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Abstract

The paper presents the implementation of the
code generation mechanism in the Green-Marl
domain-specific language compiler targeted at
the Charm++ framework. Green-Marl is
used for parallel static graph analysis and
adopts imperative shared memory program-
ming model, while Charm++ implements a
message-driven execution model. The descrip-
tion of the graph representation in the gener-
ated Charm++ code, as well as of the trans-
lation of the common Green-Marl constructs
to Charm++, is presented. The evaluation
of the typical graph algorithms (Single-Source
Shortest Path, Connected Components, and
PageRank) showed that the Green-Marl pro-
grams translated to the Charm++ have al-
most the same performance as their native im-
plementations in Charm++.

Keywords: domain-specific language, data-
driven computation models, graph computa-
tions

1 Introduction

A parallel static graph analysis on high-performance
computing systems (supercomputers) is one of the re-
cent application domains which is characterized by a
domination of irregular data processing rather than
massive bulks of floating point operations which are
common in other scientific applications used for su-
percomputers. The key challenges of parallel graph
processing are discussed in [1].
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The paper presents the results of the efforts to
integrate a Charm++ support to the Green-Marl
compiler. Green-Marl is an open-source domain-
specific programming language (DSL) designed for
static graph processing. Charm++ is an asynchronous
message-driven execution model developed to execute
parallel programs on multiprocessor computing sys-
tems. Charm++ relies on its runtime system to sched-
ule computation, as well as perform dynamic load bal-
ancing.

For the translation of Green-Marl programs to
Charm++ a code generation module has been devel-
oped in the Green-Marl compiler that uses the existing
internal representation of a Green-Marl program for
Charm++ code generation. For performance evalua-
tion we used three well-known graph problems: Single-
Source Shortest Path (SSSP), Connected Components
(CC), and PageRank. We compared the performance
of the generated code to the hand-coded reference im-
plementations.

In the next section an overview of research efforts on
asynchronous computation models and graph-specific
DSLs is presented. In section 3 a brief description of
the Green-Marl DSL is presented, section 4 contains
an overview of the Charm++ programming model.
Section 5 shows the main technical aspects of trans-
lating Green-Marl programs to Charm++. Section 6
presents results of the performance evaluation. The
final section contains conclusion and future work.

2 Related Work

A usage of common approaches to the development
of parallel graph applications for massive parallel, dis-
tributed memory systems such as MPI or Shmem in
combination with OpenMP is complicated due to its
limited support for expressing irregular parallelism
and implicit orientation on statically balanced par-
allel bulk-synchronous problems, and, therefore, the
complexity of implementing parallel graph algorithms
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falls on the application developer. In contrast, the
asynchronous data-flow computational models enable
almost transparent mapping of the graph algorithms.
The examples of such models which are built on top of
asynchronous active messages concept are Charm++
[2, 3], Active Pebbles [4, 5], HPX [6]. The researched
next generation parallel programming languages such
as Chapel [7, 8, 9] and X10 [10, 11] also support active
messages as one of the base principles of their pro-
gramming models.

Even better productivity of the graph application
development can be achieved with a usage of high-
level domain-specific languages which enable to shift a
major part of work on the control of parallel execution,
including task spawning, communication, synchroniza-
tion, etc. to the compiler and dynamic load balanc-
ing and a failure resiliency – to the runtime system.
There are few DSLs specifically developed for a paral-
lel static graph analysis such as Green-Marl [12,13,14],
OptiGraph, Elixir [15], and Falcon [16]. However,
none of them supports distributed memory massive-
parallel HPC systems, rather the researchers focused
their work on the shared memory systems, GPUs, and
Big Data platforms.

3 Green-Marl

Green-Marl [12, 13, 14] is an open-source domain-
specific programming language designed for a parallel
static graph analysis in Stanford University (Perva-
sive Parallel Laboratory, PPL). The Green-Marl com-
piler supports translation to the following parallel pro-
gramming models: OpenMP and Pregel [17]. The
OpenMP backend allows to run Green-Marl programs
on shared memory multi-processor systems, while the
Pregel backends (there are two slightly different back-
ends with Pregel implementations: GPS and Giraph)
enable to use Green-Marl for distributed massive-
parallel computing systems.

Green-Marl supports special types for declaration
of graphs (Graph), vertices (Node), and edges (Edge),
as well as declaration of vertex properties (N P<type >)
and edges properties (E P<type >).

Besides the While and Do-While constructs used
for defining sequential loops and If and If-Else for
branches, Green-Marl provides statements for parallel
execution such as For and Foreach loops. The seman-
tics of the parallel loops assumes that all computations
should be finished before the first operation after the
loop is executed. However, the order of the iteration
execution is not defined.

Green-Marl supports the following reduction oper-
ators +=, *=, max=, min=, &&=, ||=. These operators
can be used in parallel loops to produce reduction as-
signments.

1 Procedure sssp(G:Graph, dist:N_P<Int>, len:E_P<Int>,
2 root: Node)
3 {
4 N_P<Bool> updated;
5 N_P<Bool> updated_nxt;
6 N_P<Int> dist_nxt;
7

8 Bool fin = False;
9 G.dist = (G == root) ? 0 : +INF;

10 G.updated = (G == root) ? True: False;
11 G.dist_nxt = G.dist;
12 G.updated_nxt = G.updated;
13

14 While(!fin) {
15 fin = True;
16 Foreach(n: G.Nodes)(n.updated) {
17 Foreach(s: n.Nbrs) {
18 Edge e = s.ToEdge();
19 <s.dist_nxt; s.updated_nxt>
20 min= <n.dist + e.len; True, n>;
21 }
22 }
23 G.dist = G.dist_nxt;
24 G.updated = G.updated_nxt;
25 G.updated_nxt = False;
26 fin = ! Exist(n: G.Nodes){n.updated};
27 }
28 }

Figure 1: SSSP (Bellman-Ford algorithm) in Green-
Marl

In Figure 1 an implementation of the Bellman-Ford
algorithm for finding the shortest paths from the spec-
ified vertex to other vertices in the graph is presented.
The program consists of a single procedure (sssp) with
four parameters: G is a graph to be analyzed, dist is
a vertex property storing the distance from the source
vertex, len is an edge property storing the edge length
(or weight), and root is a source vertex.

In the initialization step (lines 8-12) dist is set to
+INF for all vertices except the root vertex which dist

is set to zero. Also, the root vertex is marked by set-
ting its update property to true which signifies that
the vertex will be processed in the first iteration of the
While loop (lines 14-17). Then the While loop is ex-
ecuted. It completes when fin is set to true that is
there is no more updated vertices in the graph. In each
iteration of the While loop a parallel Foreach loop is
executed (lines 16-22), which scans vertices and for
each previously updated vertex (i.e. its updated prop-
erty is set to true) checks neighbour vertices by exe-
cuting a relaxation operation: if dist[v] + weight(v,u)
< dist[u] for the (v,u) edge then dist[u] is assigned to
dist[v] + weight(v,u) (lines 19-20). The number of iter-
ations of the While loop is restricted to |V |−1 (upper
bound).

Therefore, Green-Marl is an imperative domain-
specific programming language designed for a paral-
lel static graph analysis. Green-Marl allows to sig-
nificantly simplify the development of parallel graph
applications by its builtin specialized high-level ab-
stractions as well as the diverse set of the compiler
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optimizations. However, it still lacks the support of
the translation to effective programming platform for
HPC systems with distributed memory.

4 Charm++

Charm++ [2, 3] is a parallel programming framework
which is based on the object-oriented asynchronous
message-driven execution model. Charm++ de-
signed and developed in Illinois University of Urbana-
Champaign (Parallel Programming Laboratory, PPL).
As a framework, Charm++ includes the following core
components: a compiler used to translate application’s
objects interfaces to the C++ code and a runtime sys-
tem which drives the application execution process.

In Charm++ a program consists of a set of chares,
implemented as C++ objects, that have an interface
of predefined methods (entry methods) which can be
used to transfer data between chares and initiating
asynchronous computations, that is caller thread will
proceed its execution. A mapping of chares to process
elements (PEs) is done statically by the Charm++
runtime (by default) or by application developer. Typ-
ically, PE can be regarded as a CPU core (or an oper-
ating system process assigned to a CPU core). Addi-
tionally to stand-alone chares, single-dimensional and
multi-dimensional chare arrays are supported.

For addressing chares special proxy objects are used
that provide an abstraction of global address space
and enable the Charm++ runtime to manage location
and distribution of chares transparently for applica-
tion. This allows to use dynamic load balancing by mi-
grating chares from more loaded nodes to less loaded
by the runtime system. A migratability of chares is
another base concept of the Charm++ programming
model.

The following properties of the Charm++ model:
first, an entry method can only access data which be-
long to the chare that it is called on, and, second, that
only single entry method can be executed on a chare
at a time, guarantee the atomicity of modifications of
chare’s data in Charm++ that significantly simplifies
application development.

5 Porting Green-Marl Compiler to
Charm++

5.1 Compiler Overview

The Green-Marl compiler performs a source-to-source
translation from Green-Marl to one of the possible
equivalent representations: a sequential C++ code,
a parallel code for shared memory systems in C++
with OpenMP pragmas, a parallel code for distributed
memory systems in Java on top of Pregel [17] (namely,
one of the two Java based implementations of Pregel:

Figure 2: Main stages of Green-Marl compiler

GPS [18] or Giraph [?, 19]), which is a vertex-centric
programming model built on the Bulk Synchronous
Parallel (BSP) execution model [20].

The general scheme of Green-Marl is shown in Fig-
ure 2. The main stages of translation are the fol-
lowing: a lexical and syntax analysis (type checking,
a syntactic sugar expansion etc.), platform indepen-
dent optimizations (such as loop splitting and merg-
ing, loop-invariant code motion etc.), platform specific
optimizations and a final code generation.

An internal representation of the program in the
Green-Marl compiler includes an abstract syntax tree
(AST) and a control-flow graph (a finite state ma-
chine, FSM), the nodes of the graph (or extended basic
blocks, EBB) correspond to linear blocks of code in the
translated program. Each EBB contains information
about local variables, incoming and outgoing depen-
dencies, code statements, etc.

The FSM states can be of two types: sequential
(SEQ) and parallel (PAR). The sequential nodes cor-
respond to the code blocks in which the statements
should be executed in the strict order. The parallel
nodes correspond to the code blocks which suggest exe-
cution for each vertex of the graph in parallel (Foreach
and For loops).

5.2 Charm++ Code Generator

The developed Charm++ code generator is based on
the GPS generator developed for translating Green-
Marl programs to the Pregel execution model, a full
description of the GPS generator can be found in [14].
However, the Charm++ programming model is more
general than Pregel, which allows, first, to relatively
easy implement the Pregel model and, second, extends
the possibilities of Green-Marl translator, that is in-
crease the variety Green-Marl programs which can be
translated to Charm++.

At the same time, to prove the concept of the possi-
bility to translate Green-Marl programs to Charm++
it was sufficient to implement the last stage of the com-
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1 Procedure count(G:Graph, age:N_P<Int>, root: Int)
2 {
3 Int S = 0;
4 Int C = 0;
5 Foreach (n : G.nodes) {
6 If (n.age < K) {
7 S += n.age;
8 C += 1;
9 }

10 }
11 Float val = (C == 0) ? S / (float) C;
12 }

(a)

1 module count {
2 message __ep_state1_msg;
3 readonly CProxy_count_master master_proxy;
4 readonly CProxy_count_vertex vertex_proxy;
5 chare count_master {
6 entry count_master(const CkCallback & cb);
7 entry void do_count(int K);
8 entry [reductiontarget] void __reduction_S (int S);
9 entry [reductiontarget] void __reduction_C (int C);

10 entry void __ep_state0();
11 entry void __ep_state1();
12 entry void __ep_state2();
13 }; // count_master
14 array [1D] count_vertex {
15 entry count_vertex();
16 entry void __ep_state1(__ep_state1_msg *msg);
17 entry void add_edge(const count_edge &e);
18 }; // count_vertex
19 }; // count

(b)

1 class count_master: public CBase_count_master {
2 public:
3 void __reduction_S (int S) { this->S = S; }
4 void __reduction_C (int C) { this->C = C; }
5 void __ep_state0() {
6 S = 0;
7 C = 0;
8 thisProxy.__ep_state1();
9 }

10 void __ep_state1() {
11 __ep_state1_msg *_msg = new __ep_state1_msg();
12 _msg->K = K;
13 vertex_proxy.__ep_state1(_msg);
14 CkStartQD(CkIndex_count_master::__ep_state2(),
15 &thishandle);
16 }
17 void __ep_state2() {
18 val = (C == 0)?((float)S):(0 / ((float)C));
19 done_callback.send();
20 }
21 private:
22 CkCallback done_callback;
23 int S, C, K;
24 float val;
25 }; // count_master
26 class count_vertex: public CBase_count_vertex {
27 public:
28 struct vertex_properties {
29 int age;
30 };
31 public:
32 void __ep_state1 (__ep_state1_msg *msg) {
33 int K = msg->K;
34 delete msg;
35 int S, C;
36 if (this->props.age < K) {
37 S = this->props.age;
38 contribute(sizeof(int), &S,
39 CkReduction::sum_int,
40 CkCallback(CkReductionTarget(
41 count_master, __reduction_S), master_proxy));
42 C = 1;
43 contribute(sizeof(int), &C,
44 CkReduction::sum_int,
45 CkCallback(CkReductionTarget(
46 count_master, __reduction_C), master_proxy));
47 }
48 }
49 private:
50 std::list<struct count_edge> edges;
51 struct vertex_properties props;
52 }; // count_vertex

(c)

Figure 3: Example of Green-Marl program (a) and its
generated code in Charm++ (b, c)

piler – code generation from the internal program rep-
resentation (IR). Further, a description of the trans-
lation methods is presented for main Green-Marl con-
structs. As an example, a program for calculating a
mean age of all registered users of a social network
whose age is less than K. The source code of the Green-
Marl program and the generated code in Charm++ are
shown in Figure 3.

Graph representation in the generated code

For a graph representation in the generated code in
Charm++ the most simple and natural approach has
been chosen: vertices of the graph are mapped to the
chares (i.e. the elements of the chare array), which are
defined in the code by the name vertex class, name
is a name of the translated Green-Marl procedure.

The vertex properties data structure is used for
storing vertex attributes, while edges is used for – an
edge list of the vertex, each edge is a pair of a neigh-
bour identifier and its attributes (edge properties).
As a 1-dimensional chare array (array [1D]) is used
for storing graph vertices then the vertices are dis-
tributed in contiguous blocks over parallel processes
(or cores) by the Charm++ runtime system.

In the example (see Figure 3) the vertices are repre-
sented by the count vertex class (Figure 3 (b), lines
14–18, 3, lines 26–52). The vertices have a single at-
tribute age, which is stored in the vertex properties

class. As the attributes for edges are not defined in the
Green-Marl program then edge properties does not
have any field.

FSM construction

As it has already been mentioned, after the control-
flow analysis the Green-Marl compiler creates a finite
state machine (FSM). For managing the execution of
FSM a special chare (name master) is created, each
state of FSM is mapped to one of the entry methods:
ep state i, where i is a number of the FSM state.

The program starts with the execution of ep state 0

then the states are switched according to FSM. When
PAR states are executed, an appropriate call is initi-
ated to all chares of the name vertex class (i.e. array
elements). Then master (name master) waits until
all computation are done (by using a quiescence de-
tection) and then an entry method correspondent to
the next FSM state is executed. The process continues
until the terminal (final) state is called.

In the example FSM consists of three states (see
Figure 4) which correspond to the following en-
try methods of the count master: ep state 0,
ep state 1 and ep state 2. As the state 1 is par-

allel, then it has a correspondent entry method in the
count vertex class ( ep state 1). In the terminal
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Figure 4: Fragment of Green-Marl program and its
control-flow graph

state (state 2) the callback (done callback) is trig-
gered to move control flow to the boiler-plate code (or
code of the Green-Marl program loader).

Global variables and reduction

In Green-Marl, all variables can be of two types: global
and local (for vertices). The global variables are de-
clared in the sequential code blocks and can be ac-
cessed from the parallel code blocks. All global vari-
ables are stored in the name master class as its mem-
ber variables. In case of a read access to the global
variable from the Foreach loop, its value is passed
as a parameter of the correspondent entry method to
all vertices (name vertex). In case of a write access
then the correspondent entry method of name master

is called, however, when write accesses operations are
performed to the same global variable from the mul-
tiple vertices then race conditions occur and the be-
haviour is undefined.

The Green-Marl compiler applies the contribute

operation supported in Charm++ to implement re-
ductions which can be used in Green-Marl programs.
In Charm++ there are several supported reductions
operations which can be applied to the chare array
elements, the mechanism suggests that a specified en-
try method (of the specified chare) is called when re-
duction is completed which has to be marked with
reductiontarget keyword and has a single parameter
which will store the result of the reduction.

In the example (see Figure 3) three global vari-
ables are used (S, C, K). The K value is used in-
side the Foreach loop, therefore ep state 2 in
count vertex receives K as one of the parameters of
the ep state2 msg structure, which is a Charm++
message (message). S and C are used for the reduction
results (lines 7, 8). In the generated code there are two
methods in the count master class: reduction S

(line 3) and reduction (line 4) which are used for
passing the reduction results to the S and C variables.

In conclusion of this section we can say that for
implementing Charm++ support in the Green-Marl
compiler it was sufficient to add a new code gener-
ation module to the existing backend chain for GPS

code generation. However, as it has been mentioned,
Charm++ has significantly more flexibility and gener-
ality than Pregel that is why it provides wider possibil-
ities to the compiler as well as to the domain-specific
language itself. Using of these possibilities is the topic
of further research.

6 Performance Evaluation

For benchmarking a 32-node Angara-K1 cluster has
been used, we used its 24-node segment with dual 6-
core Intel Xeon E5-2630 processors and 64 GB of mem-
ory in each node. The nodes are connected by a cus-
tom 4D-torus Angara interconnect [21]. Eight CPU
cores have been used per each node in the test runs to
keep total number of processes equal to power of two,
however, it may not be necessary in the general case.

The benchmarks used for the performance evalu-
ation include: Single-Source Shortest paths (SSSP),
Connected Components (CC), and PageRank. We
compared the performance of Green-Marl programs to
their hand-written Charm++ invariants (or reference
implementations).

We used two types of synthetic graphs: RMAT [22]
and Random. RMAT graphs have been designed to
simulate many real-world graphs, which are character-
ized by a power law of degree distribution (for example
social networks, etc.). For RMAT graphs we used gen-
erator from the Graph500 test. Random graphs have a
random uniform distribution of edges over graph ver-
tices.

The performance results are shown in Figure 5. In
all plots the graph size is 222 vertices. For SSSP and
PageRank directed graphs have been used, while for
CC – undirected.

For SSSP (as well as for CC) the two different ref-
erence implementations in Charm++ have been used.
The first is sssp-async (cc-async) and it implements
a fully asynchronous algorithm which employs a label
updating approach. For SSSP the updated label is
a distance from the root vertex (dist) in each ver-
tex, while for CC – identifier of connected compo-
nent (CC). The computation process continues until
any update is possible. When there is no more up-
dates in the graph then the algorithm finishes, this is
controlled by a quiescence detection mechanism, sup-
ported in Charm++. Another reference implemen-
tation sssp-adapt (cc-adapt) is similar to the first
except that a global synchronization is used to con-
trol label propagation (the new labels are sent only to
the neighbour vertices of the front and then a global
synchronization is performed). In Green-Marl imple-
mentations of the tests it is achieved by the outer loop
While.

As can be seen from Figure 5, for SSSP and CC
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the performance of Green-Marl implementations is
very close to the performance of the reference im-
plementation with a partially synchronized algorithm
(sssp-adapt for SSSP and cc-adapt for CC). For
CC the adapted reference implementation shows even
better performance than asynchronous one. It can
look unexpected, but the following reasons of such
behaviour are possible: first, while the partially syn-
chronized algorithms (sssp-adapt and cc-adapt) re-
strict the amount of available parallelism, at the same
time the number of active messages sent during exe-
cution of the programs is also significantly restricted,
thus resulting in less overheads from the runtime sys-
tem and less memory consumption, and, second, the
fully asynchronous implementations (sssp-async and
cc-async) generate many speculative computations
(speculative wavefronts), for example propagating of
the distance which is not minimal for SSSP. It re-
sults in large amount of unnecessary computations and
degradation of performance. For the partially synchro-
nized implementations the amount of speculative com-
putations is significantly lesser.

The evaluation of PageRank has not revealed any
significant difference in performance between reference
and Green-Marl versions. In the first order, it is ex-
plained by the fact that for both cases the algorithms
are very close (almost the same).

7 Conclusion and Future Work

In the paper the Charm++ code generator devel-
oped for the compiler of the domain-specific language
Green-Marl is presented. Therefore, the Green-Marl
DSL is extended to HPC clusters with distributed
memory: Charm++ is added to already supported
OpenMP, GPS, and Giraph target platforms.

The performance evaluation shows that Green-Marl
programs compiled to Charm++ have the same per-
formance as native Charm++ programs assuming that
the same algorithms are used in the generated code
and the reference implementation. In the future we
plan to add a support of the Topological Routing and
Aggregation Module (TRAM) [23] to the Charm++
code generator implemented in the Green-Marl com-
piler.
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Figure 5: Performance results of SSSP, CC, and PageRank

8


	Introduction
	Related Work
	Green-Marl
	Charm++
	Porting Green-Marl Compiler to Charm++
	Compiler Overview
	Charm++ Code Generator

	Performance Evaluation
	Conclusion and Future Work

