
Association Algorithm for Two Dynamically Enlarging

Tables Implemented in Apache Spark

Alexander Agarkov
JSC NICEVT
Moscow, Russia

a.agarkov@nicevt.ru

Alexander Semenov
JSC NICEVT
Moscow, Russia

alxdr.semenov@gmail.com

Abstract

In the paper we consider association problem
with constraints for two dynamically enlarg-
ing tables. We consider an ordered set of rule
groups which determine associations between
entries from the first table and the second ta-
ble. Each entry is associated with other en-
tries from both tables directly or indirectly
through the other associations. In the prob-
lem it is needed to list the associated entries
for each entry. Tables are dynamically enlarg-
ing, the goal is to improve potential perfor-
mance of the association process by using of
the previously built associations. We consider
a base full association algorithm and propose
a partial association algorithm that improves
the efficiency of the base algorithm, imple-
ment and evaluate both algorithms in Apache
Spark for a particular case on 12 cluster nodes.

Keywords: association problem, dynam-
ically enlarging tables, bipartite dynamic
graph

1 Introduction

In the recent years data intensive applications have
become widespread and appeared in many science and
engineering areas (biology, bioinformatics, medicine,
cosmology, finance, social network analysis, cryptol-
ogy etc.). They are characterized by a large amount
of data, irregular workloads, unbalanced computations
and low sustained performance of computing systems.
Development of new algorithmic approaches and pro-
gramming technologies are urgently needed to boost

Copyright c© by the paper’s authors. Copying permitted for
private and academic purposes.

In: V. Voevodin, A. Simonov (eds.): Proceedings of the
GraphHPC-2017 Conference, Moscow State University, Russia,
02-03-2017, published at http://ceur-ws.org.

efficiency of HPC systems for similar applications, thus
enabling advancing of HPC and Big Data convergence
[1].

In the paper we consider an association problem
for two dynamically enlarging tables. We have two
large tables and an ordered set of rule groups which
determine associations between entries from the first
table and the second table. When two table entries
compose an association by a rule in the current rule
group, then these entries must be excluded from as-
sociation process for the following rule groups. Each
entry is associated with other entries from both tables
directly or indirectly through the other associations.
It is needed to determine the association type and to
list the associated entries for each entry. Tables are
dynamically enlarging, the goal is to improve poten-
tial performance of the association process by using of
the associations, built on the original tables.

Spark [2] is a framework which optimizes program-
ming and execution models of MapReduce [3] by in-
troducing resilient distributed dataset (RDD) abstrac-
tion. Users can choose between the cost of storing an
RDD, the speed of accessing it, the probability of los-
ing part of it, and the cost of recomputing it. Apache
Spark [4] is a popular open-source implementation of
Spark.

In the paper we describe a base full association
approach to the problem, propose a partial associa-
tion approach that improves the efficiency of the base
approach, implement corresponding algorithms using
Apache Spark and present evaluation results on a clus-
ter.

2 Association Problem for Two Dy-
namically Enlarging Tables

We consider two large tables with M rows. The tables
have identical structure, each table has N fields. The
table unique key consists of all N fields of the table.

1



We consider an ordered set of rule groups, which
determine associations between entries from the first
table and entries from the second table:

• Rule is a set of fields, which are used to compare
two table entries. It is required to build associa-
tions between the tables: to find matches between
different table entries by the rule.

• Group is a set of rules; rules of a group are applied
to the table entries independently of each other.
When two table entries compose the association
by a rule in the current rule group, then these
entries are marked by the current group number
and must be excluded from association process for
the following rule groups.

Each table entry can be associated with one or many
entries of another table. Moreover, association is a
transitive relation. Associations for each entry can be
classified into one of four association types: one from
the first table to one from the second table, one to
many, many to one and many to many (1: 1, 1: M,
M: 1, M: N). Therefore each entry is associated with
other entries from the both tables directly or indirectly
through the other associations.

The goal of the table association problem is to
determine the association type and to list of the asso-
ciated entries for each entry.

After we build associations between the tables, K
new entries are added to each table. Added entries
differ from original entries by a given subset of fields.
Association process is needed to repeat to make the
augmented tables associated too.

Full association approach can generate associations
between given tables by the mentioned set of rules from
scratch. It is required to build associations between
the augmented tables.

The goal of the dynamically enlarging table as-
sociation problem is to improve potential perfor-
mance of the full association approach on the aug-
mented tables by using of the associations, built on
the original tables.

For the sake of simplicity in the paper we consider
a particular case of the problem.

2.1 Data Structure and Association Rules

In our work each table entry has 5 fields, where the
first and the second fields are integer identifiers, three
other fields are data fields. The unique key for every
entry is all of the five fields. Each entry has a unique
synthetic identifier.

In the work the considered ordered set of rule groups
consists of 5 groups and 15 rules, see Table 1. Symbol
”+” denotes equality requirement of the corresponding
fields of the two table entries. Symbol ”–” denotes that

fields of the two table entries are not matched. For
example, a key that determines an association between
two table entries is specified for each rule and consists
of the fields, that are marked with the ”+” symbol.

group rule ID 1 ID 2 #1 #2 #3
1 1 + + + + +
2 2 + + + + –
2 3 + + + – +
2 4 + + – + +
3 5 + + – + –
3 6 + + + – –
3 7 + + – – +
4 8 + – + + +
4 9 + – + + –
4 10 + – + – +
4 11 + – – + +
5 12 – + + + +
5 13 – + + + –
5 14 – + + – +
5 15 – + – + +

Table 1: The description of the considered rules
groups.

The full association approach is matching each en-
try from the first table with each entry of the sec-
ond table by each rule from the current rule group.
If matching is successfull then we create and store
an association between the entries; the association is
marked by the current group number. Entries that
do not have any associations are marked by the group
number six.

3 Algorithms

3.1 Full Association Algorithm

The full association algorithm consists of two stages:
associations matching and transitive closure. The
first stage actually implements the full association ap-
proach. All possible pairs are found by the first group
of rules, then every entry that is included in the pairs
is excluded from the tables. This procedure is repeated
for each group of rules. The result of the stage is a set
of associations (future graph edges) between entries
(future graph vertices).

At the second stage the transitive closure (TC) algo-
rithm is executed for each selected group. At first, we
construct a bipartite graph. Vertices in the left vertex
set are unique identifiers of the entries from the first
table, in the right vertex set there are unique identi-
fiers of the entries from the second table. There exists
an edge between two vertices of the different graph
parts if the association between corresponding entries
has been found during the first stage of the algorithm.

2



Transitive closure [5] TC is performed by the fol-
lowing formula:

TC = ∪i=1,2..Ri, where Ri+1 = Ri join E,

R1 = E,E − set of graph edges. (1)

The transitive closure is built by repetitive merg-
ing result of a join operation between previous result-
ing set of edges and original set of graph edges until
the result is not changed, i.e. fixed point is reached.
Thus, for each vertex in TC there exist vertex pairs
that connect current vertex with other vertices in the
connected component.

Potentially it is possible to use better algorithm for
implementing transitive closure, e.g. [6].

Finally, the association type of each vertex is de-
fined (1:1, 1:M, M:1, M:N).

3.2 Partial Association Algorithm

There are original (old) tables, the associations that
have been built for old tables, and there are new tables
that are smaller than original. The added entries differ
from original entries by the #3 field.

When new entries are added to the original tables,
one can apply full association algorithm to the aug-
mented tables from scratch. We propose partial asso-
ciation algorithm to improve performance by using of
associations that are built for the original tables.

The partial association algorithm is executed also
in two stages: association matching and transitive clo-
sure.

It is important that added (new) entries differ from
the original entries by the #3 field. The main idea of
first stage is matching only new entries of the tables
for each rule with matching requirement by the #3
field. In the case there will be no associations between
new and old entries. For each rule without matching
requirement by the last field new and old entries must
be matched, see Figure 1.

Old

a. b.

Figure 1: Partial association algorithm. Process a.
with b. without #3 field matching requirement.

The association matching stage slightly differs from
the same stage in the full association algorithm. Each
entry included in new associations must be excluded

from old associations. As seen in Figure 2, if a new
entry is associated with an old entry, and the associa-
tion group number new gn is smaller than the group
number old gn of the association between the old entry
with another entry, then these old associations must
be removed; if new gn is equal to old gn then the new
entry should be added to the component.

The transitive closure stage is executed only for new
associations. The resulting graph of transitive closure
is combined with the old graph with invalid associa-
tions excluded during the matching stage.

Figure 2: Association of new entry with old entry and
removing of old associations.

4 Implementation Details

Apache Spark [4] is a popular open-source implementa-
tion of Spark. It provides programmers with an appli-
cation programming interface centered on a data struc-
ture called the resilient distributed dataset (RDD),
a read-only multiset of data items distributed over
a cluster of machines, that is maintained in a fault-
tolerant way [2]. It was developed in response to limi-
tations in the MapReduce cluster computing paradigm
[3], which forces a particular linear dataflow structure
on distributed programs: MapReduce programs read
input data from disk, map a function across the data,
reduce the results of the map, and store reduction re-
sults on disk. Spark’s RDDs function as a working set
for distributed programs that offers a (deliberately) re-
stricted form of distributed shared memory [7]. The
latest Spark program interface DataFrame [8] seems to
be more efficient than RDD, but in the current work
we use RDD, and we suppose to use DataFrame in the
next research works.

We use Java 8 and Apache Spark 1.6.1 for im-
plementation of the full and partial association algo-
rithms. We use RDD of Tuple5<Long, Long, Long,

Long, Long> type for table structure representation,
the sequence of types in Tuple5 corresponds to the ta-
ble fields ID1, ID2, #1, #2, #3. We attach unique

3



rule % in tables
1 72
2 2
3 6
4 12
5 0.1
6 0.5
7 0.4
8 0.5
9 0.01
10 0.04
11 0.35
12 0.83
13 0.02
14 0.12
15 0.26

no associations 4.86

Table 2: Distribution of the second table modifications
in the rules implemented in the synthetic table gener-
ator.

identifier (Long) to the Tuple5 of each entry.
After the association stage we have RDD of

Tuple2<Long, Long> that represents association be-
tween the unique identifiers of two table entries.

4.1 Synthetic Table Generator

Synthetic table generator creates distributed random
tables and works as follows. Firstly, two identical ta-
bles of the required size are generated. Each field value
is a uniformly distributed random integer number in
the following intervals:

• ID1, ID2 – [0; 10000),
• #1 – [0; 1000000),
• #3 – [0; 1000).

Value of the #2 field is a position number of the
entry.

We randomly modify second table entries in order to
create possibility of association between entries from
the first and the second tables for each rule. We modify
entry fields that are marked with the ”–” symbol in
Table 1. Distribution of modifications in the rules
is shown in Table 2. 72% of the second table entries
remain unchanged. In 2% of the table entries there are
random modifications in the #3 field values. In 6% of
the table entries there are random modifications in the
#2 field values and so on. As a result 72% of the table
entries correspond to the first rule, 2% – to the second
rule, 6% – to the third rule and so on.

We generate the augmented tables as follows.
Firstly, we add new entries to the first table, field val-
ues of each entry is a uniformly distributed random
integer number in the following intervals:

• ID1, ID2 – [0; 10000),
• #1 – [0; 1000000),
• #3 – [1000; 2000).

Value of the #2 field is a position number of the new
entry in the whole table. As can be seen the old and
the new tables have different values in the #3 field.

Secondly, we copy augmented part of the first table
to the second table and randomly modify it as well as
is described in Table 2.

5 Performance Evaluation

All presented results are obtained on the Angara-K1
cluster. We use 12 out of 36 nodes, each of the 12
nodes is equipped with a 8-core Intel Sandy-Bridge
Xeon E5-2660 processor (2.2 GHz) and 64 GB DDR3
DRAM. All Angara-K1 nodes are linked by the An-
gara interconnect and 1 Gbit/s Ethernet. High-speed
Angara interconnect is developed in NICEVT, perfor-
mance evaluation of the Angara-K1 cluster with An-
gara interconnect on scientific workloads is presented
in [9].

Figures 3, 4 and 5 show the comparison results of
the full and partial association algorithms. The re-
ported running time does not include reading data and
writing the result to the filesystem.

The algorithm running times are shown in Figure 3,
we use 8 cores per node and 8 nodes of the cluster,
table size is varied. Old table size is 300 million en-
tries, new table size is 75 million entries. The figure
shows that performance difference between the algo-
rithms grows with table size.

0 50 100 150 200 250 300
Table size, millions of entries

0

100

200

300

400

500

600

Ti
m

e,
 s

Partial Association
Full Association

Figure 3: Running times of the full and partial asso-
ciation algorithms on the different table size. 8 cores
per each of the 8 Angara-K1 cluster nodes.

Strong scaling is shown in Figure 4. Old table size
is 100 million entries, new table size is 25 million en-
tries. The speedup of the full and partial association

4



algorithms is approximately 3 on 8 nodes. Among the
possible reasons of moderate performance there is a
single one: Spark configuration is not optimal. Fur-
ther tuning can address the problem. Horizontal line
from 8 to 12 nodes indicates that table size is small for
further performance increasing.

0 2 4 6 8 10 12
Nodes number

0

50

100

150

200

250

300

350

400

450

Ti
m

e,
 s

Partial Association
Full Association

Figure 4: Strong scaling results for the old tables with
100 million entries and new tables with 25 million en-
tries.

The algorithm running times on the amount of new
data are shown in Figure 5. We use 6 nodes, 300 mil-
lion entries in the each table, fraction of the new table
entries varies from 12.5 to 100 percents of the total
table size. The smaller the percentage of new data is,
the faster the partial association algorithm is executed.
The running time of the full association algorithm does
not change, because the total amount of data does not
change.

0 20 40 60 80 100 120
New entries / all entries, %

0

200

400

600

800

1000

1200

1400

1600

1800

Ti
m

e,
 s

Partial Association
Full Association

Figure 5: Algorithm performance comparison for a
various ratio of the new and the total table sizes.

6 Conclusion

In the paper we propose the partial association algo-
rithm for the table association problem of two dynam-
ically enlarging tables with specific constraints. For
the sake of simplicity we consider a particalur case of
the problem. We implement the base full association
algorithm and the proposed algorithm using Apache
Spark and present performance evaluation of the algo-
rithms on the cluster Angara-K1. Performance of the
proposed algorithm exceeds performance of the full as-
sociation algorithm for a variety of data sets.

The work was supported by the grant No. 17-07-
01592A of the Russian Foundation for Basic Research
(RFBR).

References

[1] D. Reed and J. Dongarra, “Exascale com-
puting and Big Data: The next frontier,”
Communications of the ACM, vol. 57, no. 7,
pp. 56–68, 2014. http://www.netlib.org/utk/

people/JackDongarra/PAPERS/Exascale-Reed-

Dongarra.pdf (accessed: 11.10.2017).

[2] M. Zaharia, M. Chowdhury, M. J. Franklin,
S. Shenker, and I. Stoica, “Spark: Cluster com-
puting with working sets.,” HotCloud, vol. 10, p. 7,
2010. https://www.usenix.org/legacy/event/

hotcloud10/tech/full_papers/Zaharia.pdf

(accessed: 11.10.2017).

[3] J. Dean and S. Ghemawat, “MapReduce: Sim-
plified data processing on large clusters,” in
Proceedings of the 6th Conference on Sym-
posium on Opearting Systems Design and
Implementation - Volume 6, OSDI’04, (Berke-
ley, CA, USA), USENIX Association, 2004.
https://static.googleusercontent.com/

media/research.google.com/en//archive/

mapreduce-osdi04.pdf (accessed: 11.10.2017).

[4] Apach Spark Homepage. http://spark.apache.

org/ (accessed: 11.10.2017).

[5] S. Abiteboul, R. Hull, and V. Vianu, eds., Foun-
dations of Databases: The Logical Level. Boston,
MA, USA: Addison-Wesley Longman Publishing
Co., Inc., 1st ed., 1995. http://webdam.inria.

fr/Alice/pdfs/all.pdf (accessed: 13.10.2017).

[6] E. Nuutila, “Efficient transitive closure computa-
tion in large digraphs, mathematics and computing
in engineering series no. 74 phd thesis helsinki uni-
versity of technology,” 1995. http://www.cs.hut.
fi/~enu/thesis.pdf (accessed: 13.10.2017).

5

http://www.netlib.org/utk/people/JackDongarra/PAPERS/Exascale-Reed-Dongarra.pdf
http://www.netlib.org/utk/people/JackDongarra/PAPERS/Exascale-Reed-Dongarra.pdf
http://www.netlib.org/utk/people/JackDongarra/PAPERS/Exascale-Reed-Dongarra.pdf
https://www.usenix.org/legacy/event/hotcloud10/tech/full_papers/Zaharia.pdf
https://www.usenix.org/legacy/event/hotcloud10/tech/full_papers/Zaharia.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-osdi04.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-osdi04.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-osdi04.pdf
http://spark.apache.org/
http://spark.apache.org/
http://webdam.inria.fr/Alice/pdfs/all.pdf
http://webdam.inria.fr/Alice/pdfs/all.pdf
http://www.cs.hut.fi/~enu/thesis.pdf
http://www.cs.hut.fi/~enu/thesis.pdf


[7] M. Zaharia, M. Chowdhury, T. Das, A. Dave,
J. Ma, M. McCauley, M. J. Franklin, S. Shenker,
and I. Stoica, “Resilient distributed datasets:
A fault-tolerant abstraction for in-memory
cluster computing,” in Proceedings of the 9th
USENIX Conference on Networked Systems
Design and Implementation, NSDI’12, (Berke-
ley, CA, USA), USENIX Association, 2012.
http://www-bcf.usc.edu/~minlanyu/teach/

csci599-fall12/papers/nsdi_spark.pdf (ac-
cessed: 11.10.2017).

[8] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu,
J. K. Bradley, X. Meng, T. Kaftan, M. J. Franklin,
A. Ghodsi, et al., “Spark SQL: Relational data pro-
cessing in Spark,” in Proceedings of the 2015 ACM
SIGMOD International Conference on Manage-
ment of Data, pp. 1383–1394, ACM, 2015. https:
//amplab.cs.berkeley.edu/wp-content/

uploads/2015/03/SparkSQLSigmod2015.pdf

(accessed: 11.10.2017).

[9] A. Agarkov, T. Ismagilov, D. Makagon,
A. Semenov, and A. Simonov, “Performance
evaluation of the Angara interconnect,” in
Proceedings of the International Conference
Russian Supercomputing Days, pp. 626–639,
2016. http://www.dislab.org/docs/rsd2016-

angara-bench.pdf (accessed: 11.10.2017).

6

http://www-bcf.usc.edu/~minlanyu/teach/csci599-fall12/papers/nsdi_spark.pdf
http://www-bcf.usc.edu/~minlanyu/teach/csci599-fall12/papers/nsdi_spark.pdf
https://amplab.cs.berkeley.edu/wp-content/uploads/2015/03/SparkSQLSigmod2015.pdf
https://amplab.cs.berkeley.edu/wp-content/uploads/2015/03/SparkSQLSigmod2015.pdf
https://amplab.cs.berkeley.edu/wp-content/uploads/2015/03/SparkSQLSigmod2015.pdf
http://www.dislab.org/docs/rsd2016-angara-bench.pdf
http://www.dislab.org/docs/rsd2016-angara-bench.pdf

	Introduction
	Association Problem for Two Dynamically Enlarging Tables
	Data Structure and Association Rules

	Algorithms
	Full Association Algorithm
	Partial Association Algorithm

	Implementation Details
	Synthetic Table Generator

	Performance Evaluation
	Conclusion

