
An Improvement on Data Interoperability with Large-

Scale Conceptual Model and Its Application in Industry

Lan WANG
1
, Shinpei HAYASHI

2
, Motoshi SAEKI

2

1Toshiba Corporate R&D Center, 1 Komukai-toshiba-cho, Saiwai-ku,Kawasaki, 212-8582,

Japan. Lan.wang@toshiba.co.jp
2Tokyo Institute of Technology, Ookayama 2–12–1, Meguro-ku, Tokyo 152–8552, Japan.

Abstract. In the world of the Internet of Things, heterogeneous systems and

devices need to be connected. A key issue for systems and devices is data in-

teroperability such as automatic data exchange and interpretation. A well-

known approach to solve the interoperability problem is building a conceptual

model (CM). Regarding CM in industrial domains, there are often a large num-

ber of entities defined in one CM. How data interoperability with such a large-

scale CM can be supported is a critical issue when applying CM into industrial

domains. In this paper, evolved from our previous work, a meta-model

equipped with new concepts of “PropertyRelationship” and “Category” is

proposed, and a tool called FSCM supporting the automatic generation of prop-

erty relationships and categories is developed. A case study in an industrial do-

main shows that the proposed approach effectively improves the data interoper-

ability of large-scale CMs.

Keywords: conceptual modeling, data interoperability, property relationship

1 Introduction

In the world of the Internet of Things, various systems and devices need to be con-

nected. One of the key issues is the data interoperability among systems and devices,

i.e., systems and devices can exchange and interpret data automatically. A well-

known approach is to build a conceptual model (CM) that unambiguously defines

entities and their relationships so that different systems and devices can utilize the

CM to exchange and interpret data. For example, a CM is defined in IEC 62264 [1],

[2], [3] series for enterprise-control system integration, and the Common Information

Model (CIM) is defined in IEC 61970/61968/62325 for smart grid systems to ex-

change data among different applications and systems. For electro-electronic systems,

CM defined in IEC 61360-4 (also called IEC CDD) is utilized among semiconductor

management systems to exchange data.

One of the characteristics of a CM in industrial domains is that a CM normally has a

large number of entities. Such as in the CIM, there are more than 1000 classes and

thousands of properties. In order to improve data interoperability with such large-

scale CMs, property relationships in a CM need to be created so that data among in-

volved properties can be systematically exchanged and interpreted. Furthermore, as

mailto:Lan.wang@toshiba.co.jp
SFA
Textbox
Copyright © by the paper’s authors. Copying permitted only for private and academic purposes. In: C. Cabanillas, S. España, S. Farshidi (eds.): Proceedings of the ER Forum 2017 and the ER 2017 Demo track, Valencia, Spain, November 6th-9th, 2017, published at http://ceur-ws.org

2

different systems normally only use part of the whole CM, it is necessary to provide

CMs with the capability of collecting only necessary entities so that when a system

exchanges data with others, only necessary entities are included without redundancy.

 In this paper, we propose to introduce two new types as “Category” and “Proper-

tyRelationships” to the meta-model of our previous work [4] . A category can collect

only needed entities such as classes, properties, and property relationships from the

user’s perspective. Category sets can be defined from different viewpoints with

aggregation relations among them. Another feature of Category is that entities such as

classes, properties, and property relationships can belong to multiple categories.

“PropertyRelationship” is for describing relationships among properties. Similarity

between properties, transformation rules between properties etc. can be specified

using this concept. Mechanisms for automatic generation of property relationships are

also proposed. This work adopts natural language processing approaches combined

with the CM structure.

A developed tool called the Framework for Sustainable Conceptual Modeling

(FSCM) implements the above-proposed meta-model and mechanisms. Through a

case study of creating a large-scale CM and applying it via FSCM to industrial do-

mains, the proposed meta-model and mechanisms are approved to be effective.

The remainder of this paper is structured as follows. Section 2 introduces motiva-

tions for this research. Section 3 explains the proposed meta-model and its ad-

vantages. Section 4 elaborates on mechanisms for supporting the automatic generation

of property relationships. Section 5 describes the FSCM tool. Section 6 introduces

and discusses the case study. Section 7 shows related work, and Section 8 gives our

conclusions.

2 Motivation

According to our previous work [4], the CIM for smart grid can be described with a

set of structured tables (spreadsheets). The CIM described with a set of structured

tables is called Parcellized-CIM. Via that work, CIM expressed with UML models

such as packages or class diagrams can be represented as Parcellized-CIM in a tabular

format. Furthermore, based on the CM of Parcellized-CIM, a commercial database

platform parcimoser
TM

 was developed for applications such as Transmission and Dis-

tribution Supervisory Control And Data Acquisition (SCADA), Energy Management

System (EMS).

However, when applying such CMs to industrial systems, several problems arise. In

this paper, two of the typical problems are discussed. To clarify the idea in this paper,

Fig. 1 shows a simplified CM, and Fig. 2 shows its corresponding manufacturing

process as an explanatory example. As Fig. 1 shows, the class of “Cycle” is composed

of “Wheel” and “Frame”. Each class has a set of properties, and each property is

defined with a set of attributes for example {ID, Name.en, Unit, Version}.

In this example, the “Cycle” class has a set of properties with IDs P6, P7, P10 and

property P6 is defined with a set of attributes as {P6, weight, kg, 1}. The “Wheel”

class has a set of properties with IDs P1, P2, and P8. The class “Frame” has a set of

3

properties with IDs P3, P4, P5, P6, and P7. Fig. 2 illustrates the three processes to

produce a cycle corresponding to Fig. 1.

Fig. 1. A partial conceptual model for cycle manufacturing.

Fig. 2. A simplified product process for cycle manufacturing.

Two of the typical problems to be solved in this paper are as the following:

─ (Q1) Property relationships need to be created to improve data interoperability

such as consistency checking and exchangeability. In the example of Fig. 1, prop-

erty P3 (inner diameter) of class “Frame” and property of P2 (diameter) of class

“Wheel” should have the same value. Thus, if a property relationship between P3

and P2 existed, it could be used to support their data exchange and data consisten-

cy check systematically. In our previous work, property relationships cannot be

defined. Furthermore, while there are thousands of properties in industrial do-

mains, it is difficult for CM creators to manually create all property relationships.

─ (Q2) Categories containing only necessary entities need to be created to filter out

unnecessary information. In the example of Fig. 2, it is clear that for “Make cycle

frame” systems, entities such as class “Wheel” and its properties defined in the cat-

egory “Make cycle wheels” and those in “Assembly and test cycle” are not needed.

For a large-scale CM with many entities, the necessity for a system to collect only

required partial entities becomes more urgent.

3 Proposed Meta-Model

3.1 Meta-Model Overview

In this paper, an improved meta-model for conceptual modeling is proposed based on

our previous work. Primitive elements and their relationships are shown in Fig. 3. In

Fig. 3, each entity of “TypedElement” is described by a set of attributes. For

“TypedElement” of “Class”, “Property”, and “Datatype”, their attributes set is

conforming to the specifications of IEC 61360-1 [5]/ISO 13584-42 [6], which is

recoginized as the common conceptual modeling methodology for ISO and IEC

standard domain models. Typical attributes for “TypedElement” such as “ID”,

4

“Name”, and “Definition” are specified in these standards. All available attributes for

each child of “TypedElement” are described in the standard documents [5], [6]. Some

known typical characteristics of this conceptual modeling methodology [7] are as

follows:

Fig. 3. Meta-model proposed (excerpted).

─ Each entity such as a class, a property, or a datatype should have an identifier and a

version number;

─ Multi-lingual definitions for name, definition, etc. in a CM are available.

─ Entity-based CM version management is available.

In this research, “PropertyRelationship” and “Category” as children of “TypedEle-

ment” are proposed and extensively defined. In general, “PropertyRelationship” is to

describe relationships among properties such as the “equal” relationship among prop-

erties. For each property, numbers of relationships can be defined if necessary. “Cate-

gory” is defined as an aggregation of necessary entities available in a CM. A category

can contain several sub categories. The proposed meta-model has the following ad-

vantages in brief:

─ Property relationships can be assigned with different types or levels according to

CM requirements. With created property relationships, data (value) consistency of

involved properties can be checked, and their data exchanges become available, so

that data interoperability among different systems utilizing involved properties can

be improved.

─ Not only classes, but also other entities such as a property, a data type, a created

property relationship can be grouped into categories from different users’ perspec-

tives. As a result, redundant definitions which are not necessary for a “Category”

can be filtered out.

To express the proposed meta-model, Table 1, Table 2, and Table 3 representing an

excerpted CM complying with the proposed meta-model are utilized. Entities are the

same as those in Fig. 1. except for the property relationships in Table 2 and categories

in Table 3.

3.2 PropertyRelationship and Its Advantages

Overview. The “PropertyRelationship” is specified to express the relationships

among properties. For conceptual models in industrial domains, it is normal for prop-

erties to gradually evolve or become connected to other properties with different envi-

5

ronmental conditions or operational procedures. Principles such as types, levels for

“PropertyRelationship” can be defined depending on the requirements of a CM. For

the example represented in Table 2, types of “Constraint” and “Reference” relation-

ships are defined. The former is for mandatory relationships among all involved prop-

erties. The latter is an optional relationship, meaning that a property involved in this

“PropertyRelationship” can make a reference to the other while necessary. In another

CM case, property relationships such as “Temporary” and “Permanent” can be de-

fined [3]. Using the CM in Fig. 1, three entities “PropertyRelationship” listed in Table

2 can be defined;

Table 1. Property definitions (excerpted)

ID Name.en DefinitionClass Datatype Definition Unit Version
P1 Inner diameter Wheel (or class ID) Real Inner diameter for a wheel Inch 1
P2 Diameter Wheel (or class ID) Real Diameter for a wheel Inch 1
P3 Inner diameter Frame (or class ID) Real Inner diameter for a frame cm 1
P4 Length Frame (or Class ID) Real Length of a frame cm 1

Table 2. Property relationships (excerpted)

ID Name.en Definition Resource Target Relation RelationType Version

R1 diameterRelation sample Frame.P3 Wheel.P2 Wheel.P2=Frame.P3*2.54 Constraint 1

R2 weightRelation sample Wheel.P8,
Frame.P6

Cycle.P6 Cycle.P6=Wheel.P8*2
/1000 + Frame.P6

Constraint 1

R3 colorRelation sample Frame.P7 Cycle.P7 Cycle.P7=Frame.P7 Reference 2

─ As relationship R1, the property P2 (diameter) of class “Wheel” and P3 (inner

diameter) of class “Frame” should have the same value (“=”). However, as P2 and

P3 have different units as cm (centimeter) and inch, R1 should be defined as

“Wheel.P2=Frame.P3*2.54” to support the unit conversion between these two

properties in this constraint.

─ As relationship R2, the weight of a cycle (Cycle.P6) should be calculated as “Cy-

cle.P6=Wheel.P8*2/1000+Frame.P6”, i.e., the sum of wheels’ weight and that of

the frame.

─ As relationship R3, the color of a cycle (Cycle.P7) should refer to the color of the

frame (Frame.P7). This relationship is defined as “Reference” type, meaning that

Cycle.P7 does not need to be exactly the same color as “Frame”, but can make a

reference to Frame.P7 while necessary.

With the above described approach, property relationships can be defined with differ-

ent principles for different CMs.

Advantages. With the “PropertyRelationship” provided by the proposed meta-model,

it is possible to describe the relationships among properties. These created property

relationships can be utilized to enhance data interoperability such as data consistency

checking and data exchangeability, thereby addressing the capability problem for

describing property relationships raised as Q1 in Section 2. The remainder of the

problem in Q1: automatic generation of property relationships, will be addressed in

Section 4.

6

3.3 Category

Overview. A “category” is specified as a collection of necessary “TypedElements”,

and can be defined from various viewpoints. For example, from a usage viewpoint,

“TypedElements” can be grouped into a category such as “SCADA” or “Demand and

Response” in power grid systems. From a viewpoint of a product or system lifecycle,

categories such as “General Design”, “Detailed Design”, and “Validation” can be

defined. Depending on the purpose of a defined conceptual model, necessary sets of

categories can be defined. With the meta-model defined in Fig. 3, an entity of “Cate-

gory” can be an aggregation of several subcategories, so that all entities included in

sub categories are also included in their parent category and ancestor categories.

This concept of “Category” is evolved from the concept of “package” in UML with

the following additional features:

─ An entity can belong to multiple categories.

─ Not only classes, but also all available “TypedElement” such as properties and

property relationships can specify their own categories respectively.

─ Each CM can have several sets of categories defined from different perspectives.

Table 3 gives sample category definitions for the CM in Fig. 1 and its manufacturing

process shown in Fig. 2. Example categories are defined corresponding to the manu-

facturing process of Fig. 2. Specifically, category Ca1 is an aggregation of entities for

the process of “Make cycle frame”, Ca2 is for “Make wheel”, and Ca3 is for “Assem-

ble and test cycle”. Since Ca3 contains Ca1 and Ca2, all entities included in Ca1 and

Ca2 are also contained in Ca3.

Table 3. Category definitions (excerpted)

ID Name.en Super
Category

ElementList Definition Version

Ca1 MakeCycle

Frame

Ca3 {(Frame),Class},

{(P3,P4,P5,P6,P7),Property}

All entities available for functions,

operations, systems etc. for making

cycle frame

1

Ca2 MakeWheel Ca3 {(Wheel),Class},
{(P1,P2,P3,P8), Property}

{(R1), PropertyRelation}

All entities available for functions,
operations, systems etc. for making

cycle wheel

2

Ca3 Assemble
AndTest

Cycle

Root {(Cycle),Class}
{{P10},Property}

{(R2,R3), PropertyRelation}

All entities available for functions,
operations, systems etc. for assem-

bling and testing cycle

1

─ In the “Make cycle frame” procedure and its relevant systems, only entities defined

in category Ca1 are necessary, meaning that for systems related to the procedure,

only entities listed in the “ElementList” column of Ca1 in Table 3 are necessary.

─ In the “Make cycle wheels” procedure, only entities defined in the “ElementList”

column of Ca2 in Table 3 are required. Because the property relationship R1 is in-

cluded in Ca2, systems related to the procedure need to check whether the wheel

diameter equals the inner diameter of a cycle.

─ For the “Assemble and test cycle” procedure, Ca3 which includes all entities de-

fined in Ca1 and Ca2 can be utilized. It can also have its specified entities listed in

7

the “ElementList” column of Ca2 in Table 3. In consequence, systems relevant to

the procedure must check whether each of R1, R2, and R3 are satisfied. For exam-

ple, when executing R2, systems need to check whether the weight value of the cy-

cle satisfies the relationship R2.

Advantages. The above descriptions show that category definitions containing only

necessary entities can solve problem Q2 raised in Section 2. Because categories can

be defined by CM users from different aspects and for various purposes, we do not

discuss category generation in this paper. Further, due to space limitations, this paper

does not introduce the approaches that offer supports to collect necessary entities for a

given category. Some discussion of category creation and their advantages are dis-

cussed in the case study.

4 Generation of Property Relationship

As described in Section 3.2, some of the property relationships can be defined when

designing the CM. Such property relationships are usually derived from the

knowledge and experience of CM creators. In industrial domains, because a large

amount of entities are available in a CM, it’s necessary to provide approaches sup-

porting automatic generation of property relationships. One approach in this work is

to calculate similar properties in a CM and then recommend similar properties to

build property relationships automatically. Model creators thus can build and add

exact property relationships in existing CMs. For this purpose, natural language pro-

cessing approaches combined with the CM class distances are proposed.

4.1 Similarity Calculation among Properties

One approach is to use semantic similarities among properties [8] combined with

structure information. As illustrated in Section 3.1, each property is described with a

set of attributes such as “Name”, “Definition”, “Datatype”, or “Unit”, and similarity

between a selected property entity and other properties is calculated as

S(P1, P2) = ∑ 𝑊𝑎 ∙𝑆𝑎(P1. 𝑎, P2. 𝑎) / ∑ 𝑊𝑎𝑎∈𝐴𝑎∈𝐴 (1)

Sa(P1.a, P2.a) = (𝑣1⃗⃗⃗⃗ ∙ 𝑣2⃗⃗⃗⃗) / (|𝑣1⃗⃗⃗⃗ | ∙ |𝑣2⃗⃗⃗⃗ |) (2)

𝑣𝑖⃗⃗ ⃗ = (Vi1, Vi2, …Vin) Vij = (TF-IDF-Score(Termj)) (i=1,2) (3)

where Termj∈(Term1, Term2,…,Termn), an ordered set of terms and values of P1.a

and P2.a.

In equation (1)(2)(3), S(P1, P2) is a weighted average similarity score between prop-

erty P1 and P2, a is an attribute utilized by a property, P1.a and P2.a are respectively

the value of a in P1 and P2, and 𝑊𝑎 is the weight coefficient for attribute a, set from

the aspect of similarity calculation. The larger Wa is, the more critical the attribute is

to a property.

When calculating similarity score Sa (P1.a, P2.a) of attribute a between P1 and P2,

we adopt natural language processing approaches such as WordNet [9] for word simi-

8

larity, TF-IDF Cosine similarity [10] shown in Equation (2)(3) for sentence similari-

ties. The 𝑣1⃗⃗⃗⃗ and 𝑣2⃗⃗⃗⃗ are vectors of the calculated TF-IDF scores for each attribute a.

Taking the properties listed in Table 1 as an example. Suppose we generate relation-

ships of property P1, for each other properties in the same CM, the following proce-

dure is adopted to calculate the similarities between P1 and other properties. The idea

is clarified with Table 4 which lists calculated similarity scores for property P2, P3,

and P4 to P1.
Table 4. Similarities between properties

Attributes ID Name.en Definition

Class
Datatype Definition Unit Version Similarity

(no weight)
Similarity
(with weight)

Weight 1 10 1 10 10 10 1 - -

P2 to P1 0 0.7 1 1 0.89 1 1 0.79 0.88

P3 to P1 0 1 0.5 1 0.8 0.82 1 0.74 0.98

P4 to P1 0 0 0.5 1 0.2 0.82 1 0.5 0.504

─ In the first step, a similarity score between every attribute is calculated with its

value (content); For example, regarding the similarity score of the attribute

Name.en, P1 defines Name.en as “Inner diameter”, Name.en of P2 is “Diameter”,

and the similarity score between the “Inner diameter” and “Diameter” is calculated

as 0.7, then this score is listed in the Name.en columm of line “P2 to P1”.

─ In the second step, a weight coefficient is assigned to each attribute. An important

attribute should be assigned with a lager weight coefficient. For example, the at-

tributes “Name,” “Definition,” “Datatype,” and “Unit”, which to a large degree de-

termine property instances, should be assigned larger weight coefficients than oth-

ers.

─ Finally, the similarity score between a property Px and a selected property P1 is

calculated with Equation (1), using the weighted average similarity scores for P1

and Px attributes. In the example of Table 4, in the column of “Calculated Similari-

ty (no weight)”, similarity scores with no specific weight coefficient, i.e., 1, are

recorded, and in the column of “Calculated Similarity (with weight)”, the similarity

scores with the set weight coefficient in line 2 are listed.

The similarity score results show that different weight coefficients affect similarity

score rankings. In the “Similarity (no weight)” column property P2 has the highest

score, but in the “Similarity (with weight)” column property P3 has the highest score.

This difference is due to weighting of the “DefinitionClass” attribute. Because we

want to focus on property relationships among different classes, properties within the

same class are set with lower weight coefficients. According to this principle, we

adopt the result in the Table 4 column “Similarity (with Weight),” and P3 which has

the highest similarity score to P1 is recommended to systematically build a property

relationship with P1. The relationship R1 displayed in Table 4 is the corresponding

definition.

4.2 Class Distance for Property Relationship Recommendations

Structure features are also considered when ranking property relationships. When

deciding the recommendation rank of generated property relationships, besides the

9

calculated similarity score of Px and Py, the distance among definition classes of Px

and Py is also utilized. Because in this proposed CM, classes have is-a (specialization)

hierarchical relationships, a property can be inherited from ancestor classes by a child

class. Therefore, if two properties with high similarity scores simultaneously have an

ancestor-descendant relationship or neighborhood relationship, in principle, these two

properties are highly recommended for creating a property relationship.

In order to calculate the distance among classes, a known Lowest Common Ancestor

(LCA) [11] are utilized in this work. In LCA, the distance between classes is calculat-

ed as

 Distance(cls1, cls2) = Dist(root, cls1) + Dist(root, cls2) - 2∙Dist(root, lca) (4)

where Dist(root, cls1) is the distance from cls1 to root class in the is-a hierarchical

tree, and “lca” is the lowest common ancestor of cls1 and cls2.

Through these approaches with CM semantic definitions and structure features, simi-

lar properties can be collected so that the relationship among properties can be ranked

and recommended systematically.

5 Support Tool

Fig. 4. FSCM supporting sustainability of CM.

A conceptual modeling tool called FSCM shown in Fig. 4 is developed based on a

developed tool parcimoser
TM

, which was introduced in our previous work [4]. In that

work, an Excel-based FSCM supports functions for components A, B, and C. This is

explained briefly as follows:

─ Component A provides functions such as CM design and generation, instance tem-

plate generation, and static data input.

─ Component B provides functions such as database schema design, table creation,

CM and static instance data storage to a database.

─ Component C provides functions such as exporting and synchronizing CM and

instance data in a database to FSCM.

 Continuing this work, we newly developed component D for this FSCM to automati-

cally generate property relationships utilizing the first version of CM and its instance

data. Category creation and collection of necessary entities are newly implemented as

an extension of component A. “Conceptual Model Version1” and “Conceptual Model

Version2” are the different versions of the same CM. In this paper, we focus on only

the differences in property relationships between CM Version1 and CM Version2,

Namely,

10

CM(Version1) ᴜ{generated property relationships} = CM(Version2).

Other entity changes from CM Version1 to Version2 are not discussed in this paper.

Fig. 5 shows a sample CM created by the FSCM. In Area I, a class is-a hierarchical

tree is displayed. In Area II, detailed information of a selected class, including its

category, is listed. In Area III, properties defined for that class and those inherited

from the ancestor classes can be listed. For each property, attributes such as “Name”,

“Datatype(valueType)”, “Category”, can be represented.

Fig. 5. Example of conceptual model in FSCM.

6 Case Study

An FSCM based on the proposed meta-model was applied to a commercial system,

and the provided CM was shown to be efficient and successful in an actual industrial

application. In this work, some of the standardized industrial conceptual models
(1,2)

were adopted and defined using the FSCM tool with internal extensions. In this use

case, the CM shown in Table 5 was utilized to explain the contributions of the newly

proposed “Category” and “PropertyRelationship”. Table 5 lists only necessary entity

types; those not pertinent to this paper are omitted.

Table 5. Conceptual model in our case study

Entity type CM1 Entity number

Class 1312

Property 5629

Datatype 55

Category (created with this work) 24

Category definition and discussion. Fig. 6 shows the example of 24 categories de-

fined in the CM from one viewpoint. As already explained in Section 3.3, categories

can be defined from different perspectives according to users’ requirements and CM

utilization in individual user systems. The 24 categories in Fig. 6 are just one of the

potential category sets. In Fig. 6, entities of classes and properties included in each

1 http://std.iec.ch/cdd/iec61360/iec61360.nsf/TreeFrameset?OpenFrameSet
2 http://collaboration.iec.ch/other_sc3dworkingmaterial/IEC62656-Part3/

I
II

III

http://collaboration.iec.ch/other_sc3dworkingmaterial/IEC62656-Part3/

11

category are presented. Some categories, such as Categories 1, 2, 4, and 5, clearly

have only limited entities, while categories such as 17 and 19 have large number of

entities. Obviously, no category contains all entities available in the CM. It’s explicit

that especially for small size categories, the category concept greatly contributes to

reducing the unnecessary information.

Fig. 6. Categories and their containing entities.

Property relationships generation. Component D of the FSCM shown in Fig. 4

was used to generate property relationships with the mechanisms explained in Section

4.1. In this case study, the weight coefficient Wa of the “Name”, “Definition”,

“Datatype” and “Unit” attributes were set to 1, and those for other attributes were set

to 0 as discussed in Section 4.1.

Fig. 7 shows the results. We totally obtained 15,840,006 property relationships

throughout the total CM, 4,508,160 of which were between properties in different

categories. Notably, 1,144 property relationships received similarity scores of 1. In

Fig. 7, numbers of generated property relationships with similarity scores ranging

from 0 to 1 are illustrated. These results were adopted for the evaluations.

Fig. 7. Automatic generated property relationships at different similarity scores.

Evaluation of automatically generated property relationships. From automatical-

ly generated property relationships with similarity scores 1, 0.9~1, 0.8~0.9, 0.7~0.8,

0.6~0.5 and “0.5 or less”, we randomly selected 20 relationships from each similarity

score range as samples to evaluate the proposed approach. Totally 120 automatically

generated relationships were evaluated and Fig. 8 shows the case study results.

In Fig. 8, the horizontal x-axis represents the similarity score (S) of generated

property relationships from 1, and 0.9~1 down to “0.5 or less”. Here, 1 means S=1,

0.9 means 0.9=<S< 1, 0.8 is 0.8=<S< 0.9, and the others have the similar meanings.

The y-axis shows the results as evaluated by one of the authors. For the randomly

12

selected property relationships, one of the authors looked through the generated prop-

erty relationships and judged whether generated property relationships were correct.

Numbers on the y-axis represent precision of property relationship generation, using

the number of accepted property relationships divided by the number of automatically

generated property relationships. Fig. 8 shows four types of curved lines. The “3” line

shows the results for property relationships with class distances no larger than 3, the

“4” line is for those with class distances between 3 and 4. Other lines have the similar

meanings. Class distances were calculated using Equation (4).

Fig. 8. Evaluation of automatic generated property relationships.

Fig. 8 shows the following:

─ For generated property relationships with similarity score 1 (x=1), despite the class

distances, all generated property relationships were judged to be acceptable, name-

ly that the precision was 100%.

─ For generated property relationships with similarity scores 0.9 to 1 (x=0.9), the

precision of automatically generated properties was 71% when class distance were

not considered, and the precision improved to 89% when class distances were re-

stricted to less than 5.

─ For generated property relationships with similarity scores 0.8 to 0.9 (𝑥 = 0.8), the

overall precision was 45.3% when class distances were not considered. When class

distances were restricted to less than 4, the precision improved to 75.5%.

─ For generated property relationships with similarity scores 0.7 to 0.8 (𝑥 = 0.7), the

overall precision was about 30%, and the precision improved to 50% when class

distances were restricted to less than 3.

─ For generated property relationships with similarity scores 0.6 to 0.7 (𝑥 = 0.6) and

others less than 0.6, the precision was 0 regardless of class distances.

From these results, we arrive at the following conclusions:

─ Class distance effectively improves the precision of automatic generated property

relationships for similarity scores ranging from 0.7 to 1. For those with similarity

scores of 1 or less than 0.6, class distance has no influence.

─ Class distances less than 5 significantly improve the precision of automatically

generated property relationships. When class distance is larger than 5, even the au-

tomatic generated property relationships have similarity score 0.9, they were

judged to be not correct relationships. Thus, the effective class distance threshold

for this CM1 should thus be set to 5.

─ Automatically generated property relationships with similarity scores exceeding

0.8 are 75.5% acceptable with class distance no larger than 4. Thus, property rela-

13

tionship similarity scores combined with class distances need be considered simul-

taneously when FSCM deciding the precision threshold for the automatically gen-

erated property relationships.

This case study shows that property relations can be automatically and precisely gen-

erated with the proposed meta-model of “Category” and “PropertyRelationship.” The

CM with categories was already applied to actual industrial systems via FSCM to

support data interoperability such as data exchange and interpretation. Automatically

generated property relationships can be sequentially adopted for further improvement.

7 Related Work

In [12], with the goal of determining semantic similarities among entity classes from

different ontologies, natural language processing approaches were utilized to create a

similarity function for calculations using synonym sets, semantic neighborhoods, and

other aspects of ontologies such as WordNet and the Spatial Data Transfer Standard

(SDTS). In that work, similarity among entity classes was calculated with attributes

grouped by function, description, and so forth. Distances among entity classes were

not considered. Reference [13] proposed levels of the conceptual interoperability

model. Depending on the interchanged data, up to five levels (level 0 for system spe-

cific data, level 1 for documented data, etc.) of the conceptual interoperability model

were proposed. In [14], a conceptual framework utilizing deep instantiation (DI) for

conceptual models was introduced to improve the ecosystem interoperability in the oil

and gas industry. Concepts such as potency (representing DI for each entity) were

proposed, but this work did not describe systematic generation with respect to these

concepts.

In this work, the proposed category and property relationships are adaptable, regard-

less of the data interchange level. Furthermore, the automatic generation and recom-

mendation mechanisms of property relationships should improve data interoperability

among heterogeneous systems.

8 Conclusion

We introduced an improved approach for large-scale conceptual modeling. We first

proposed a meta-model that newly specifies the concept of “Category” and “Proper-

tyRelationship.” To support automatic generation of property relationships, we intro-

duced mechanisms based on weighted similarity calculations among properties, and

class distances of these properties, and described a tool called as FSCM that imple-

mented the proposed ideas. Through a case study of a large-scale CM, the proposed

meta-model for conceptual modeling and the FSCM were proved to be able to auto-

matically and precisely generate property relationships. The CM and FSCM were

applied to actual industrial systems and approved to be effective for solving their data

interoperability problem. In future work, we will further evaluate this and other CMs

to promote FSCM to various industrial domains to improve their data interoperability.

14

References

[1] IEC 62664-1, "Enterprise-control system integration – Part 1: Models and

terminology," 2013.

[2] IEC 62664-2, "Enterprise-control system integration – Part 2: Objects and

attributes for enterprise-control system integration," 2013.

[3] IEC 62664-4, "Enterprise-control system integration– Part 4: Objects and

attributes for manufacturing operations," 2015.

[4] L. Wang and H. Murayama, "A Multi-version CIM-Based Database Platform for

Smart Grid," IEEJ Transaction on Electrical and Electronic Engineering, vol.10

No.3,pp.330-339, 2015.

[5] IEC 61360-1, "Standard data elements types with associated classification

scheme for electric items - Part 1: Definitions - Principles and methods," 2009.

[6] ISO 13584-42, "Industrial automation systems and integration -- Parts library --

Part 42: Description methodology: Methodology for structuring parts families,"

2010.

[7] L. Wang, A. Hosokawa and H. Murayama, "An Evolutive and Multilingual CIM

Ontology Management System," Energy Procedia, vol 12, pp.18-26, 2011.

[8] L. Wang, "Data Management Equipment, program and method.". Patent

P2013107262.

[9] Ted Pedersen, "WordNet::Similarity - Measuring the Relatedness of Concepts,"

Demonstration Papers at HLT-NAACL,pp.38-41, 2004.

[10] A. Palakorn, H. Xiaohua and X. Shen, "The Evaluation of Sentence Similarity

Measures," DaWaK, LNCS vol 5182, pp.305-316, 2008.

[11] M. A. Bender and M. Farach-Colton, "The LCA problem revisited," Proceedings

of the 4th LATIN, LNCS vol. 1776, pp. 88–94, 2000.

[12] M. Rodriguez and M. Egenhofer , "Determining Semantic Similarity among

Entity Classes from Different Ontologies," IEEE Transactions on Knowledge and

Data Engineering, vol. 15, no. 2, pp.442-456, 2003.

[13] J. A. Andreas Tolk, "The Levels of Conceptual Interoperability Model," Fall

Simulation Interoperability Workshop, 2003.

[14] M. Selway , M. Stumptner , W. Mayer, A. Jordan, G. Grossmann and M. Schrefl,

"A Conceptual Framework for Large-scale Ecosystem Interoperability," Proc.

ER. LNCS vol. 9381, pp.287-301, 2015.

