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Abstract

The DVM system was designed to create par-
allel programs of scientific-technical calcula-
tions in CDVMH and Fortran-DVMH lan-
guages. These languages use the same model
of parallel programming (the DVMH model)
and are extensions of standard C and Fortran
languages by parallelism specifications, imple-
mented as compiler directives. The DVMH
model allows to create efficient parallel pro-
grams for heterogeneous computational clus-
ters, which nodes use as computing devices
not only general purpose multi-core processors
but also can use attached accelerators (GPUs
or Intel Xeon Phi coprocessors). This article
discusses new possibilities to work with irregu-
lar grids and graphs, which were implemented
in the CDVMH compiler recently. Using the
developed extension can considerably simplify
a parallelization of irregular grid applications
on a cluster.
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1 Introduction

To achieve high accuracy of calculations the re-
searchers are forced to considerably refine a calcula-
tion grid. It leads to proportional increase of computer
memory usage and increase of calculation time. Use
of unstructured grids instead of structured ones allows
to solve this problem partially. In this case there is an
opportunity to vary a grid detailing on the calculation
area, thereby to reduce both time for excessively exact
calculations on some areas and random access memory
used to store not needed detailed values. Also it allows
to abstract numerical methods from the calculation
area geometry and practically to remove requirements
to it.

The class of tasks with irregular memory access is
wide enough:

• Large-scale graph processing;
• Sparse matrix problems;
• Scientific and technical calculations on irregular

grids.

A lot of programs are written now in more general
form to apply widely and reuse the program codes [1]
for irregular grids. However, such programs have much
more complicated structure. When operating with
regular grids it is not necessary to store explicitly
the neighbourhood relations and space coordinates, as
these properties and values are directly bound with
multidimensional index spaces of value arrays. Such
approach has obvious advantage in a memory econ-
omy, and also it sets understandable rules for paral-
lelization of computations both at the vectorization
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level and at the level of computational clusters and
networks.

On the one hand, the optimizing compilers track
the accesses to the elements of the arrays with con-
stant shifts and it allows to organize simultaneous ex-
ecution of several loop iterations. On the other hand,
the data parallelism approach has been developed: the
data arrays are divided by blocks, and different blocks
are processed by separate processors which perform
the same (source) program and sometimes exchange
by boundary elements.

There are several approaches to solve this problem:

• The ways to write a parallel program on irregular
grids are proposed [1, 4, 8];

• The approaches of manual parallelization of serial
programs on unstructured grids are developed [2];

• The tools (function libraries) hiding the difficul-
ties of a parallelization for distributed memory are
developed [7];

• Automatic mechanisms of a parallelization based
on inspector/performer model are developed [3,9];

• Specialized languages are developed [6].

2 What Are the DVMH Model and the
DVM System

The DVM system [10] was developed in Keldysh In-
stitute of Applied Mathematics, Russian Academy of
Sciences, with active participation of graduate stu-
dents and students of Faculty of Computational Math-
ematics and Cybernetics of Lomonosov Moscow State
University. It is designed to create parallel pro-
grams of scientific-technical calculations in C-DVMH
and Fortran-DVMH languages. These languages use
the same model of parallel programming (the DVMH
model) and are extensions of standard C and Fortran
languages by parallelism specifications, implemented
as compiler directives. The directives are invisible to
standard compilers, so a programmer can have single
program for sequential and for parallel execution on
computers of different architectures.

The DVMH model allows to create efficient paral-
lel programs (the DVMH programs) for heterogeneous
computational clusters, which nodes use as computing
devices not only general purpose multi-core processors
but also can use attached accelerators (GPUs or In-
tel Xeon Phi coprocessors). In the last case compu-
tations mapped to the node can be automatically dis-
tributed between the computing devices of a node tak-
ing into account their performance. The C-DVMH and
Fortran-DVMH compilers convert the source program
into a parallel program using standard programming
technologies MPI, OpenMP and CUDA. The DVM
system includes the tools of functional debugging and
performance debugging of the DVMH programs.

3 The Problems with Irregular Grids
in the DVMH Model

The DVMH model is based on data parallelism [5].
The notion of distributed multidimensional array is the
basis of this model. Each processor has not only a local
part of a distributed array, but also so-called shadow
edges – the copies of elements from local parts of ad-
jacent processors. Main interconnection of the proces-
sors is performed via these shadow edges. The dis-
tribution of computations is performed by their map-
ping on the distributed arrays. Since index shifts of
used arrays are known in advance, an access is per-
formed either to own local part, or to shadow edges
of known width defined as a continuation of the local
part along certain dimension of the distributed array.
For example, for a ”cross” template with 4 neighbors,
an element with (i, j) indexes is calculated using the
elements with indexes (i-1, j), (i, j-1), (i+1, j), (i, j+1)
and shadow edges of width 1 for both dimensions are
needed.

The DVMH compilers transform references to dis-
tributed multidimensional arrays to a form indepen-
dent from sizes and location of a local part on each
processor, and initial index expressions are not mod-
ified. As a result each access to distributed data is
performed in global (initial) indexes, but the coeffi-
cients and shifts calculated during execution are used
for the access to memory for each dimension.

Such approach (unlike modifying of the index ex-
pressions) allows abstracting from the contents of par-
allelizable loops, but it introduces a serious restriction
on a form of the distributed array part addressed by
each processor. This part is called extended local part
and is a union of the local part and shadow edges.
Only block distributions with shadow edges are sup-
ported in the DVMH model, i.e. the extended local
part is a subarray of source array of the form (A1:B1,
A2:B2, A3:B3, ..., An:Bn).

Note that the DVMH model has no tools to describe
even cyclic distributions (which, together with block
ones, are used to parallelize the programs on regular
grids) because their support would require to perform
the division operations at each access to arrays and
was rejected for optimization purposes.

Two ways of expansion of the DVM system oppor-
tunities to solve the problem of these restrictions are
discussed in the article. The first of them allows to dis-
tribute user data manually using MPI tools or other
technology of parallel programming, leaving a possibil-
ity to use the DVMH languages inside a node (multi-
core CPU, GPU). The second way assumes consider-
able extension of the DVMH languages and modifying
of the DVMH compilers to introduce new types of dis-
tributed arrays, parallel loops and other auxiliary con-
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structions allowing to simplify significantly the paral-
lelization of available applications with irregular grids
on a cluster.

4 Use of the DVMH Tools in MPI Pro-
grams

Now, when parallel computers are used several decades
to perform the calculations, there are many programs
which were already parallelized on a cluster, but have
not parallel version on CPU cores, for example, with
OpenMP use, and also do not use GPUs.

Traditionally in the DVMH approach a program-
ming process (or a parallelization of available serial
programs) begins with the distribution of the arrays,
and then parallel computations are mapped on them.
It means that to use the DVM system tools, it is nec-
essary to convert the programs, parallelized, for ex-
ample, using MPI, back to serial ones and to replace
manually distributed data and computations by the
distributed arrays and parallel loops described in the
DVMH language.

However, at first, an author not always wants to
refuse from his parallel program, and at second, it is
not always possible to realize the source scheme of data
and computation distribution in the DVMH language.
In particular, the transformation of the tasks on irreg-
ular grids in the DVMH model will require non-trivial
decisions and tricks and is not always possible.

One of the ways to solve both problems is a new
mode of the DVM system operating: the DVM system
does not participate in interprocessor communications,
but works locally on each process. This mode is turn
on by specifying a specially created MPI library when
the DVM system is built. The library does not per-
form any communications and does not conflict with
real MPI implementations. As a result an illusion is
created for the DVMH runtime system that the pro-
gram is executed on one processor.

In addition to such mode, the notion of non-
distributed parallel loop is introduced in the CDVMH
compiler. For such loop it is not needed to specify
mapping on distributed array. For example, the three-
dimensional parallel loop can look as follows:

#pragma dvm parallel(3)

for (int i = L1; i <= H1; i++)

for (int j = L2; j <= H2; j++)

for (int k = L3; k <= H3; k++)

...

By definition such loop is executed by all the pro-
cessors of the current multiprocessor system, but since
in described new mode the DVM system thinks that
the multiprocessor system consists of only one pro-
cess, such construction does not cause the replication

of computations but allows to use a parallelism only
within one process (of CPU or GPU). As a result, it
becomes possible not to specify any distributed array
in terms of the DVMH model and at the same time to
use the following DVM system possibilities:

• Addition of a parallelism in shared memory (CPU
cores): with OpenMP use or without its use, a
possibility to specify thread binding;

• GPU use: not only ”naive” porting of a parallel
loop on an accelerator, but also performing of au-
tomatic reorganization of data, simplified control
of data movements;

• Selection of optimization parameters;
• Convenient tools of performance debugging.

This mode can be used in particular to obtain the
intermediate results in a process of full parallelization
of a program in the DVMH model. It allows quickly
and more easy to create the program for multi-core
CPU and GPU, and also to evaluate perspectives of
target program speedup on a cluster with multi-core
CPUs and accelerators (there is a set of restrictions
for work with distributed arrays, but it is optional to
create them in such approach).

Consider as an example of the program that is a
part of big advanced complex of computational pro-
grams. The program is oriented on a decision (explicit
scheme) of the systems of hyperbolic equations (gen-
erally of gas dynamics) on two-dimensional areas of
complex shape with use of unstructured grids. It was
written on the C++ language with very wide use of
object-oriented approach to provide maximum univer-
sality and simplicity for further development.

As this program is a part of whole complex, its
code is based on a wide platform of the basic notions
and data structures. It leads to considerable sizes (39
thousand lines) and complexity of the program if to
consider it entirely. Full parallelization on a cluster
is hardly possible without examination and modifica-
tion of whole program, however new possibilities of the
DVM system allowed to select relatively not labor-
consuming first stage of the parallelization on CPU
cores and graphic accelerator.

Such parallelization can be performed ”locally”, i.e.
the modifications are required only in computation-
consuming program parts of size about 3 thousand
lines.

In comparison with a serial version of the program
accelerations by 9.83 times on two 6 cores CPUs, and
by 18 times on GPU NVIDIA GTX Titan were ob-
tained. These results confirm the efficiency of consid-
ered program mapping on the accelerators and multi-
core CPUs by the DVM-system and give the grounds
to continue the parallelization of the program already
with use of distributed arrays in the DVMH model.
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5 New Possibilities of Operation with
Irregular Grids in the CDVMH
Compiler

To operate with irregular grids a new type of array and
template distribution – by-element distribution – was
introduced. This type of distribution does not super-
impose any restrictions on what elements of the array
should be located on the same processor or what ele-
ments of the array should be located on adjacent pro-
cessors. On the contrary, it allows to specify arbitrary
belonging of each element of the array independently.

Two new rules of by-element distribution were
added: indirect and derived.

Indirect distribution is specified by an array of in-
teger numbers, its size is equal to the size of indirectly
distributed dimension, and the values specify a domain
number. The quantity of domains can be either more
than a number of processors as less. The DVM system
guarantees that all elements of one domain belong to
the same processor.

Derived distribution is specified by the rule, which
form is similar to the form of alignment rule (ALIGN)
of the DVMH model. However, it has more consider-
able flexibility. The syntax can be described as it is
shown in Figure 1.

indirect-rule ::= indirect ( var-name )
derived-rule ::= derived ( derived-elem-list with
derived-templ )
derived-elem ::= int-range-expr
int-range-expr ::= arbitrary integer expression+
ranges are allowed in index expressions, use of
align-dummy variables.
derived-templ ::= var-name [ derived-templ-axis-spec
]...
derived-templ-axis-spec ::= [ ] | [@align-dummy[
+shadow-name ]... ] | [ int-expr ]

Figure 1: BNF formula for new distribution rules

All references to distributed arrays in int-range-expr
must be accessible (the element belongs to extended
local part) for the corresponding element of the tem-
plate (a search of template elements is performed in its
local part and specified shadow edges). If according to
derived rule the same element should be distributed at
once on several processors, then the DVM system se-
lects one of them where the element will be distributed
actually, and adds it in shadow edge on remaining pro-
cessors with ”overlay” name. There should not be ele-
ments not distributed on any processor. Such cases are
runtime errors and cause the program abnormal termi-
nation. Calculated nonexistent indexes of distributed
array are ignored without error issue.

Overlay is introduced for possibility of coordinated

distribution of a grid elements. For example, there are
cells, edges, vertexes. In this case there is an opportu-
nity to build one distribution on the base of another,
and in any sequence.

As a result of such distribution an array has two
types of element indexing: global (it is initial in a se-
rial program) and local. Local indexing is continuous
within one processor, i.e. there is such order of local
elements that their local indexes fill fully some integer
segment [Li, Hi].

Also by-element shadow edges are introduced. The
shadow edge is a set of elements, not belonging to the
current process (the requirement to belong to adja-
cent process is removed), for which, at first, an ac-
cess from any point of the program is possible with-
out special specifications, and, secondly, special tools
of operation with them are introduced: updating by
shadow renew specification, the expansion of parallel
loop by shadow compute specification, etc.

Unlike traditional, by-element shadow edges are
added to templates during the program execution and
have name to refer to them. They are specified prac-
tically as well as derived distribution, see Figure 2.

shadow-add ::= shadow add ( templ-name [
shadow-axis ]... = shadow-name ) [ include to (
var-name-list ) ]
shadow-axis ::= [ ] | [ derived-elem-list with
derived-templ ]

Figure 2: BNF formula for specification of by-element
shadow edges

Exactly one of shadow-axis should be not empty.
The all arrays from the list specified in include to
should be aligned with a template to which dimension
the shadow edge is added. As a result of such directive
execution the shadow edge is added to the template
and it is included in specified distributed arrays. After
this action shadow elements of the arrays are available
for reading from the program, and also can be renewed
by shadow renew directive.

To implement by-element shadow edges and derived
distribution the compiler generates a special function
according to specified expressions. The parameters to
bypass a local part of the template are passed to the
function by the runtime system. This function, by-
passing the template, fills the buffer of element indexes
according to expressions in left part of mapping rule,
and then returns it back to the runtime system. Then
the buffer is analyzed by the runtime system.

For experimental use of these possibilities the aux-
iliary directive of the localization of index array values
was introduced. It modifies the values of the integer
array, replacing global indexes of specified target array
by local ones (see Figure 3).
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localize-spec ::= localize ( ref-var-name =>
target-var-name [ axis-specifier ] ...
axis-specifier ::= [ ] | [ : ]

Figure 3: BNF formula for directive of localization of
index array values

After such operation performing it becomes possible
to use available method of the parallel loops compila-
tion: they will be executed wholly in local indexes.

Together with modification of the directive of
shadow exchanges and implementation of exchanges
for by-element shadow edges (that now are performed
not only between adjacent processors, but with arbi-
trary subset of processors) this set of extensions allows
to parallelize and launch the applications on irregular
grids on a cluster with accelerators.

The experimental application was parallelized: two-
dimensional task of heat conduction in hexahedron
(explicit and implicit schemes).

This application performs calculations both in grid
vertexes and in its cells. It requires the coordinated
distribution of arrays, the localization of index arrays,
by-element shadow edges.

The results of this application execution on different
number of CPUs and GPUs on the K-100 cluster are
shown in Tables 1-4.

Table 1: Parallel performance of the DVMH programs
on CPU, time in seconds

Scheme Serial Parallel execution, CPU cores
#nodes 2 4 12 24 96
Explicit 174 87.2 50 21.7 11.1 2.75
Implicit 928 728 611 309 155 42.8

Table 2: Speedup of the DVMH programs on CPU,
times

Scheme Serial Parallel execution, CPU cores
#nodes 2 4 12 24 96
Explicit 1 2 3.49 8.02 15.7 63.3
Implicit 1 1.27 1.52 3 6 21.7

6 Conclusions

The steps to extend the DVM system possibilities to
solve the problems using irregular grids were made.
They are a possibility of manual data distribution and
new experimental constructions of the CDVMH lan-
guage and their implementation in the compiler and
the runtime system allowing to parallelize applications

Table 3: Parallel performance of the DVMH programs
on GPUs, time in seconds

Scheme Serial Parallel execution, GPUs
#nodes 1 2 6 12 24
Explicit 174 7 3.81 1.5 0.87 0.55
Implicit 928 77 42.3 16.3 9.64 6.55

Table 4: Speedup of the DVMH programs on GPUs,
times

Scheme Serial Parallel execution, GPUs
#nodes 1 2 6 12 24
Explicit 1 24.8 46 116 200 316
Implicit 1 12 22 57 96 142

on irregular grids on a cluster with multi-core proces-
sors and GPUs.

In the future it is supposed to extend new tools and
to improve their integration with the DVMH programs
with block distributed data.
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