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Abstract

The development of new processing and stor-
age facilities leads to an increase in the size
of the problems to be solved. One of such
problems is graph processing, which charac-
terized by their non-determinism and an ir-
regular memory access pattern, that greatly
complicates its development and debugging.
In this paper, we describe the basic concepts
that make it possible to simplify the develop-
ment of graph algorithms and its porting to
various computer architectures. In addition,
a description of the most well-known graph
processing systems that implement these con-
cepts is given.
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1 Introduction

A graph is a mathematical abstraction for the rep-
resentation of objects and the connections between
them. The graph G = (V,E) consists of the set of
vertices V with the number of elements n and the set
of edges E with the number of elements m. Using the
graphs, various objects of the real world can be repre-
sented. For instance, in the study of social networks it
is convenient to represent individual users as vertices,
and links between them as edges [1, 2]. Graphs are
actively used in the processing of natural languages
for the word sense induction problem [3]. We can
also model the work of the brain, denoting individ-
ual neurons (or brain areas) as vertices, and, there-
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fore, the structural or functional connections between
vertices are represented as edges [4, 5]. Another typ-
ical use case of graphs is the modeling of road net-
works, where intersections are vertices, and roads are
edges [6]. Graphs are also used in bioinformatics, com-
puter security, data analysis and other fields of science,
industry and business.

The huge volume of accumulated data led to the
growth of graphs that need to be investigated. This led
to the emergence of the network science, dealing with
the study of the features of the interaction between
many objects. The number of algorithms necessary for
domain scientists is also growing rapidly. As a result,
various specialized tools for graph analysis appear on
the market.

Development and debugging of graph algorithms is
a non-trivial task because of the non-determinism of
many such algorithms. The use of parallel computa-
tions as a tool for accelerating computation further
complicates this task. Therefore, there are many dif-
ferent methods and technologies that make it possible
to simplify the development of graph algorithms and
simplify the work of various domain scientists. Below
are the main concepts described in the paper:

• Shift to parallel processing in order to speedup
processing of big graphs (allows to faster process
graphs with big size);

• New data structures for storing graphs, allowing
faster and more convenient graph mutation and
navigation through the graph (allows to operate
with graphs in more efficient and convenient way);

• Development of new models for describing graph
algorithms, which makes it possible to effectively
use the parallelism embedded in the algorithms
and effectively map it to modern computing
architectures (allows to construct architecture-
independent algorithms with more productivity
for the developer).

In this paper, we describe the above technologies
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used in various existing graph processing systems. The
work is structured as follows. The Section 2 provides
a description of the various types of parallelism that
are used to speed up the processing of graphs. The
Section 3 describes the data structures that are used
to store graphs, together with its strengths and weak-
nesses. Section 4 is devoted to the description of var-
ious models of processing graphs. We concludes with
final remarks in Section 5.

2 Shift to Parallel Processing

2.1 Serial Processing

Sequential execution of graph algorithms is still very
common. Sequential processing can be used for proto-
typing of new algorithms and can be one of the steps to
building highly efficient parallel algorithms that allow
to process graphs with billions of vertices.

Up to now, graph processing systems based on se-
rial execution of algorithms, such as NetworkX [7],
Gephi [8] and igraph [9], are still very popular and
ubiquitous. The popularity of these systems is deter-
mined by a large set of algorithms and a lot of tools
for visualizing the output of the graph algorithms.
These systems are actively used in the complex net-
works analysis.

2.2 Synchronous Parallel Processing

Sequential algorithms are not always suitable for solv-
ing real-world problems. With the rapid growth of
the data size, the size of the processed graphs is also
growing. Obvious way to accelerate graph processing
(in addition to developing more efficient algorithms) is
the parallelization of existing algorithms on graphs.

The most common parallel processing model for
graph computations is the bulk synchronous model
(BSP) [10]. Another name for algorithms that work in
accordance with the BSP model is level-synchronized
algorithms. Within the BSP model, the N + 1 itera-
tion will be executed only after the N iteration will be
completed. This model can be implemented by using
two nested for loops – one for all vertices, and the
other one for all adjacent edges of each vertex.

Drawback of the concept of synchronous-parallel
processing connected with overheads arising in some
algorithms because of the processing of inactive (not
affecting the algorithm output) vertices at each itera-
tion of the algorithm.

Among the graph processing systems based on the
BSP model, the Boost Graph Library (BGL) [11],
as well as its parallel implementation called Parallel
BGL [12], are the most widely used. These systems
implement the concept of adjacency lists (with ability
to modify the graph topology) and have quite a lot of

supported algorithms. Parallel BGL is capable of pro-
cessing graphs consisting of billions of vertices and al-
lows developer to parallelize calculations on hundreds
of computational processes by using MPI [13].

2.3 Asynchronous Parallel Processing

Asynchronous parallel processing of graphs has not
yet become as widespread and ubiquitous as the BSP
model, but in some cases it allows to execute some
algorithms (such as belief propagation [14]) more effi-
ciently due to it faster convergence.

Asynchronous execution assumes an independent
operation of each parallel thread or process from all
other threads or processes. At the same time, when
working with shared memory, such undesirable effects
as data race can arise. This forces developers to use
duplicate copies of graph elements, as well as use dif-
ferent synchronization primitives.

GraphChi [15] is one of the systems that provide the
user with parallel asynchronous processing of graphs.
Asynchronous processing is achieved by using the con-
cept of Parallel Sliding Windows, which involves ex-
tracting and updating the state of a small number of
vertices and edges that are simultaneously extracted
from the PC’s memory (SSD or hard drive). A simi-
lar concept is implemented in the CuSha system [16]
and allows to achieve asynchronous processing of the
graphs using GPGPU accelerators.

3 Various Graph Formats

3.1 Adjacency and Incidence Matrices

The matrix is a natural mathematical representation
of the graph. The graph G = (V,E) consisting of n
vertices in this case can be described by the matrix
n× n of the form A = (aij), where:

aij =

{
1, eij ∈ E

0, eij /∈ E
(1)

An example of an adjacency matrix of a directed
graph is shown in Figure 1.
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A =



0 1 0 0 0 0 0
0 0 0 0 0 0 0
0 1 0 1 0 1 1
0 0 0 0 0 1 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 1 0 0



Figure 1: Representation of the directed graph (left)
in the form of an adjacency matrix (right)

If the graph is non-directed, then the corresponding
adjacency matrix is symmetric; aij = aji. If the graph
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is weighted, then the elements of the adjacency matrix
take the following form:

aij =

{
wij , eij ∈ E

0, eij /∈ E
(2)

where wij is weight of the edge eij . Another way
to represent weighted graph is to add supplementary
weight matrix to adjacency matrix (with a restriction
on zero weight edges).

Another way of describing the graph is the incidence
matrix. The incidence matrix contains data about all
edges in the rows, and the columns are used to repre-
sent the vertices. Matrix has the form B = bij and size
m × n, where m is the number of edges in the graph.
Due to the fact that in this case each row must simul-
taneously contain data on both the beginning and the
end of corresponding edge, it is most convenient to rep-
resent graph with two matrices: one serves to store the
data about the beginning of the edges, and the other –
about the ends (it works only for directed graphs, but
edges of undirected graphs can be represented as cou-
ples of directed edges with opposite directions). The
incidence matrix of the graph depicted in Figure 1 is
shown in Figure 2.

Bfrom =

1 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 1 0 0 0 0
0 0 1 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1



Bto =

0 1 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 1 0 0



Figure 2: The incidence matrix for the beginnings
(left) and the ends (right) of the edges

Data structures represented by adjacency and in-
cidence matrices allows developer to quickly find the
necessary elements in the graph, as well as add new
elements to the graph. In the case of an adjacency
matrix, the addition or removal of new edges to the
graph can be performed by changing the values of the
necessary matrix elements from 0 to 1 and vice versa.
The incidence matrix makes it possible to deal not only
with general graphs, but also with multigraphs (hav-
ing parallel edges), and also with hypergraphs (having
edges incident to any number of vertices). This im-
provement is achieved by describing each edge with
two separate lines in different matrices: one line in
first matrix for the beginning of hyperedge and one
line in second matrix for the end of hyperedge.

However, these graph storage formats have one sig-
nificant drawback – the amount of memory required to
store matrices is proportional to n × n for adjacency
and to n×m for incident matrix [17]. For instance, an
integer adjacency matrix for a graph of 1 000 000 ver-
tices will occupy more than 3.7 TB of memory. Thus,

the use of matrices “as-is” to handle large graphs is
unacceptable for many real-world applications.

3.2 Compressed Lists

Another one popular graph storage format is adja-
cency lists. The adjacency lists allow the graph to
be stored in the form of few linear arrays.

The adjacency lists allow storing only existing graph
elements (non-zero elements in the adjacency matrix),
which allows to achieve a linear dependence between
the amount of consumed memory and the number of
vertices and edges in the graph. The Compressed
Sparse Rows (CSR) format, which implements the con-
cept of contiguity lists, is one of the most popular and
useful, and consists of two arrays:

• row pointers – contains the offsets in the rows
of the corresponding adjacency matrix;

• column ids – contains data about the end of each
edge.

From i to (i + 1) element of the row pointers array
there are the ranges of vertex numbers in the array
column ids, which contains outgoing edges incident
to i vertex. Below is a representation of the above ar-
rays for the graph from Figure 1:
row pointers = [0, 1, 1, 5, 6, 6, 7, 8]

column ids = [1, 1, 3, 5, 6, 5, 6, 4] For in-
stance, vertex 2 has 4 edges (row pointers[3] - row

pointers[2] = 5 - 1 = 4). Edges can be recon-
structed by looking at column ids array from position
column ids[1] to column ids[5] (not included). It
stores numbers of vertices, that incident to opposite
ends of edges outgoing from each vertex in the graph.
In the example above, vertex 2 has outgoing edges to
vertices 1, 3, 5, 6.

The traversal of the vertices and edges of the graph
in this case is performed with two nested loops: the
outer loop reads offsets from the row pointers array
to obtain information about the number of edges out-
going from each vertex, the inner loop reads column

ids array for following processing neighbors of each
vertex in the graph.

The main advantage of the CSR format is the com-
pactness of the graph representation, which makes it
convenient for processing large graphs. For instance,
the CSR format is actively used in the Knowledge Dis-
covery Toolbox (KDT) [18] and GraphCT [19] systems
to store and process large graphs obtained from analy-
sis of biological data and social networks. In the KDT
system, the CSR format is used for compact storage
the incidence matrices of the graphs. In the GraphCT
system, on the other hand, CSR is used to store adja-
cency matrices.

However, the CSR format is only suitable for pro-
cessing static graphs. Processing of dynamic graphs
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with the CSR format is extremely inefficient, and re-
quires a complete rebuild of the entire data structure
with every graph mutation. In addition, the parallel
processing of graphs with skewed degree distribution is
burdened with additional overhead costs in the form of
computational workload imbalance amongst computa-
tional processes or threads [20,21].

3.3 Custom Formats

Typically, custom formats designed to simplify devel-
opment of some complex graph algorithms. For in-
stance, some maximum flow algorithms (Edmonds-
Carp algorithm [22] and push-relabel algorithm [23]),
uses a special “residual conductance” network, which
is repeatedly rebuilt during the execution of the algo-
rithm. Another example is the Girvan-Newman com-
munity detection algorithm [24]. The main idea of the
algorithm is to isolate communities by removing inter-
community edges from the graph.

As seen, the above algorithms use not only the
traversal procedure through all vertices and edges
(which can be efficiently performed using the CSR for-
mat), but also the procedures of searching for indi-
vidual graph elements, as well as modifying the graph
topology. The detailed list of most commonly used op-
erations is presented in Table 1. Table 2 shows memory
complexity for various operations.

Table 1: Time complexity analysis of graph storing
formats

Procedure Matrix CSR
Vertex addition O(N) O(1)
Vertex deletion O(N) O(N2)
Edge addition O(1) O(N2)
Edge deletion O(1) O(N2)
Check whether vertex in
graph

O(1) O(1)

Get weight of (random)
edge

O(1) O(N)

Get list of ingoing neigh-
bors of vertex

O(N) O(N2)

Get list of outgoing neigh-
bors of vertex

O(N) O(N)

Table 2: Space complexity analysis of graph storing
formats

Procedure Matrix CSR
Vertex addition O(N) O(1)
Vertex deletion O(N) O(1)
Edge addition O(1) O(1)
Edge deletion O(1) O(1)

As can be seen from Tables 1 and 2, the use of each
of the formats is a trade-off between processing effi-
ciency and memory consumption. Using CSR allows

developer to store graphs with a lot of vertices and
edges (light weight operations of vertex and eage ad-
dition and deletion), but badly suited for graph topol-
ogy modification (see vertex and edge deletion oper-
ations) and navigation through the graph (it is hard
to obtain list of ingoing edges to some random ver-
tex). Opposite, storing graph as matrix allows de-
veloper to carry out fast graph topology modifications
(with complexity O(1) and O(N)) as well as navigating
through the graph (checking random vertex and edge
state with complexity O(1)), but matrix data struc-
ture suffers from non-linear memory complexity (need
O(N2) space for graph with N vertices).

At the moment, there is no standard format for stor-
ing graphs, which would allow to efficiently modify the
graph, access its individual elements in linear time,
and store only significant elements of the graph, and
allow parallel processing at the same time. However,
a number attempts are being made to develop such a
format. For instance, the extended storage function-
ality and parallel processing of dynamic graphs is pro-
vided by the data structure called STINGER [25, 26].
This data structure is based on linked lists consisting
of blocks of graph elements. Each block is a data stor-
age for an individual subset of vertices or edges. Each
block contains special metadata about the elements
stored inside it (for example, the minimum and maxi-
mum number of the vertex inside the block). By sepa-
rating the entire array of vertices or edges into subsets,
and using metadata, the STINGER data structure al-
lows to process dynamically changing graphs in paral-
lel. Another example of custom graph format is Res-
ident Distributed Graphs (RDG) from GraphX [27],
that uses vertex-cut partitioning scheme to minimize
data transfers during graph computations by evenly
assigning edges to computational nodes. Also, RDG
allows to efficiently view, filter and transform the
graph by operating on three tables (implemented as
Spark Resilient Distributed Datasets [28]) storing the
RDG: EdgeTable (adjacency structure and edge data),
VertexDataTable (vertex data) and VertexMap (map-
ping from the id of a vertex to the ids of the virtual
partitions that contain adjacent edges).

4 Graph Processing Models

4.1 Vertex-Centric Paradigm

According to this paradigm, graph algorithms are exe-
cuted in “think like a vertex” model. Thus, each indi-
vidual vertex is considered as a separate computational
element, dealing with the data available to it (for in-
stance, internal variables) and having the ability to ex-
ecute various computational algorithms (provided by
developer). A vertex can receive messages from neigh-
boring vertices along its incoming edges, and also send
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messages to other vertices along the outgoing edges.
The virtue of the vertex-centric model is the ability

to naturally parallelize the computations. In this case,
the processing of each vertex (or, possibly, the vertex
group) will be assigned to a separate computational
process or thread. The implementation of these prin-
ciples makes it possible to achieve high scalability of
computing.

However, such a model proves to be convenient not
for all algorithms. For example, the page-rank algo-
rithm [29] or the label-propagation algorithm [30] nat-
urally fits in this model, in contrast to, for example,
complex algorithms for spectral graph analysis.

The most famous (and the very first at the same mo-
ment) implementation of this paradigm is Pregel [31],
developed by Google. The computations in this sys-
tem consist of several steps. In the first step, the
graph is initialized and the initial values is assigned
to all vertices. After initialization, a series of super-
steps separated by synchronization steps are executed
(the Pregel computation model follows the BSP [10]
paradigm). At each step, every vertex executes its
program, specified by the developer, using the data
available to it, as well as data obtained from other
vertices (by incoming edges). After finishing the cal-
culations, the vertex can send data to its neighbors (by
outgoing edges). One important property of Pregel is
that only “active” nodes can compute and send data.
Vertex can become “active” when received messages
from other vertices (the vertex state machine is shown
in Figure 3).

Active Inactive

Vote to halt

Message received

Figure 3: Pregel vertex state machine

4.2 Domain-Specific Languages

Domain-Specific Languages (DSL) is a special pro-
gramming language intended for applications in a spe-
cific domain area. DSL, as a rule, contains domain-
specific expressions and constructs. The program
developed using the DSL is translated by the com-
piler into the target language (for example, C/C++,
CUDA, etc.).

Advantages of using DSL to develop algorithms on
graphs is increasing the productivity of development.
DSL allows to express algorithmic ideas using terms of
the domain area, which usually requires significantly
less programming code compared to similar programs

developed with low-level languages. Using DSL in
conjunction with compilers that support various hard-
ware architectures allows developer not to worry about
porting the program code to more efficient and high-
performance platforms. Finally, DSL allows to use
highly optimized (usually parallelized) procedures that
allow you to efficiently process large graphs (for ex-
ample, the procedure for simultaneously updating the
state of all vertices in a graph, etc.).

The drawbacks of DSL include the inability to use
the programs written with it together with other code
(written in C++, for example). It is allowed to use
programs translated from DSL as separate ready-made
computational modules, but this option may not al-
ways be convenient for the developers and domain sci-
entists.

One of the most popular DSL for development of
high-performance parallel graph algorithms is Green-
Marl [32,33]. Green-Marl allows to calculate the scalar
invariant for each element in the graph, as well as
the property of each element in the graph (for in-
stance, the centrality metric [34]) or extract a specific
subgraph from the existing graph. Using this DSL,
the developer has the ability to operate the appara-
tus of graph theory, while receiving, after compila-
tion, a well-parallelized code. For example, a paral-
lel search of all vertices in the graph happens accord-
ing its breadth-first order (special traversal operations
InBFS and InRBFS are used for this purpose). Also,
Green-Marl has special containers for storing sets of
vertices: Set, Order and Sequence, which differs in var-
ious types of access to the elements and are designed
for parallel and/or sequential access to its elements.
The use of such containers greatly simplifies the devel-
opment of some algorithms (for example, the Dijkstra
algorithm [35] or ∆-stepping [36]). An example of an
implementation of the algorithm using Green-Marl is
shown in Figure 4.

4.3 Parallel Processing Primitives

Parallel processing primitives serves as a small “build-
ing blocks” of more complex graph algorithms. Thus,
different algorithms may consist of combinations of the
same set of primitives.

The development of complex algorithms on graphs
is a big problem, coupled with a number of difficulties.
Debugging is one such challenge. For example, the
correctness of the execution of some community de-
tection algorithms [30] (especially when working with
real data) is hard to control, because there is no clear
criteria for the correctness of the detection of com-
munities (except some theoretical metrics like modu-
larity, that may not always be suitable for real-world
applications). This complexity is further intensified
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Procedure Compute_BC(G: Graph ,

BC: Node_Prop <Float >(G)) {

G.BC=0; // initialize BC

Foreach(s: G.Nodes) {

// define temporary properties

Node_Prop <Float >(G) Sigma;

Node_Prop <Float >(G) Delta;

// Init. Sigma for root

s.Sigma = 1;

// Traverse graph

// in BFS -order from s

InBFS(v: G.Nodes From s)(v!=s) {

// sum over BFS -parents

v.Sigma=Sum(w: v.UpNbrs ){w.Sigma};

}

// Traverse graph

// in reverse BFS -order

InRBFS(v!=s) {

// sum over BFS -children

v.Delta = Sum (w:v.DownNbrs) {

v.Sigma / w.Sigma * (1+ w.Delta)

};

v.BC += v.Delta @s; // accumulate BC

} } }

Figure 4: Betweenness centrality algorithm described
in Green-Marl

when it comes to parallel processing of graphs with
a large number of vertices and edges. When using
special-purpose graph processing primitives, the devel-
oper only needs to be sure of the correctness of each
primitive operation separately. It is necessary to con-
trol only the high-level description of the algorithm
when using primitives.

Another difficulty is porting the code to various
parallel architectures. Writing efficient code for com-
putational accelerators (GPGPU or MIC) or moving
from a shared memory model to a distributed memory
usually requires a lot of efforts. Considering the fact
that every 3 to 5 years there are significant changes
in architectures and programming models, the work
of porting a large number of different algorithms can
continue “infinitely”. The use of primitives imple-
mented for different architectures makes it possible to
abstract from this problem and implement only prim-
itives themselves for each architecture.

The advantage of using processing primitives
against using DSL is the ability to use primitives along
with other code in the program. Using DSL, on the
contrary, forces the developer to work only in a special
development environment.

Primitives are used in a variety of graph process-
ing systems. However, there is no single standard for
the use of primitives for parallel processing of graphs
at the moment. Therefore, in many systems the set
of these primitives varies, as well as the principles by

which they are built. Some implementations of such
primitives will be described below.

The PowerGraph [37] system is based on the
Gather-Apply-Scatter (GAS) model and includes three
types of primitives:

• Gather – each vertex v collects data about its ad-
jacent vertices and edges;

• Apply – the value of each vertex v is updated
(taking into account previously collected data in
the Gather phase);

• Scatter – The new value of the vertex v distributes
to adjacent vertices.

By combining the above primitives, the developer has
the opportunity to create various set of graph algo-
rithms.

The GAS model is not the only possible way of ex-
pressing “building blocks” of the complex graph algo-
rithms. Another well-known example is the Advance-
Filter-Compute model introduced in the Gunrock –
system for developing algorithms on graphs using
GPGPU accelerators [38]. This model is based on
modification of the vertex frontiers during execution
of each iteration of the algorithm and includes the fol-
lowing primitives:

• Advance – obtaining a new vertex frontier by
passing along adjacent edges from the current ver-
tex frontier;

• Filter – obtaining a new vertex frontier by select-
ing some subset of vertices from the current vertex
frontier;

• Compute – obtaining a new vertex frontier by exe-
cuting a procedure defined by the developer, that
applied to the current vertex frontier.

Primitives are also used in other parallel graph pro-
cessing systems, such as MapGraph [39], HelP [40],
GraphPad [41], GraphBLAS [42], etc.

5 Conclusion

This paper gives an overview of the main concepts
(shift to parallel computing, using complex data struc-
tures and new computational models) that are used in
modern graph processing systems. Using these con-
cepts allows:

• Simplify development of novel graph algorithms;

• Use different computer architectures, without
changing the program code;

• Speedup the execution of complex graph algo-
rithms.
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