
Reusing Conceptual Models:
Language and Extensible Compiler

Quenio Cesar Machado dos Santos1 and Raul Sidnei Wazlawick2

1 Computer Sciences,
UFSC - Universidade Federal de Santa Catarina, Brazil,

queniodossantos@gmail.com
2 Associate Professor of Computer Sciences Department,
UFSC - Universidade Federal de Santa Catarina, Brazil,

raul@inf.ufsc.br

Abstract. This paper presents a textual programming language for con-
ceptual modeling (based on UML classes/associations and OCL con-
straints) and its compiler that can generate code in any target language
or technology via extensible textual templates, both currently under ini-
tial stage of development. The language and compiler should allow the
specification of information managed by ever-changing, increasingly dis-
tributed software systems. From a single source, automated code genera-
tion should keep implementations consistent with the specification across
the different platforms and technologies. Furthermore, as the technology
landscape evolves, the target templates may be extended to embrace new
technologies. Unlike other approaches, such as MDA and MPS, the built-
in tooling support, and the textual nature of this modeling language and
its extensible templates, is expected to facilitate the integration of model-
driven software development into the workflow of software developers.

Keywords: conceptual modeling, code generation, model-driven soft-
ware development, model-driven engineering, metaprogramming, gener-
ative programming

1 Introduction

In order to address the challenges of the ever-changing, increasingly distributed
technologies used on software systems, Model-Driven Architecture (MDA [21])
from Object Management Group (OMG) has been promoting model-driven soft-
ware development. In particular, MDA has guided the use of high-level models
(created with OMG standards, such as UML [23], OCL [22] and MOF [24]) to
derive software artifacts and implementations via automated transformations.
As one of its value propositions, the MDA guide [21] advocates:

“Automation reduces the time and cost of realizing a design, reduces the
time and cost for changes and maintenance and produces results that
ensure consistency across all of the derived artifacts.”

SFA
Textbox
Copyright © by the paper’s authors. Copying permitted only for private and academic purposes.
In: C. Cabanillas, S. España, S. Farshidi (eds.):
Proceedings of the ER Forum 2017 and the ER 2017 Demo track,
Valencia, Spain, November 6th-9th, 2017,
published at http://ceur-ws.org

2 Quenio C. M. dos Santos et al.

MDA provides guidance and standards in order to realize this vision, but it
leaves to software vendors the task of providing the tools that automate the pro-
cess of generating the implementations from the models. The key role played by
tools has been demonstrated by Voelter [36] in his Generic Tools, Specific Lan-
guages approach for model-driven software development. Voelter [36] has used
domain-specific languages (DSLs) with the Metaprogramming System (MPS) in
order to generate software artifacts. Unlike MDA, which is based on UML/MOF
models, MPS allows the specification of models using domain-specific editors.

The conceptual modeling language and extensible compiler presented here
are an alternative approach to MPS. While the latter is a fully integrated devel-
opment environment based on domain-specific languages and their projectional
editors3, the former (hereby called CML) is a compiler. As input, CML has source
files defined using its own conceptual language, which provides an abstract syn-
tax similar to (but less comprehensive than) a combination of UML [23] and
OCL [22]; and, as output, any target languages, based on extensible templates
that may be provided by the compiler’s base libraries, by third-party libraries, or
even by developers. Both the CML language and compiler are in its initial stage
of development, as part of the author’s Computer Sciences Bachelor Technical
Report, and available as an open source project online [28].

Section 2 explains the motivation for creating yet another language for con-
ceptual modeling. The next two sections present the language (section 3) and the
compiler with its extensible templates (section 4). Section 5 compares CML to
other languages, tools and frameworks that can also generate code from concep-
tual models. We conclude in section 6, reiterating the objectives being pursued
by CML and exploring options to validate the use of the CML compiler.

2 Why A New Language?

Thalheim [30] has observed that the choice of a conceptual modeling language
has to do with its purpose. He suggests that a language is just a carrier mapping
some properties of the origin (the problem space) that can provide utility to its
users.

In this context, the purpose of the CML language is being a tool that allows
software developers to transform text-based conceptual models into executable
code of an extensible range of technologies. In order to achieve this purpose, a
new language is designed with the following goals (among others):

– Developer Experience: CML follows the principle “the model is the code”
as laid out on the Conceptual-Model Programming (CMP) manifesto [9].
Furthermore, CML is also intended to enable software developers to do con-
ceptual modeling on the same workflow they are used to doing programming ;
that is, using text editors and a compiler. CML strives to not only be the

3Projectional editors in MPS do not rely on parsers. Instead, the abstract syntax
tree (AST) is modified directly. MPS renders the visual representation of the AST
based on the DSL editor definition.

Extensible Compiler for Conceptual Modeling 3

code (as advocated by CMP), but also look like code (syntactically speak-
ing), pursuing compatibility with developers’ mindset, toolset and workflow.
By providing its own syntax based on existing programming languages, CML
then promotes the modeling-as-programming approach. The UML [23] nota-
tion, on the other hand, being graphical, is not suited for mainstream, textual
programming. However, the Human Usable Textual Notation (HUTN) [26]
is a textual syntax for MOF-based [24] metamodels, and as such, it can also
be used for UML models. The syntax of the structural (static) elements of
CML models is based on HUTN.

– Language Evolution: This initial version is being designed for the valida-
tion of the model-driven development approach offered by CML. Unlike the
expressive power seen on UML [23] and OWL 2 [37] with their breadth of
features, the CML language initially supports generalization/specialization,
bidirectional associations (with zero-or-one and zero-or-many cardinality)
and the ability to define derived attributes and associations with OCL-like
expressions. These features have already allowed the specification of CML
compiler’s own metamodel in CML itself. The CML compiler is thus the first
system used to validate CML’s aplicability, and will continue to do so as the
language evolves.

– Extensible Target Generation: Some of the language features should enable
the generation of code into a wide range of target languages and technolo-
gies. Among the features that must be provided by the CML language, it
is the ability to break models into modules (already available); the ability
to share modules as libraries (planned); the ability to specify different code
generation targets (already available); and the ability to annotate model el-
ements in order to provide more information for specific targets during code
generation (also planned). In order to effectively support code generation,
these language features must be available in a single language, so that they
can be compatible with each other and with the compiler backend.

Section 5 provides further motivation for developing CML, comparing it to
related work.

3 The Language

This section presents an overview of the conceptual modeling language. The
concrete syntax is presented using an example in subsection 3.1. The mapping
of the CML example to UML [23] and OCL [22] is illustrated in subsection 3.2.
The CML metamodel (the abstract syntax ’s structure) is presented in subsection
3.3. (The CML Specification [28], which is under development, should eventually
provide a formal description of the concrete syntax, along with its mapping to
the abstract syntax.)

3.1 An Example

On the example of figure 1, some concepts, such as Book and Customer, are de-
clared in CML. The block-based syntax declaring each concept resembles the C

4 Quenio C. M. dos Santos et al.

[15] language’s syntax. Each concept declares a list of properties. The property
declarations are based on the Pascal [17] style for variable declarations, where
the name is followed by a colon (“:”) and then the type declaration. Part of
the CML syntax for expressions, such as the expression in BookStore’s ordered-
Books, is based on OCL [22] expressions. While the syntax of the expression in
goldCustomers is new, its semantics also match OCL [22] query expressions.

concept BookStore {

books: Book*; customers: Customer*; orders: Order*;

/goldCustomers = customers | select: totalSales > 1000;

/orderedBooks = orders.items.book;

}

concept Book {

title: String; price: Decimal; quantity: Integer = 0;

}

concept Customer {

orders: Order*; /totalSales = sum(orders.total);

}

concept Order {

customer: Customer; total: Decimal;

}

association CustomerOrder {

Order.customer; Customer.orders;

}

Fig. 1. Adapted from the fictional Livir bookstore; a case study by Wazlawick [38].

The key language features: Book and Customer are concepts; title and price
under the Book concept are attributes; totalSales under the Customer concept is
a derived attribute; the properties books and customers declared under the Book-
Store concept represent unidirectional associations (in UML [23], they would
correspond to the association roles); CustomerOrder binds two unidirectional
associations (represented by the orders property under the Customer concept
and by the customer property under the Order concept) into a single bidirec-
tional association; the properties goldCustomers and orderedBooks under the
BookStore concept are examples of derived associations.

These language features are defined in the subsection 3.3.

3.2 Mapping CML Source to UML and OCL

Part of the CML metamodel (presented in section 3.3) may be considered a
small subset of the UML [23] metamodel. Thus, the structural (static) elements

Extensible Compiler for Conceptual Modeling 5

of CML models can be transformed into UML class diagrams. The example CML
model in the listing of figure 1 is mapped to the UML model in figure 2.

Fig. 2. The UML class diagram [23] for the CML model listed in figure 1.

In figure 2, the CML concepts (BookStore, Book, Customer and Order) are
mapped to corresponding UML classes. The CML properties that represent at-
tributes (such as title, quantity and price of Book) are mapped to UML at-
tributes under each class. The CML properties that represent unidirectional
associations (books, customers, and goldCustomers of BookStore) are mapped to
UML associations with corresponding roles (showing the navigability direction,
and matching the property names and cardinality.) The CML bidirectional as-
sociation CustomerOrder (comprised by two CML properties: Customer.orders
and Order.customer) is mapped to a UML association with bidirectional navi-
gability (that is, no direction arrows.) As demonstrated by this example, CML
strives to enable modeling at the same conceptual level as allowed by UML.
That being said, when compared to the UML metamodel, the CML metamodel
supports only a core set of its elements, as shown in subsection 3.3.

Besides the structural elements of a conceptual model (as seen above), CML
also has expressions that can set initial values to attributes, and define derived
properties for both attributes and associations. CML expressions are partially
based on the OCL [22] syntax, but they follow closely the OCL semantics. For
example, the following CML expression (extracted from figure 1) is a path-based
navigation expression borrowed from OCL:

/orderedBooks = orders.items.book;

Using association properties, the expression above navigates from one in-
stance of BookStore, passing through all linked orders, and then through all
items of all orders, in order to return all books that have been ordered. As an-
other example, the following CML expression (also extracted from figure 1) does
not follow the OCL syntax:

/goldCustomers = customers | select: totalSales > 1000;

6 Quenio C. M. dos Santos et al.

However, the expression above closely matches the semantics of the following
OCL expression:

derive: customers->select(totalSales > 1000)

Both the CML expression and the OCL excerpt above evaluate to a set of
Customer instances that have bought more than 1000 in the BookStore.

The OCL syntax for expressions that process collections of instances has the
following general form:

collection->method_name(predicate or function)

The expression above is based on method invocations (an influence from
UML’s object-oriented paradigm), and thus it has an imperative style. CML, on
the other hand, intends to be agnostic towards programming paradigms. By us-
ing extensible comprehensions [33] to define derived attributes and associations,
CML’s syntax is more declarative, similar to SQL [16] or C#’s LINQ [32]. In
CML, smaller expressions can also be combined into larger ones. For example:

/goldOrders = for order in bookStore.orders,

goldCustomer in bookStore.goldCustomers

| select: order.customer == goldCustomer | yield: order

Above, all orders from goldCustomers are returned. The sub-expressions are
evaluated sequentially: the for expression provides a cross join of all (order, gold-
Customer) pairs; the select expression selects only the pairs that have matching
customers; Finally, the yield expression maps selected pairs into a sequence of
orders. Sub-expressions like for, select and yield can be combined in different
configurations in order to derive any required attributes and associations.

3.3 The CML Metamodel (Abstract Syntax)

In the article UML and OCL in Conceptual Modeling, Gogolla [12] shows, by
mapping the UML [23] metamodel to the ER [8] metamodel, how UML models
(augmented by OCL [22] constraints) can be used to specify conceptual models.
Also, Wazlawick [38] systematically prescribes a method for conceptual modeling
using UML and OCL. Since one key CML goal is enabling the specification
of conceptual models (such as those specified by ER models and UML/OCL
models), in order to present the key elements of the CML metamodel, a similar
approach to Gogolla’s is used to map the CML metamodel to the ER metamodel,
and to the UML/OCL metamodel.

The EMOF [24] model presented by figure 3 is a simplified version of the
CML metamodel. As shown, a Concept is composed of zero-or-more Property
instances. Each Property must have a Type and an optional Expression. If two
Property instances represent both ends of the same bidirectional association,
there must be an Association instance that binds them. Unidirectional associa-
tions are only represented by a single Property instance (actually representing

Extensible Compiler for Conceptual Modeling 7

Fig. 3. Simplified EMOF [24] model defining the CML metamodel.

the association role) that enables the navigation from the source Concept in-
stance to the target one, which is represented by the property’s Type.

Next, there is a description for the key metamodel elements:

– Concept : According to Wazlawick [38], a concept represents complex in-
formation that has a coherent meaning in the domain. They aggregate at-
tributes and cannot be described as primitive values. They may also be
associated with other concepts. On the ER metamodel, it is known as Entity
Type; on the UML metamodel, as Class. CML’s Concept differs, however,
from the UML Class, because it has only Property instances, while the UML
Class may also have Operation instances.

– Property : May hold values of primitive types, in which case they represent
an attribute on the ER and UML metamodels; or may hold references (or
collections of references) linking to instances of other concepts. On the ER
metamodel, a set of all reference pairs linking one Entity Type to another is
known as a Relationship; on the UML metamodel, it is known as a unidirec-
tional Association.

– Association: Unlike the ER and UML metamodels, in the CML metamodel,
only a bidirectional Association is represented with the Association class. Us-
ing UML terminology, they bind the reference (non-primitive) properties, so
that the Association links are accessible from each participating association
end. It directly represents in the CML metamodel what normally requires

8 Quenio C. M. dos Santos et al.

additional implementation in programming languages. It is inspired4 on the
work of Cardoso [7], which extends the C# language to represent bidirec-
tional associations; it is also inspired on the work of Balzer et. al. [2], which
uses member interposition to model relationships.

– Type: They may be of: a primitive type (such as Boolean, String, and Deci-
mal); a reference to a Concept instance (cardinality equal to one); a sequence
of references (cardinality equal to zero-or-many); or optional, meaning their
value may or may not have been set (also defined by the cardinality prop-
erty). CML also supports the tuple and lambda types, which are used in
expressions.

– Inheritance: Following the the UML [23] metamodel, CML provides the gen-
eralization/specialization relationship. In CML, a Concept may be a spe-
cialization of two or more other Concept instances. If a Property has been
defined by more than one generalization, CML requires it to be redefined by
the specialization in order to resolve the definition conflict.

4 The Extensible Compiler

In order to realize the CMP [9] manifesto’s vision, the CML compiler can gen-
erate code in any target language if the corresponding templates are provided.
A set of core templates is provided by CML compiler’s base module, which is
currently supporting Java and Python. In order to target specific technologies
or platforms, third-party modules can also provide their own templates, along
with their conceptual models. Developers can also extend existing templates in
order to adapt the implementation to characteristics specific to their projects.

Subsection 4.1 provides an overview of the CML compiler’s architecture.
Next, subsection 4.2 introduces the CML compiler’s extensible templates. Fi-
nally, subsection 4.3 lays out the CML compiler’s mechanism for organizing and
sharing conceptual models and extensible templates.

4.1 Compiler Overview

An overview diagram of the architecture is shown in figure 4. The two main
components of the compiler, and the artifacts they work with, are presented
below:

– Frontend: receives as input the CML source files. It parses the files into an in-
ternal representation of the CML model. Syntactical and semantic validations
are then executed. Any errors are presented to the developer, interrupting
the progress to the next phase. If the source files are parsed and validated
successfully, the CML model serves then as the input to the backend com-
ponent.

4The syntax used in CML resembles the syntax of a struct in C [15], while Cardoso
[7] uses a verbose syntax. Also, unlike CML, Cardoso does not bind properties that
represent each association end; instead, associations – unidirectional or bidirectional –
are declared independently of class properties.

Extensible Compiler for Conceptual Modeling 9

Fig. 4. An architectural overview of the CML compiler.

– Backend: receives the CML model as input. Based on the constructor defined
by a task, the backend chooses which extensible templates to use for code
generation. The target files are then generated to be consumed by other
tools. The task and associated constructor play a key role in determining
the kind of target to be generated.

4.2 Extensible Templates

Parr has formalized and developed the StringTemplate [25] language for code
generation. CML’s extensible templates are implemented in StringTemplate. The
CML compiler uses StringTemplate for two purposes:

– File names and directory structure: each type of target generated by the
CML compiler requires a different directory structure. The CML compiler
expects each constructor to define a template file named “files.stg” (also
known as files template), which will contain the path of all files to be gen-
erated. The files template may use information provided by the task (intro-
duced in subsection 4.1) in order to determine the file/directory names. An
example of a files template is shown below:

model_files(task, model) ::= <<
pom_file|pom.xml
>>

concept_files(task, concept) ::= <<
concept_file|src/main/java/<task.packagePath>/<concept.name; format="pascal-case">.java
>>

– File content generation: each file listed under the files template must have a
corresponding content template that specifies how the file’s content must be
generated. The content template will receive as input one root-level element
of the CML model, which will provide information to generate the file’s

10 Quenio C. M. dos Santos et al.

content. The type of model element received as input by the content template
depends on which function of the files template has defined the file to be
generated. A typical content template is shown below:

import "/design/poj.stg"

concept_file(task, concept) ::= <<
package <task.packageName>;

import java.util.*;

public <class(concept)>
>>

On the files template example, two types of files are created by this con-
structor : one file for the CML module (named “pom.xml”, and based on the
“pom file” template); and one for each concept found in the CML model (with
the file extension “.java”, and based on the “concept file” template.)

On the content template example, the “concept file” content template is
displayed, which can generate a Data Type Object (DTO) class in Java. The
actual template that knows how to generate the class is imported from “/de-
sign/poj.stg”.

4.3 Modules and Libraries

When developing a single application, having a single directory to maintain all
the CML source code is sufficient. But, once more than one application is de-
veloped as part of a larger project, and CML model elements are shared among
them, it is necessary to separate the common source code. Also, some applica-
tions cover different domains, and it may be beneficial to separate the source
code into different CML models.

In order to allow that, CML supports modules. Grouping a set of CML model
elements, a module in CML is conceptually similar to a UML [23] package.
Physically, each module is a directory containing the following sub-directories:

– source: where the CML source files reside.
– templates: optional directory containing templates for code generation.
– tests: optional directory containing tests that verify the generated code.
– targets: created by the CML compiler to contain each target sub-directory,

which in turn contains the target files generated for a given target.

Under the source directory, the module is defined by a module specification. If
a module needs to reference CML model elements in other modules, then import
statements define the name of the other modules. The CML compiler should then
compile the imported modules before compiling the current module.

A CML module has no version as it is maintained in the same code repository
with the other modules it imports. However, it is planned that a future version
of CML will allow packaging a module as a library, which will have a version and
the same name as the module. Such a library will in turn be published into a
public (or company-wide) library site in order to be shared with other developers.
A CML library is expected to become a packaged, read-only, versioned module.

Extensible Compiler for Conceptual Modeling 11

5 Related Work

This section compares CML to other languages, tools and frameworks that can
also generate code from conceptual models. Each paragraph covers a different
category, enumerating specific solutions and characterizing their relevance to
CML, and also their differences.

When compared to CML, the text-based languages are the most relevant.
MPS [36] is a development environment for DSLs. Strictly speaking, its DSLs are
not textual, since their AST is directly edited on projectional editors. However,
the editors allow textual representations. Unlike MPS, the DSLs created with the
M language [6] are truly textual. It was part of the discontinued Oslo project
from Microsoft, which incorporated into Visual Studio similar capabilities to
what is available on MPS. Xtext/Xtend [3] allows the definition of textual DSLs
to generate code from conceptual models edited on Eclipse. It is similar to the
Oslo project from Microsoft, and based on EMF [29]. MM-DSL [35], on the other
hand, allows the definition of metamodels (abstract syntax; not the actual DSLs),
which serve as input to generate domain-specific modeling tools. ThingML [14] is
also a language and code generation framework for the development of software
in embedded devices. XML may also be used for conceptual modeling, and XSLT
then used to create the templates for code generation, as shown by Gheraibia et
all [11]. Observe that most of the solutions previously mentioned enable modeling
via DSLs, while CML is a generic language for modeling in any domain.

Graphical languages also have some relevance to CML, despite the latter
being a textual language, because the former have also been used to generate
code in other target languages. MPS [36], besides the textual models, also allows
the creation of graphical models. FCML [18], on other hand, incorporates and
extends conceptual modeling languages (ER, UML, and BPMN) via the OM-
NILab tool in order to generate code. MetaEdit+ [31] is another development
environment that allows the creation of modeling tools and code generators for
visual DSLs. As mentioned previously in this article, MDA [21] is the initiative
from OMG to use UML [23] for model-driven development. IFML [5] is an ex-
ample from OMG of a high-level language that can be used to generate user
interfaces on different platforms, such as the Web, or on mobile devices. The
major drawback of graphical languages, as covered in section 2, is their difficulty
to integrate seamlessly with the text-based, compiler-based workflow of software
developers.

Frameworks also allow code generation from conceptual models, but lack
a modeling language – graphical or textual. EMF [29] is a classical example,
where modeling is done via editors on Eclipse or via a programming interface,
and the models are stored in the ECORE/XML format. Frameworks may also
be used as the infrastructure of modeling languages. EMF, for example, is the
framework supporting Xtext [3]. Conceivably, other modeling languages may
also target EMF. In fact, CML’s extensible compiler allows the implementation
of templates that target EMF.

As seen in previous sections, the CML compiler uses StringTemplate [25] as
the language for its code generation templates. There are other template lan-

12 Quenio C. M. dos Santos et al.

guages designed for code generation from conceptual models. Xpand [13] allows
the definition of templates with multiple variability regions. EGL [27] is another
language that allows code generation from models. MOFScript [20] allows code
generation from models defined by any type of metamodel. JET [34] allows code
generation from EMF [29] models. One strength of StringTemplate is its exten-
sibility mechanisms. It is possible to define a core set of templates that define
patterns, and then extend them with the specifics of each target language or
technology. It is also possible to share templates as libraries, which can be fur-
ther extended for specific purposes by third-parties. Xpand also allows this level
of extensibility.

Just like CML, there are programming languages that provide the ability to
declare bidirectional associations. DSM [2] is an object-oriented programming
language with support for associations. Fibonacci [1] is programming language
for object-oriented databases that allows the modeling of association roles. AS-
SOCIATION# [7], on the other hand, is an extension to C# that allows the
modeling of associations. Likewise, RelJ [4] is a Java extension with support
for associations. One key drawback of these languages is the fact that their
conceptual models cannot be reused to generate code in any other language or
technology; they are, for all intents and purposes, the target language.

There are also other conceptual languages whose original focus has not been
to support code generation or implementation, but to serve solely as modeling
artifacts. Languages, such as OWL [37] and Telos [19], have been designed as
ontology metamodels to support the representation and storage of knowledge,
and to allow automated reasoning from knowledgebases; OWL being the lingua
franca of the semantic web, while Telos has been created to store ontologies in
a object-oriented database. Other languages, like UML [23] and ER [8], have
been originally intended as tools to support the analysis and design of software
systems, and only later have been repurposed for model-driven software devel-
opment. The relevance of these languages to CML comes from the expressivity
power their metamodels provide for conceptual modeling. For that reason, CML
should continue to expand its capabilities by borrowing features from these lan-
guages.

6 Conclusion

The CML language and compiler make it possible to specify, in a single high-
level language, the concepts of ever-changing, increasingly distributed software
systems. As opposed to modeling concepts, their properties and associations in
each target language, from a single CML model, the CML extensible templates
generate code that keeps the implementations (across the different platforms and
technologies) consistent with the specification. Also, as the technology landscape
evolves, these textual CML models can be reused to generate code in new target
languages and technologies.

The initial version of CML has been designed to validate this textual, model-
driven approach of software development. The use of the CML compiler to model

Extensible Compiler for Conceptual Modeling 13

and implement CML’s own metamodel has shown to reduce the amount of man-
ually written code, and made the metamodel more readable, maintainable and
reusable. Other applications of CML are needed in order to provide qualitative
evidence that CML can indeed be used as a single source to implement multiple
targets. Quantitative cost-benefit analysis (based on the implementation effort of
hand-written vs generated lines-of-code, perhaps using a method adapted from
the work of Gaffney et al [10]) may also provide data that shows whether the
investment – made on the development of CML models – pays off. The data
collected, together with the feedback provided by software developers, should
then inform the iterative evolution of CML features.

References

1. Albano, A., Bergamini, R., Ghelli, G., Orsini, R.: An object data model with roles.
In: VLDB, vol. 93, pp. 39–51 (1993)

2. Balzer, S., Gross, T.R., Eugster, P.: A Relational Model of Object Collaborations
and Its Use in Reasoning About Relationships. In: E. Ernst (ed.) 21st ECOOP.
Proceedings, pp. 323–346. Springer (2007)

3. Bettini, L.: Implementing domain-specific languages with Xtext and Xtend. Packt
Publishing Ltd (2016)

4. Bierman, G., Wren, A.: First-Class Relationships in an Object-Oriented Language.
In: A.P. Black (ed.) 19th ECOOP. Proceedings, pp. 262–286. Springer (2005)

5. Brambilla, M., Mauri, A., Umuhoza, E.: Extending the Interaction Flow Modeling
Language (IFML) for Model Driven Development of Mobile Applications Front
End. In: I. Awan (ed.) MobiWIS 11th. Proceedings, pp. 176–191. Springer (2014)

6. Brunelière, H., Cabot, J., Clasen, C., Jouault, F., Bézivin, J.: Towards Model
Driven Tool Interoperability. In: T. Kühne (ed.) ECMFA 6th. Proceedings, pp.
32–47. Springer (2010)

7. Cardoso, I.S.: Inserindo suporte a declaração de associações da UML 2 em uma lin-
guagem de programação orientada a objetos. Master’s thesis, Universidade Federal
de Santa Catarina (2011)

8. Chen, P.P.S.: The Entity-Relationship Model (Reprinted Historic Data). In: D.W.
Embley (ed.) Handbook of Conceptual Modeling, pp. 57–84. Springer (2011)

9. Embley, D.W., Liddle, S.W., Pastor, O.: Conceptual-Model Programming: A Mani-
festo. In: D.W. Embley (ed.) Handbook of Conceptual Modeling, pp. 3–16. Springer
(2011)

10. Gaffney Jr., J.E., Cruickshank, R.D.: A General Economics Model of Software
Reuse. In: Proceedings of the 14th International Conference on Software Engi-
neering, ICSE ’92, pp. 327–337. ACM, New York, NY, USA (1992)

11. Gheraibia, Y., Bourouis, A.: Ontology and automatic code generation on modeling
and simulation. In: 6th SETIT. Proceedings, pp. 69–73 (2012)

12. Gogolla, M., Thalheim, B.: UML and OCL in Conceptual Modeling. In: D.W.
Embley (ed.) Handbook of Conceptual Modeling, pp. 85–122. Springer (2011)

13. Greifenberg, T., Müller, K., Roth, A., Rumpe, B., Schulze, C., Wortmann, A.:
Modeling Variability in Template-based Code Generators for Product Line Engi-
neering. CoRR abs/1606.02903 (2016)

14. Harrand, N., Fleurey, F., Morin, B., Husa, K.E.: Thingml: A language and code
generation framework for heterogeneous targets. In: Proceedings of the ACM/IEEE
19th MODELS, pp. 125–135 (2016)

14 Quenio C. M. dos Santos et al.

15. ISO: ISO/IEC 9899:2011 Programming languages — C. International Organization
for Standardization (2011)

16. ISO: IEC 9075-1: 2003 (E) Database languages — SQL Part 1: Framework
(SQL/Framework) (2016)

17. Jensen, K., Wirth, N.: PASCAL User Manual and Report. Springer-Verlag (1974)
18. Karagiannis, D., Buchmann, R.A., Burzynski, P., Reimer, U., Walch, M.: In:

Domain-Specific Conceptual Modeling: Concepts, Methods and Tools, pp. 3–30.
Springer (2016)

19. Mylopoulos, J., Borgida, A., Jarke, M., Koubarakis, M.: Telos: Representing
Knowledge About Information Systems. ACM TIS 8(4), 325–362 (1990)

20. Oldevik, J., Neple, T., Grønmo, R., Aagedal, J., Berre, A.J.: Toward Standardised
Model to Text Transformations. In: A. Hartman (ed.) ECMDA-FA. Proceedings,
pp. 239–253. Springer (2005)

21. OMG: Model Driven Architecture (MDA) Guide rev. 2.0 (2014)
22. OMG: Object Constraint Language (OCL), Version 2.4 (2014)
23. OMG: Unified Modeling Language (UML), Superstructure, Version 2.5 (2015)
24. OMG: Meta Object Facility (MOF) Core Specification, Version 2.5.1 (2016)
25. Parr, T.J.: Enforcing Strict Model-view Separation in Template Engines. In: Pro-

ceedings of the 13th International Conference on World Wide Web, WWW ’04,
pp. 224–233. ACM, New York, NY, USA (2004)

26. Rose, L.M., Paige, R.F., Kolovos, D.S., Polack, F.A.C.: Constructing Models with
the Human-Usable Textual Notation. In: K. Czarnecki (ed.) MoDELS: 11th Inter-
national Conference. Proceedings, pp. 249–263. Springer (2008)

27. Rose, L.M., Paige, R.F., Kolovos, D.S., Polack, F.A.C.: The Epsilon Generation
Language. In: I. Schieferdecker (ed.) ECMDA-FA: 4th European Conference. Pro-
ceedings, pp. 1–16. Springer (2008)

28. dos Santos, Q.C.M.: CML Project (2017). http://github.com/orgs/cmlang
29. Steinberg, D., Budinsky, F., Merks, E., Paternostro, M.: EMF: eclipse modeling

framework. Pearson Education (2008)
30. Thalheim, B.: The Theory of Conceptual Models, the Theory of Conceptual Mod-

elling and Foundations of Conceptual Modelling. In: D.W. Embley (ed.) Handbook
of Conceptual Modeling, pp. 543–577. Springer (2011)

31. Tolvanen, J.P.: MetaEdit+: Domain-specific Modeling for Full Code Generation
Demonstrated. In: Companion to the 19th Annual ACM SIGPLAN Conference,
OOPSLA ’04, pp. 39–40. ACM, New York, NY, USA (2004)

32. Torgersen, M.: Querying in C#: How Language Integrated Query (LINQ) Works.
In: Companion to the 22Nd ACM SIGPLAN Conference, OOPSLA ’07, pp. 852–
853. ACM, New York, NY, USA (2007)

33. Trinder, P.: Comprehensions, a query notation for dbpls. In: Proceedings of
DBPL3, pp. 55–68. Morgan Kaufmann Pub. Inc., San Francisco, USA (1992)

34. van Emde Boas, Ghica: Template programming for model-driven code generation.
In: 19th Annual ACM SIGPLAN Conference (2004)

35. Visic, N., Karagiannis, D.: Developing Conceptual Modeling Tools Using a DSL.
In: R. Buchmann (ed.) KSEM: 7th International Conference. Proceedings, pp. 162–
173. Springer (2014)

36. Voelter, M.: Generic Tools, Specific Languages. Ph.D. thesis, Delft University of
Technology (2014)

37. W3C: OWL 2 Structural Specification and Functional-Style Syntax (Second Edi-
tion) (2012)

38. Wazlawick, R.S.: Object-Oriented Analysis and Design for Information Systems.
Morgan Kaufmann (2014)

