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Abstract. Plausible Reasoning (PR) is an inferencing mechanism to derive solu-

tions when dealing with incomplete knowledge. When developing data-driven 

models for clinical decision support, the completeness of the data is always a 

consideration. PR provides a practical approach to extend the knowledge-base of 

a clinical decision support system by abstracting plausible assertions from heath 

data. Implementation of plausible reasoning relies on fine-grained knowledge of 

how different concepts are semantically related. The Semantic Web provides for-

malisms to semantically represent knowledge at various levels of expressivity, 

and to reason over the knowledge to perform semantic analytics based on 

healthcare data. This paper proposes a SEmantics-based Data ANalytics frame-

work (SeDan) to investigate the potential of implementing plausible reasoning 

using the Semantic Web technologies. In particular, we will evaluate the efficacy 

of the proposed framework in healthcare to perform effective semantic analytics 

using partial health data to make better decisions in disease diagnosis and long-

term care. We demonstrate the efficacy of SeDan by answering medical queries 

posed by BioASQ challenges using Disease ontology, DrugBank and Semantic 

MEDLINE databases. 

Keywords: Plausible Reasoning, OWL, Semantic Analytics, Semantic Web 

Reasoning. 

1 Introduction 

The massive volume of diverse data from clinical practice, healthcare and biomedi-

cal research is an opportunity for medical big-data analytics. However, due to the in-

trinsic nature of data that may be incomplete and inaccurate, the interpretation of data 

and its associations might be a serious challenge [1]. In this regard, innovative methods, 

algorithms and tools are needed to facilitate knowledge representation, exchange and 

reasoning, which is understandable for both human and machine [2]. 

In applying data analytics to real health applications, especially with large and com-

plex datasets, the patient data is typically sparse and incomplete. To deal with missing 
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data, two approaches exist: (i) removing the objects (entities) or features with incom-

plete data, and (ii) data filling based on experts’ experience, fuzzy, or Bayesian models 

for a best guess estimation [3]. The former solution considerably reduces the size of 

data, and the latter needs expert’s input, calculating statistical associations between 

data, or requires probability distribution that may not be always available. While Plau-

sible Reasoning (PR) is an alternative reasoning method that derives solutions when 

complete data is lacking or non-existent. 

Comparing to clinical decision-making process, physicians, basically, observe the 

available knowledge to make a diagnosis or order a treatment. If the existing knowledge 

is not sufficient, then the physicians leverage their own tacit knowledge to discover the 

correlations within existing medical data, draw new relationships and infer the missing 

knowledge [1]. Plausible reasoning follows the physicians’ thinking process to generate 

new hypothesis. Plausible reasoning does not conform to strict logical formalisms; but 

it provides a mechanism to infer new knowledge, albeit a weaker inference, especially 

when working with the Open World Assumption (OWA) [4]. For such cases, PR can 

infer new and missing relationships by leveraging how different concepts are semanti-

cally interrelated [5].  

The Semantic Web (SW) framework provides logic-based formalisms to semanti-

cally represent knowledge at various levels of expressivity. The SW also offers effec-

tive built-in support for deduction-based reasoning, including Description Logic (DL) 

reasoning and rule-based languages, that conform to the OWA. The results, therefore, 

are demonstrative and consistent with the knowledge. Despite the great potential of the 

SW technologies in different domains, including healthcare, there is currently a lack of 

support for representing and reasoning with uncertainty and incompleteness in the SW 

framework, which is an irresolvable part of our daily life [6], [7]. This shortcoming 

limits the use of the SW-based approaches in clinical decision support systems that 

require efficient handling of incompleteness [8]. 

This drawback of SW has led to several approaches [6] introducing probabilistic 

variants and fuzzy extensions [9] to the Web Ontology Language (OWL) to deal with 

vague information. Such probabilistic/fuzzy OWL extensions improve the capability of 

SW reasoners in dealing with uncertainty. However, they are only applicable to cases 

where the truth of facts has some degree of ambiguity (qualitative uncertainty), not the 

cases where uncertainty is result of lack of knowledge (quantitative uncertainty) [10].  

In this regard, [1] implemented a multi-strategy reasoning framework, including de-

ductive, inductive and analogical reasoning, within the SW framework. They leveraged 

ontological knowledge to increase the expressivity and accuracy of plausible reasoning 

methods. They showed that implementing plausible reasoning methods can extend the 

coverage of an incomplete KB, and exploiting enriched OWL ontologies can signifi-

cantly increase the accuracy of the results. However, there is still a lack of non-deduc-

tive reasoning support in the logic layer of the SW.  Current study, aims to introduce 

plausible reasoning as one non-deductive approach targeting the logic layer of the SW. 

In this research, we propose the concept of semantic analytics as the analysis of se-

mantically annotated data, i.e., data represented in Resource Description Framework 

(RDF) to infer new knowledge, whilst adhering to the SW’s OWA about knowledge 
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incompleteness, by using expressive semantics and semantics relevant reasoning meth-

ods [11]. We believe that RDF Schema and OWL, expressing additional semantics on 

top of RDF, is one way to achieve semantic analytics. There are a number of ways that 

new facts can be inferred when we have complete knowledge, however within the 

OWA we need to account for incomplete knowledge that may lead to non-deductive 

reasoning, and plausible reasoning is one such reasoning approach.   

This research aims to investigate the potential of implementing plausible reasoning 

within the SW, targeting a semantic analytics framework for health data analytics, es-

pecially when working with large health datasets. In line with this objective, we aim to: 

(i) introduce additional markups (plausible extension to OWL) that extend OWL se-

mantics to better capture and represent plausible semantics, (ii) develop a semantic an-

alytics framework using query-rewriting algorithm to discover new associations be-

tween underlying domain-specific data, (iii) evaluate framework using health data. 

2 Plausible Reasoning 

Plausible Reasoning, which is non-demonstrative, ampliative and non-monotonic, is 

a weak inference approach that identifies the associations between the question and the 

knowledge retrieved from memory and draw the line of inference based on those asso-

ciations. Plausible reasoning performs inferencing by using a set of frequently recurring 

patterns that do not occur in formal logic [12].  A plausible reasoning stack is introduced 

in [1]. The stack is comprised of a set of plausible patterns and 3 plausible reasoning 

mechanisms that use the patterns to infer new rules and facts. [1] also classifies plausi-

ble patterns into 3 groups (Table 1): hierarchy-based patterns, order-based and hybrid.  

Table 1. - Plausible Patterns [1] 

Plausible Pattern Description 

Generalization a Passing from a given set of objects to a larger set that contains the given set. 

Specialization a Passing from a given set of objects to a smaller set that is contained in the given 

one. 

Interpolation b 

Creating a new relation from observation space 𝑋 to conclusion space 𝑌, where 

𝑥𝑖 ∈ 𝑋 is not mapped to any y ∈ 𝑌 (unknown relation), but other relations from 

𝑥ℎ , 𝑥𝑗(≠ 𝑥𝑖) to 𝑌 and 𝑥ℎ < 𝑥𝑖 < 𝑥𝑗 are known. 

A Fortiori b An inference from a proposition with high degree of confidence to a less confident 
proposition that is not clearly specified but is implicit in the first one. 

Similarity/ 

Dissimilarity c Moving between any two comparable nodes (siblings) in the concept hierarchy. 

a Hierarchy-based patterns, b Order-based patterns, c Hybrid patterns 

Hierarchy-based patterns move between the nodes in hierarchical structure, from 

parent to child or vice versa, to perform a hierarchical plausible inference. Order-based 

patterns leverage measurable properties (partial order) to compare concepts regarding 

their size, order, location, ranking, etc. and infer new pieces of knowledge. However, 

hybrid patterns will be performed using both hierarchical relations and partial order of 

concepts to infer a plausible answer; they probe hierarchy and move between any two 

comparable nodes, or consider the concepts that are analogues regarding some measur-

able properties. The utility of ordered-based patterns within inductive and analogical 
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reasoning has been studied and approved [1]. While, current study investigates the ef-

ficiency of all the plausible patterns together, either working alone or in a combination 

with other patterns. Definition 1 provides a formal notation for PR.   

Definition 1: Let 𝒦 be a knowledge base including terminological constructs 𝒯 and 

incomplete assertional knowledge 𝒜 (𝒦 = ⟨𝒯,𝒜⟩) and 𝒬 a query. A plausible reasoner 

plbRes(𝒬, 𝒯,𝒜) returns a set of solutions for 𝒬: 

Ρ𝒬
𝒦 = { 〈𝑝𝑙𝑏𝐴𝑛𝑠 , {𝜋1, … , 𝜋𝑛}〉 | 𝜋 ∈  Π, 1 ≤ n} 

Which plbAns is a plausibly inferred solution, Π is the set of plausible patterns, and 

{𝜋1, … , 𝜋𝑛} demonstrates the plausible pattern(s) involved in the reasoning process. 

3 Query Rewriting within the Semantic Web 

Query Rewriting (QR) algorithms use ontological constructs to transform a given 

query to an expanded version that extracts both explicit (what a KB knows) and implicit 

(what it assumes) knowledge from the data [13], [14]. Therefore, QR can be used as a 

technique to implement plausible patterns and solve queries over an incomplete KB. 

Within the SW framework, OWL 2 QL profile provides a query rewriting mechanism 

to query data through an ontology. OWL 2 QL is underpinned by DL-Lite family of 

description logics. The OWA made in DLs makes OWL 2 QL suitable to work with 

incomplete knowledge in the SW scenarios [14], [15]. Independence from data and 

support of other variants of DL-Lite have made QL a suitable approach to Ontology 

Based Data Access (OBDA) in large RDF stores with different levels of expressivity. 

However, the DL-Lite underlying OWL 2 QL roughly describes the allowed opera-

tors, which limits their expressivity when it comes to the domains with uncertainty and 

incompleteness [16]. The axioms within QL support variety of inferences in OBDA, 

but it may not cover all the plausible semantics. The goal of our work is to introduce a 

plausible extension to OWL QL to support plausible relations and properties. 

4 SeDan: Semantics based Data Analytics Framework 

To achieve the semantic analytics, we propose a framework (Fig. 1) that implements 

a plausible reasoner to infer new knowledge from RDF knowledge bases. This reasoner 

develops plausible reasoning patterns by manipulating the underlying graph directly 

with SPARQL query rewriting using OWL DL constructs. 

The proposed framework mainly includes three modules: knowledge sources, plau-

sible reasoner and user interface. Knowledge sources provide terminological constructs 

to be consumed during the reasoning process, and assertional knowledge to be used to 

evaluate the extended query. The plausible reasoner (discussed more in the following 

section) delivers semantics analytics by running a query rewriting algorithm to perform 

plausible patterns and infer a set of so-called certain solutions. The system accepts the 

query with a list of desired plausible patterns via the user interface, and in return, de-

livers the plausible answer(s) and their justifications. 
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Fig. 1. Proposed semantics based data analytics framework 

4.1 Plausible Extension to OWL 

Standard reasoning capabilities within OWL QL profile support various types of on-

tology-based inference – rdfs:subClassOf represents hierarchical relations and 

owl:sameAs conducts similarity. However, QL does not support all the semantics re-

quired in plausible patterns, like partial order or context. Therefore, it is needed to con-

sider how we can extend OWL in the cases that it has not enough expressivity. In this 

regard, plausible extension to OWL includes defining new classes, followed by defin-

ing new properties that use new (and existing) classes to express new relations. Table 

2 demonstrates a subset of the proposed extension to OWL. 

Table 2. Plausible extension to OWL (PLOWL) 

Class Name Supper Class On Property 

OrderedProperty ObjectProperty -  

Context Class hasContext 

PlausiblePattern Class inferredViaPattern 

Property Name Type Domain Range Inverse Property 

standsBefore Ordered Property Entity Entity standsAfter 

standsAfter Ordered Property Entity Entity standsBefore 

hasContext Object Property Entity Context - 

inferredViaPattern Object Property 
Plausible An-

swer 
Plausible Pat-

tern 
- 

An ordered property is a property to reflect partial order of two entities w.r.t a meas-

urable property (plowl:Context). More formally, if P is an plowl:OrderedProperty, any 

instance of P, like (x,y), implies x is bigger, older, etc. than y or vice versa. From this, 

the plausible reasoner would be able to conduct interpolation and a fortiori reasoning. 

In Table 2, plowl:standsAfter and plowl:standsBefore are instances of plowl:Or-

deredProperty demonstrates how entities are comparable. Similarly, plowl:hasContext 

indicates the specific context in which the ordered property is meaningful. 

 

4.2 Query Rewriting Algorithm 

In this section, we present the proposed QR algorithm (Algorithm 1) that supports 

plausible reasoning patterns in the SeDan reasoning engine. We makes use of GCLRR 

algorithm [17] which transforms a query Q into a Union of Conjunctive Queries 

(UCQs) by applying the TBox axioms to the body atoms of the query. UCQ is one of 
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the most common approach for computing a so-called perfect rewriting of a query. A 

UCQ is a set of conjunctive queries of the same arity and the same query predicate. 

Algorithm 1 demonstrates the proposed algorithm. 

To start the rewriting, the algorithm needs an initial query, a set of preferred plausi-

ble patterns to limit the extended query to those patterns, and an ontology based on 

𝐷𝐿 − 𝐿𝑖𝑡𝑒𝑇 axioms that is semantically enriched with introduced Plausible OWL ex-

tension. Starting with the initial query, the algorithm tries to replace the body atom of 

the query 𝐷 (step 7), with new atom 𝐷′. The atom 𝐷′ should be (i) semantically related 

to 𝐷 (∃𝛼 ∈ 𝒯 𝛼(𝐷, 𝐷′)), and (ii) applicable to the preferred plausible patters (step 6). 

For example, rdfs:subClassOf is applicable to generalization, owl:instanceOf is used in 

specialization, owl:sameAs conducts (dis)similarity, and plowl:standsAfter is applica-

ble to a fortiori and interpolation. The new conjunctive query resulting from replacing 

an atom will be added to 𝑅, the set of conjunctive queries. This algorithm keeps formu-

lating new queries until there is no unique query to be added. 

Algorithm 1. The proposed QR algorithm 

Input: A query in a triple format, a set of plausible patterns 
𝜋 ∈  Π: {𝐺𝐸𝑁, 𝑆𝑃𝐸𝐶, 𝑆𝐼𝑀, 𝐷𝐼𝑆, 𝐹𝑂𝑅𝑇, 𝐼𝑁𝑇𝑃},  𝐷𝐿 − 𝐿𝑖𝑡𝑒𝑇  TBOx  𝒯 enriched with PL-OWL extension 
Output: R, a set of rewriting queries. 

1: R =  {𝑄}; 
2: repeat 
3:    foreach 𝑞𝑢𝑒𝑟𝑦 Q ∈ R do 
4:       foreach 𝑎𝑡𝑜𝑚 𝐷 𝑖𝑛 𝑄 do 
5:          foreach 𝑎𝑥𝑖𝑜𝑚 𝛼 ∈ 𝒯 do 
6:             if 𝛼 is applicable to any π ∈ Π,w. r. t. D 
7:                Q′ = ∃𝐷′. Q(𝐷 → 𝐷′) ∧  𝛼(𝐷, 𝐷′); 
8:                R =  R ∪ {𝑄′}; 

13: until no unique query can be added to R; 
14: return R; 

5 Improving clinical decision support using SeDan 

The SeDan framework has the potential to be used for decision-making and problem 

solving in any domain, which suffer from incomplete knowledge. However, we have 

focused on healthcare applications for the following reasons: 

─ Semantic analytics is very relevant to healthcare, as it is predominantly a knowledge-

intensive domain. The opportunity to capture and leverage semantics via inference 

or query processing is vital for supporting both disease diagnosis and long term care 

(e.g. predictive and preventive diagnosis of chronic diseases) [18]. 

─ A vast amount of health data is available from many diverse automated information 

systems including Electronic Health Records (EHR), Personal Health Records 

(PHR), Electronic Medical Records (EMR). Effective semantic analytics of data en-

ables the extraction of potential relationships existing in healthcare data to provide 

insights that can assist healthcare providers to make better decisions. 

To demonstrate the efficacy of SeDan and the feasibility of our query rewriting al-

gorithm, we provide two case studies where we attempt to answer two questions from 

BioASQ challenges [19] using DrugBank [20], Disease Ontology [21] and Semantic 



7 

MEDLINE1 database [22].  BioASQ challenges are a series of tasks in which partici-

pants are asked to respond to a set of questions posed by medical expert. The DrugBank 

is a bioinformatics and cheminformatics resource that includes detailed drug data. Dis-

ease ontology is standardized ontology for human disease, and Semantic MEDLINE 

database is a repository of 89.2 million sematic triples extracted from PubMed articles. 

For the sake of simplicity, in the examples below, we only discuss one conjunctive 

query out of the possible dozens of queries resulting from query rewriting algorithm. 

 

5.1 Example 1: Migalastat treats Fabry Disease? 

In this case study, when the question “Is Migalastat used for treatment of Fabry 

Disease?” (BioASQ challenge, Task 5b) is posed to the SemMedDB, the traditional 

approach returns a response ‘No’ as it cannot find any matching triple. The initial 

SPARQL syntax of the question can be written as below:  

Initial SPARQL query: 

@PREFIX sem: <https://skr3.nlm.nih.gov/SemMed#> 

ASK { "Migalastat" sem:treats  "Fabry Disease" } 

Answer:  

No 

 

Code 1. Initial query answering if Migalastat treats Fabry Disease 

By posing the failed query to SeDan framework, it uses ontological semantics to 

conduct the query rewriting. The QR algorithm explores the domain ontology to find 

any hierarchical/ordered relationships that matches any or a combination of the subject, 

object, and predicate of the triple in the question. Then, the query transformation would 

be performed by replacing the new atom with the matching atom in the triple.  

Regarding the failed query (Code 1), and using the DrugBank ontology, we know 

Migalastat is an alpha-Galactosidase (DrugBank: DB05018). Based on generalization 

pattern, QR algorithm replace the subject of the triple (Migalastat) with its super class 

(alpha-Galactosidase) with this logic that “if a category of drugs can treat a disease, 

then any subclass or instance of that category would treat the disease as well”. Using 

the relevant ontology axiom, transformation 𝑡 (Fig. 2) can be conducted: 

 
Fig. 2. Rewritten triple using the ontology axiom 

Considering the transformation above, the initial SPARQL query could be written 

as below (Code 2). By posing this new query over SemMedDB, we will get a ‘Yes’ 

answer, as the database contains the matching triple. As seen in Code 2, the plausible 

answer ‘Yes’ is accompanied by the plausible pattern, generalization, that is involved 

in the QR. It shows which plausible patterns has lead to this plausible answer.  

Rewritten SPARQL query: 

PREFIX sem:     <https://skr3.nlm.nih.gov/SemMed#> 

ASK  

{ "alpha-Galactosidase" sem:treats "Fabry Disease" } 

Plausible Answer: 

(Yes, {GEN}) 

 

Code 2. Rewritten query answering if Migalastat treats Fabry Disease 

                                                           
1 https://skr3.nlm.nih.gov/SemMedDB/index.html 

("Migalastat", sem:treats, "Fabry Disease”) 

t: Migalastat  db:isa  alpha−Galactosidase 
→                                 

("alpha-Galactosidase", sem:treats, "Fabry Disease") 
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5.2 Example 2: Herceptin treats Prostate Cancer? 

In this case study, we are asking another Yes/No question, “Is Herceptin of potential 

use in the treatment of prostate cancer?” (BioASQ challenge, Task 2b), over the 

SemMedDB. Making use of the existing triples in the database, there is no matching 

triple unifying the question. Consequently, the answer will be ‘No’. The initial 

SPARQL syntax of the question is as bellow:  

Initial SPARQL query: 

@PREFIX sem: <https://skr3.nlm.nih.gov/SemMed#> 

ASK { "Herceptin" sem:treats  "Prostate cancer" } 

Answer:  

No 

 

Code 3. Initial query answering if Migalastat treats Fabry Disease 

Utilizing Disease ontology axioms (DOID:10286) and existing triples in 

SemMedDB, we know: 

 
Fig. 3. Rewritten triple using the ontology axiom 

In the triples above, the treats predicate (Fig. 3.1) shows a disease (malignant neo-
plasms) that could be treated by Herceptin. The occurs_in relationship (Fig. 3.2) char-
acterizes the “order” of occurrence of two phenomena, in this case two phases of a 
disease: malignant neoplasms and prostate carcinoma. The is_a relationship (Fig. 3.3) 
represents a hierarchical relationship between two diseases, prostate carcinoma and 
prostate cancer. Using the semantics above, QR algorithm exploits specialization pat-
tern and a fortiori pattern, to transform the initial query to the expanded query below: 

Rewritten SPARQL query: 

PREFIX do:    < http://disease-ontology.org/term#> 

PREFIX sem:     <https://skr3.nlm.nih.gov/SemMed#> 

ASK  

{ "Herceptin" sem:treats " Malignant neoplasms". 

  "Malignant neoplasms", sem:occurs_in, "Prostate carcinoma". 

  "Prostate carcinoma", do:isa, "Prostate cancer"} 

Plausible Answer: 

(Yes, {SPEC, AFORT}) 

 

Code 4. Rewritten query answering if Migalastat treats Fabry Disease 

By posing the new query over SemMedDB, we will get a plausible positive answer 
that is inferred via both specialization and a fortiori patterns. The inference above means: 
Herceptin could treat prostate cancer, as Herceptin could treat malignant neoplasms 
that is an earlier phase (ordered relationship) of prostate carcinoma, which is a type of 
(hierarchical relationship) prostate cancer. In other words, Herceptin could plausibly 
treat prostate cancer as it is administered to some prior phases of the disease.  

6 Discussion 

Medical experts can make plausible conclusions as they know semantics and under-

stand the relationships between the concepts. They also utilize plausible patterns to 

draw tentative associations that are currently missing. So, case studies above and simi-

lar inferences might seem straightforward to the practitioners making clinical decisions. 

However, examples above showed even with a large database like SemMedDB (with 

("Herceptin", sem:treats, "Malignant neoplasms")             (1) 

("Malignant neoplasms", sem:occurs_in, "Prostate carcinoma") (2) 

("Prostate carcinoma", do:isa, "Prostate cancer")           (3) 
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over 89 million predicates from all of PubMed citations), conventional clinical reason-

ing engines cannot guarantee an answer. This drawback is due to the lack of support 

for handling uncertainty resulting from missing associations between data attributes.  

Despite the strict logical formalisms in traditional reasonings, case studies above 

showed PR, as a weak form of inference, can infer new knowledge by exploiting se-

mantics between data. In the first case study, the QR algorithm replaced the subject of 

the triple in the question by its parent in the hierarchy to conduct a generalization pat-

tern, with this logic that “when something is true about a set of objects, it might be true 

for any subset of it”. In the second case study, the plausible answer is the result of 

combination of specialization and a fortiori. The rationale behind specialization pattern 

contrasts with generalization: “when something is true about a class/entity, it might be 

true about its super class (parent) as well”. However, a fortiori pattern, as an ordered-

based pattern, conducts the query transformation based on the belief that “if something 

is true about a stage of a phenomena, then it might be true for any stages after that”.  

The efficiency of SeDan depends on (i) the collaboration between the plausible pat-

terns, like how human thought process works, and (ii) the ontological constructs that 

conduct the plausible patterns. A well-designed QR algorithm addresses the first issue. 

However, the enrichment, validity and variety of semantic annotations and relationships 

of the ontologies that QR algorithm uses to rewrite a query would be a challenge. 

7 Conclusions and Future Work 

Healthcare is a knowledge-intensive domain, which typically suffers from incom-

plete data. To extend the knowledge coverage of medical knowledge-bases and enhance 

patient health outcomes, machines are required to (i) capture and understand semantics 

and relationships between data attributes, and (ii) leverage those semantics to extract 

potential relationships existing in healthcare data (EHR, PHR, EMR, etc.)  

To this aim, we introduced the SeDan framework that supports automated clinical 

decision support via semantics-based data analytics. The plausible reasoner integrates 

plausible patterns with fine-grained biomedical ontologies. The reasoner infers plausi-

ble solution(s) by transforming an initial query with no answer to an augmented union 

conjunctive of queries. This flexible mechanism extends SPARQL queries with the 

hope to overcome the existing gap in the medical knowledge bases.  

From the theory development perspective, Sedan implements plausible patterns us-

ing OWL constructs and SPARQL to provide principled means to represent and reason 

with incompleteness. Our proposed plausible extension to OWL provides full-fledge 

support to implement plausible patterns within the SW. From an applied perspective, 

due to the flexible graph-based data format capable of incorporating new relations, sup-

port for rich semantics and automatic DL-based reasoning, the SW technologies pro-

vide excellent support for PR to draw semantic inferences from large datasets. 

Future work consists of studying the efficiency of SeDan in answering the questions 

from the latest BioAsk task using Disease ontology, DrugBank and Semantic 

MEDLINE databases. This is the first step to verify the competency of SeDan in an-

swering to real-world medical questions before using it in a real clinical environment. 
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Improving the performance of the QR algorithm (i.e., reduction phase) to guarantee 

computational completeness and decidability of the reasoner will be the next step. 
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