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Abstract

Seam line determination is important step of
remote sensing image mosaicking. Automatic
seam line selection problem using graph short-
est path finding is discussed in this paper.
Approaches to graph construction from image
similarity cost function, graph memory lay-
out and parallel seam line optimization using
shortest path on graph are presented.

Keywords: remote sensing data processing,
image mosaic, seamless coverage, optimiza-
tion

1 Introduction

Acquisition of holistic image of a certain territory in
the form of a mosaic from various (in the sense of ge-
ometry and brightness-contrast) separate images is an
important problem when processing satellite and aerial
photos. Wide range of remote sensing equipment with
unique spectral sensitivity, variation of angle of view,
position of the Sun and atmosphere condition, non-
simultaneous image acquisition cause unique deforma-
tion of the image of object of interest. Such a large
number of negative factors means that it is practically
impossible to compose the images, both from a geo-
metric point of view, and from the point of view of
radiometric conditions. One of the solutions of the
described problem when seamless mosaic is created is
optimal seam line detection within overlapping image
regions.

To obtain a visually qualitative result that does
not introduce distortions into the information, strict
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and, in some sense, contradictory restrictions on the
behavior of the seam line are superimposed in the
construction of photographic plans and mosaic of im-
ages: a seam line must not cross high-altitude objects,
seam line must cross linear objects perpendicularly
and should be inside low-informativeness areas [1]. It
is not easy task to satisfy all those criteria completely,
especially when editing by hand.

2 Related Work

There are some different approaches for seam line cre-
ation:

• Draw seam line along image borders (no optimiza-
tion);

• Central image area maximization;
• Draw seam line inside areas with maximum simi-

larity.

Draw seam line along image borders is used when there
are no quality demands to resulting image mosaic, or
there are strict time limitations. Since brightness and
geometrical distortions of remote sensing images are
minimal in their central areas we can draw seam line
as close to image center as possible using Voronoi poly-
gons [2]. This approach is helps to avoid of image
margin brightness inequality and to include central ar-
eas with minimal geometry distortions to final mosaic.
However, the first two approaches completely do not
take into account the properties of the input images.

Optimal seam line detection methods are based on
the search of the pixels with minimal differences in
brightness, gradient and some other parameters which
are calculated from the image overlap regions (inter-
sections of image pairs in coordinate system of an out-
put image). Seam line being determined is a base
for united mosaic from several initial images. In this
case the visual divergence is significantly eliminated.
Many approaches bring optimal seam line determi-
nation problem to energy function minimization. In
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some articles normalized cross correlation (NCC) [3,4],
texture analysis [6, 7], image differences [6], morpho-
logical analysis [8] are suggested as a energy func-
tion. In order to create energy cost function some
authors also use vector roads graph [9] and digital sur-
face model [10]. The following algorithms are used
as optimization: snake model [6, 11], Dijkstra‘s algo-
rithm [3,4,5], Floyd-Warshall algorithm, dynamic pro-
gramming, graph cuts [12,13].

Even though in practice, graph cuts algorithms
have computational complexity close to linear [14, 15]
and there are parallel approaches that allow process-
ing graphs that are larger than the available RAM
[16], they remain relatively slow, since a much larger
amount of RAM is required for the solution. For ex-
ample, one of the fast realizations of the graph cut al-
gorithm requires memory several times more than the
graph itself takes, since it is required to store and pro-
cess not only edge weights, but also forward/backward
edge capacity and other auxiliary values [17].

Due to the fact that the solution of optimization
problems on graphs is associated with high computa-
tional complexity, a number of authors try to simplify
the structure of the graph, leading to a reduction in
the time of solving the problem at the cost of a slight
degradation in quality [18].

The main contribution of this paper is a new ap-
proach to seam line optimization with low memory
consumption and a high degree of parallelism.

3 Approach to Seam Line Optimiza-
tion

To achieve a visual invisibility of the seam line the
value of the pixels of overlapped images must coincide
at points with the same coordinates in geographic co-
ordinate system (or coordinate system of output image
for non georeferenced mosaic). Seam line optimization
is one of steps of remote sensing image mosaicking.
Normally, it follows after geometry alignment and ra-
diometric correction of input images. We expect that
these two steps have already been correctly done, but
not ideally due to some reasons and we need to elimi-
nate the remaining visual inconsistencies.

3.1 Energy Cost Function

In this article to create optimal seam line we propose
to build energy cost function comprised of three func-
tions: the image similarity matrix Ws, the image infor-
mativeness matrix Wi and the forbidden zone matrix
(linear extensive, high-altitude and other visually ob-
vious foreground objects). The similarity matrix Ws

is calculated as follows:

Ws(x, y) = (I0(x, y)− I1(x, y))2 (1)

where I0(x, y) and I1(x, y) denote the brightness on
the first and second overlapping images in the (x, y)
position (here and later we assume that (x, y) is a
pixel coordinates (row/column) of input images in
coordinate system of output mosaic and all geome-
try transformations, including nonlinear ones, already
have been done at geometry align step).

To define informativeness matrix Wi Moravec [19]
algorithm is used. According to this algorithm, we
calculate the changes in the average brightness value
of the image of a small fragment around the point of
interest when the fragment is shifted by one pixel in
four directions (horizontal, vertical and diagonal) and
choose among them the minimal value, which is the
measure of the informativeness of the image. Thus,
fragments of the image with a small brightness vari-
ation are marked as low-informative, and with high
variation, as highly informative. Total informativeness
Wi(x, y) is the sum of each overlapping image informa-
tiveness. By drawing a seam line in places with a low
value of the Moravec’s operator of interest, we will sat-
isfy the requirement [1] of carrying out the seam line
in places of image with low informativeness.

In order for the seam line to cross the line objects
along a line close to the perpendicular and not inter-
sect the high-altitude objects, we introduce the matrix
of forbidden zones. To create forbidden zone matrix
Wr(x, y) we rasterize vector lines and polygons, which
represent linear extensive and high-altitude objects,
using specially defined penalty coefficients for cross-
ing those objects. Due to the fact that the seam line
receives an additional penalty when crossing objects
marked in matrixWr(x, y), the optimization algorithm
will try to bypass such objects or cross them along the
line of the minimum possible length, that for thin elon-
gated objects (roads, rivers) will be perpendicular.

Resultant energy function defined as a weighted
sum of the particular matrices:

W (x, y) = αWs(x, y) + βWi(x, y) + γWr(x, y), (2)

where α, β, γ are the weighting coefficients, which de-
fined each matrix contribution. In most cases, we can
choose all weights to be the same, but if one wants to
amplify one of the constraints, the corresponding co-
efficient can be increased. For example, if the visual
similarity of images is more important to us, then we
increase α, and if it is more important for us to draw
the seam line in places with low informativeness, then
we increase the β coefficient, if we want to completely
prohibit the intersection of linear and high-altitude ob-
jects, we can set the coefficient γ close to infinity.

Thereby, seam line, which was delineated along the
path with minimal energy cost sum, meet the seam
line principal criteria: do not intersect high-altitude
objects, linear objects should be intersected along the
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shortest distance (perpendicularly), and the other ob-
ject should be intersected in the areas with maximum
similarity and minimum informativeness.

3.2 Graph Data Structure Design

For optimal seam line determination we define energy
function as weighted graph. Each node of the graph
represents corresponding energy function matrix ele-
ment. Let us connect all graph nodes to their neigh-
bors, here we have two options: four- and eight- con-
nected graph (Figure 1). We define the weight of the
edge between energy matrix cells (x1, y1) and (x2, y2)
as the sum of weights in the corresponded nodes mul-
tiplied by the distance between them:

ω(x1y1 → x2y2) =

[W (x1, y1) +W (x2, y2)]
√

(x1 − x2)2 + (y1 − y2)2

(3)

Thereby energy function matrix of M ×N size is rep-
resented by flat graph consisted of MN nodes and
PconnMN edges (where Pconn is a connection amount
of energy matrix elements). Such a construction of the
graph allows us not to store the graph explicitly, but
to build it as necessary from the energy matrix on the
fly.

a) Four-connectivity b) Eight-connectivity

Figure 1: Four- and eight-connectivity of the pixels
used to create energy function graph in the overlapped
image regions

Let us consider in more detail. The amount of
memory required to store the energy function matrix
W (x, y) is:

Sw = SeMN, (4)

where Se is the size of one matrix element. Major-
ity of the Earth remote sensing photos are 16 bit per
channel images, therefore it is reasonable to use similar
approach to energy matrix storage data type (Se = 2).
The amount of memory required to store the graph ex-
plicitly in the form of compressed sparse row matrix
(CSR) is:

Scsr = SPtrMN+SPtrPconnMN+SePconnMN, (5)

where first term is a memory amount to store graph
nodes, second term is memory amount to store graph
edge pointers and third term is memory for edge
weights, SPtr is node/edge pointer size (usually 4 or 8
byte), Se is size of edge weight.

When we store and use the graph in the described
implicit way, it is possible to reduce memory usage by
SPtr+SPtrPconn+SePconn

Se
times. When 8 byte pointers

and eight- connected graph are used, it is possible to
reduce the RAM usage by a factor of 44 in comparison
with the CSR graph storage type.

With this approach to storing the graph and when
combined with the block method of storing the energy
matrix W (x, y) in memory, the processor cache is more
efficiently used, since when a graph is traversed, most
nodes connected by edges are in the adjacent memory
cells.

Moreover, the block storage of the energy matrix
W (x, y) allows us to calculate and load matrix blocks
as we use at the optimization algorithm, which further
reduces the algorithm’s requirement for the amount of
memory and allows us to process images larger than
the available RAM.

3.3 Hierarchical Processing

Typical satellite image size is about 50000 × 100000
pixels. When seam line between two images is created,
we deal with the graph of 109 nodes and 1010 edges.

To avoid processing the entire array of data, we
apply a hierarchical approach to image processing.

In the first step, we construct optimal seam line at
the overview level of the original images (Figure 2). To
do this, we calculate the coordinates of the points of
intersection of the image frames in the coordinate sys-
tem of the output image (Vb and Ve), read input images
from the overview levels of detail, build a coarse en-
ergy matrix and run the optimization process between
the graph nodes corresponding to the points of inter-
section of the image frames. As a result, we obtain
a coarse approximation of the seam line (blue poly-
line with black vertices). In the case where the image
frames are not convex polygons and the intersection
result is a multipolygon, each part of the multipoly-
gon is processed independently.

In the second step, we will refine the seam line be-
tween the vertices of the seam line obtained on an
overview scale. To do this, we construct the fine en-
ergy matrix using fragments of input images from the
detailed level and perform the optimization process
again, taking as the initial and final nodes of the graph,
those that correspond to the vertices of the coarse seam
line. Note that to carry out the optimization, it is not
necessary to build the entire energy matrix W (x, y),
but only the part that is near the coarse approxima-
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Image #1 Image #2

Refinement area
around overview seam-line

Seam-line obtained on an overview scale

Seam-line obtained on a detailed  scale

Seam-line refined on a detailed scale

Image blocks
that is being
 processed

Ve

Vb

Figure 2: Optimal seam line determination for two overlapped images

tion of the seam line. Moreover, each image fragment
can be processed in parallel.

But the new seam lime will have fractures near the
vertices of the coarse seam line, because end point ver-
tices of seam lime, are rigidly fixed. To eliminate un-
wanted fractures, we will carry out the third stage of
the seam line refinement on a detailed scale. To do
this, we will take as a initial and final nodes of the
graph, those that correspond to the midpoints of the
segments, obtained in the second step, and we will per-
form optimization again. Thus, we obtain a seam line,
unnoticeable both at the detailed and at the overview
scale (Figure 2).

3.4 Optimization

For optimization we use the shortest path Dijkstra‘s
algorithm [20] with the Goldberg modification [21].
The best implementation of Dijkstra’s shortest path
algorithm with Fibonacci heap has a running time
O(m + nlog(n)), where n is graph node count, m is
graph edge count. Goldberg’s shortest path algorithm
with multi-level bucket has an average running time
that is linear, and a worst-case time of O(m+nlog(C))
where C is a ratio of the biggest graph edge weight
to the smallest nonzero graph edge weight. Since the
graph constructed from the energy matrix has a re-
striction on the maximum weight of the edge, this gives
us a significant advantage in the running time.

Data: W (x, y), Vb, Ve
Result: S - optimal seam line vertices

1 D.fill(inf); P.fill(inf);
2 D[Vb]← 0;
3 QMLB .insert(0, Vb)
4 while QMLB not empty do
5 c← q.extractMin()
6 for p = 0; p < Pconn; ++p do
7 n← c+Ap

8 // Compute edge weight according to (3)
9 ω ← (W (cx, cy) +W (nx, ny))length(Ap)

10 d← D(cx, cy) + ω
11 if d < D(nx, ny) then
12 if P (nx, ny) is not set then
13 q.insert(d, n)
14 else
15 q.decreaseKey(d, n)
16 end
17 D(nx, ny)← d
18 P (nx, ny)← p

19 end

20 end

21 end
22 S ← turnBack(P, Ve)
Algorithm 1: Pseudo code of the optimization al-
gorithm taking into account structure of the graph
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Implementation details taking into account the pro-
posed structure of the graph are given in the Algorithm
1. The input data for the algorithm are energy func-
tion matrix W (x, y) and Vb, Ve – start and end points.
Note that the coordinates of the corresponding mo-
saic pixels are used as pointers to the nodes of the
graph. In addition to the input data, the algorithm
uses several important internal structures. D(x, y) is
distance the matrix from the start node to each other.
The matrix D(x, y) must have a data type that allows
storing the sums of the elements of the matrix W (x, y)
without overflowing. If we assume that the size of
the element of matrix W (x, y) is equal to two bytes,
then the size of the elements of matrix D(x, y) must
be equal to four or eight bytes. A is a possible arc list,
for four-connectivity case A4 = [←,→, ↑, ↓], and for
eight-connectivity caseA8 = [←,→, ↑, ↓,↗,↘,↖,↙],
according to Figure 1. P (x, y) is node’s parent ma-
trix. Since the graph has an ordered structure and
each node has four or eight neighbors, we can use the
arc number in array A as a pointer to the adjacent
node. Thus, no more than one byte is needed to store
the element of the matrix P . QMLB is a multi-level
bucket data structure. According to the calculations
in the paper [21], the structure of QMLB requires no
more than O(log(C)) words of memory. Thus, the
total amount of memory necessary for seam line op-
timization consists of memory sizes for the matrices
W (x, y), D(x, y) and P (x, y), the size of the structure
QMLB , can be neglected since log(C) is much smaller
than the size of the graph in our case.

3.5 Parallel Implementation

We divide the problem into a number of blocks, while
refining the seam line on detailed level, this allow us
to process unlimited amount of data and perform par-
allel optimization in each individual blocks of infor-
mation. OpenMP [22] library is used for parallel data
processing. Implementation details are presented in
Algorithm 2. Coarse step is done at lines 2-7. After
the end of the first step, we divide the received coarse
seam line into blocks and perform the second and the
third steps (line 9) of parallel refinement of seam line
(lines 11-23). Due to the fact that the sizes of the im-
age fragments corresponding to the blocks of the coarse
seam line depend on the shape of the line segment, we
use the dynamic partition of the problem into parallel
blocks (line 11). Note, that parallel reading of image
data from the disk leads to a decrease in performance,
this operation is separated to the critical section (line
16).

Data: I1 - first image, I2 - second image
Result: S - optimal seam line vertites

22 O1, O2 ← readImageOverview(I1, I2);
3 Vb, Ve ← computeIntersectionPoints(I1, I2);
4 Wcoarse ← computeEnergy(O1, O2);
5 Scoarse ← shortestPath(Wcoarse, Vb, Ve);
77 B ← splitPathToBlocks(Scoarse);
99 for step = 2; step <= 3; ++step do

1111 #pragma omp parallel for
12 for i = 0; i < B.size(); ++i do
13 box← computeBoundingBox(Bi);
14 Vb, Ve ← computeEndPoints(Bi);
1616 begin #pragma omp critical
17 F1, F2 ← readF ineImage(I1, I2, box);
18 end
19 Wfine ← computeEnergy(F1, F2);
20 Sfine,i ← shortestPath(Wfine, Vb, Ve);

21 end
2323 S ← constructPathFromSegments(Sfine);
24 if step == 3 then
25 break;
26 end
27 B ← splitPathToBlocks(S);

28 end
29 return S;
Algorithm 2: Simplified pseudo code of parallel hi-
erarchical seam line optimization

4 Results

Several datasets were used to test hierarchical seam
line optimization algorithm:

• Colored (RGB) 8-bit per channel middle resolu-
tion images acquired by Landsat-8 satellite sys-
tem 16000× 16000 pixels each (Figure 3);

• Colored (RGB) 8-bit per channel high resolution
images acquired by aerial camera 4368×2912 pix-
els each with roads digitized (Figure 5);

• Panchromatic 16-bit high resolution images ac-
quired by Resurs-P satellite system 36000 ×
105000 pixels size.

The first and second datasets were used to study the
visual quality of the algorithm, and the latter was used
to estimate the performance.

Algorithm was tested on a workstation equipped
with a quad-core Intel Core i7 processor and 8 GB
RAM.

Figure 4 shows the output mosaic obtained using
the hierarchical seam line optimization algorithm, it
can be seen that the seam line is practically indistin-
guishable both on a coarse scale and on a fine scale.
The result of the algorithm on high resolution images
using a vector layer of roads as forbidden zones is
shown in Figure 6. It can be seen that the seam line
crosses the roads as perpendicular as possible. But
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Figure 3: Middle resolution Landsat-8 images dataset
Figure 4: Output Landsat-8 mosaic (29140×16764 pix-
els size) overview with optimal seam line highlighted

Figure 5: High resolution aerial image dataset with
roads digitized

Figure 6: Output mosaic of aerial images with a seam
line that bypasses the roads in the optimal way
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Figure 7: The dependence of the time of optimal seam line constructing on the number of vertices in the graph,
representing the energy function, (a) one processor with loading entire energy function matrix into memory
(RAM), (b) the proposed algorithm
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additional restrictions on the seam line in the form of
forbidden zones lead to the fact that near the zone,
the visual similarity of images on the different sides of
the line is lost.

The dependence of the time for optimal seam line
constructing on the number of vertices in the graph is
shown in the Figure 7.

The construction of the seam line for maximum
size graph, with one-processor version with full data
loading into memory was not performed due to high
consumption of memory. As studies have shown,
when constructing an eight-connected graph, the vi-
sual quality of the seam line is somewhat higher, be-
cause it includes diagonally oriented edges, but the
processing time increases due to the increase in the
number of edges in the graph and the non-integer
weight of the diagonal edges. Also on the Figure 7b
it is seen that for the size of graph 109 nodes the pro-
cessing time sharply increases, which is due to the pre-
dominance of the time of data loading from the hard
drive over the optimization time.

5 Conclusion

In this paper the approach to construct an optimal
seam line for the Earth remote sensing image mosaic,
based on the graph shortest path finding is presented.
The construction of an energy function matrix taking
into account both informativeness and similarity of in-
put images is discussed. Graph data structure design
from an energy matrix is presented, which makes it
possible to reduce the amount of RAM. The hierarchi-
cal parallel implementation of the optimization algo-
rithm is presented with regard to the proposed graph
data structure. The amount of RAM required for the
optimization process is estimated.

The proposed hierarchical image processing ap-
proach not only allows us to reduce a seam line con-
struction time, but also to make seam line unnoticeable
both at the detailed and at the overview scale of the
output mosaic. Using proposed approach, the time for
optimal seam line creation was reduced by more than
10 times, which make it possible to produce seamless
image mosaic with minimal CPU time usage.
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