from reducing the amount of data, a large variety of operations can be
directly performed on compressed data.

In this paper, we described COLLATE, the metamodel we developed, for the
large and evolving corpus of lightweight data compression algorithms and showed
that each algorithm can be described as a model conforming to COLLATE. Fur-
thermore, we used our metamodel to specify a novel compression algorithm lan-
guage COALA, so that lightweight data compression algorithms can be expressed
in a descriptive and non-technical way. Additionally, we presented an approach
to transform such descriptive algorithms into executable code.

From our perspective, the following two areas of future application are avail-
able, where our presented approach can play an important role: test platform
and system integration. In the test platform, we target the design of a specific
development and test environment for lightweight data compression algorithms.
In addition to the development of specific algorithms, the behavior of the al-
gorithms must also be checked. To systematically test the algorithm behavior,
we want to combine our COALA approach with our lightweight data compres-
sion benchmark system [22]. This enables us to establish a comprehensive test
platform for this emerging optimization technology.

In addition, we want to extend our approach with the aim to integrate the
large and evolving corpus of lightweight data compression algorithms in corre-
sponding systems. For example, to the best of our knowledge, there is currently
no in-memory database system available providing this corpus to a full extent.
Therefore, the most challenging task is now to define an appropriate integration
approach. With COALA, we have a language approach, but the transformation has
to be database specific, which will be feasible.
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