
Dialogware -
the “Software” for Conversational Agents:

a Modular FrameNet-based Approach

Fabio Massimo Zanzotto, Gioele Minardi, Dario Onorati, Gabriele Cocino,
Andrea Formichetti

Dept. of Enterprise Engineering, University of Rome Tor Vergata, Italy,
fabio.massimo.zanzotto@uniroma2.it

Abstract. Conversational agents are in every pocket where a smart-
phone is. It is the right time to foster a new generation of programmers
to give a better personality to these conversational agents. In this pa-
per we propose the dialogware as a novel form of software that should
be produced by communication experts and artists: the dialogware pro-
grammers. We then introduce a modular FrameNet-based approach to
dialogware programming along with a collaborative ecosystem for these
new generation of programmers.

Keywords: Conversational Agents, Chatbots, FrameNet, Modular Pro-
gramming

1 Introduction

Today, conversational agents are everywhere. Every pocket containing a smart-
phone hides a conversational agent ready to answer questions or to help with
some everyday task. Conversational agents are not more confined in the realm
of science fiction. They are definitely among us.

There is a wide range of stable techniques for building these astonishing
conversational agents – a continuum from hand-crafting [12, 17, 7, 2, 3] to au-
tomatic induction from existing interactions [15, 13, 11, 19]. Hand-crafted con-
verstional agents are considered relic of ancient past as automatically induced
models generally obtain impressive performances. But, sometimes automatically
induced conversational agents select extremely embarrassing answers and they
can be hardly decoded. In fact, inspecting thought vectors (as Geoff Hinton calls
these vectors [5]) of neural networks dialog systems can be a useless activity. On
the contrary, hand-crafted conversational agents are clear enough to be easily
controlled. If the planner fails, programmers can debug and find out what the
problem is.

More important than the underlying technique, the key for the success of
these conversational agents is their actual knowledge for reacting to stimuli.
To have credible conversations, this knowledge should be produced or selected
by experts of communication, experts in writing poems, novels or stories, and,

43

finally, artists. In fact, these people are hired in conversational agent teams of
big players, for example, to define Cortana, Microsoft has hired Jonathan Foster
(a Hollywood film and TV writer) along with other people with the previous
skills [9].

Hence, this is the dawn of the “dialogware” – a new form of software to
program conversational machines. The “dialogware programmers” are the pro-
grammers for this new form of software. But, they are not programmers in the
traditional sense and with the traditional software oriented mind. Hence, they
need more intuitive interfaces.

In this paper, we propose the dialogware programming as a novel way of pro-
gramming and we present an associated community-based ecosystem oriented to
dialogware programmers. As any programming model, dialogware programming
is based on modularity and reuse. To foster the development of dialogware mod-
ules, modules are organized using FrameNet [6, 4] and the dialogware program-
ming ecosystem is equipped with easy-to-use and intuitive interfaces, allowing
non-coders to easily contribute to the general dialogware library and to build
their own conversational agents. We leverage on coding experience like Scratch
[14], which are currently providing an option for non-programmers to code their
own mobile apps [10] or program robotic environments [16].

Fig. 1. Dialogware Diagram Editor

2 Dialogware: Programming Principles

Dialogware is the knowledge for “programming” conversational agents. It is a
novel form of software. This section presents this model by introducing the mod-

44

ular approach, a basic hosting language and a way to produce dialog modules
on the basic hosting language.

2.1 Building Conversational Agents by Combining Modules

The key point of our model is that conversational agents can be programmed
with reusable dialog blocks and these dialog blocks can be organized using onto-
logical languages and existing linguistic resources such as FrameNet [6, 4]. Hence,
building conversational agents can be divided in two clear parts: combining di-
alog modules and programming specific modules if needed.

Having FrameNet [6, 4] and a set of ontological concepts, the activity of
programming a new conversational agent for a specific task is the following. The
first step is to select the prototypical situations, that is, the frames, involved in
the dialog. In a goal based dialog, frame elements of each frame are considered
as variables to be filled with a value through a conversation of the conversational
agent of the user. The second step is to describe how dialogs over these frames
interact in the general picture of the goal of the conversational agent. The last
step is to program the specific dialogs for the specific frames if these are not still
developed.

For example, we want to build a conversational agent for a travel agency. The
goal of this agent is to gather the information needed to book the travel and the
related accommodation. In the first step, we select the important frames which
are Travel and Temporary stay and we select additional dialogs such as the Initial
Greetings. The Travel frame has all the frame elements needed to book a trip –
source, goal, mode of transportation, traveler and time – and the Temporary stay
frame has all those to book an accommodation – guest, duration, time, place
and guest. In the second step, we combine the frame dialog blocks to obtain the
general dialog (see Fig. 1). The schema declares that the conversational agent
starts from the greetings. Once this state is accomplished, the next dialog block
is the Travel frame whose dialog aims to fill the free frame elements. The next
state is the Temporary stay frame and some of its frame elements are filled with
values of the previous state, for example, the goal of Travel fills the place of
Temporary stay. In the last step, we fill the dialog blocks which are not defined.

2.2 Basic Hosting Language

To realize the strategy of building conversational agents by combining modules,
we need a basic conversational agent technology that keeps tracks of the state
of the conversation and has an explicit control of inner variables. These are the
only real prerequisites for our approach.

Hence, we use the Artificial Intelligence Markup Language (AIML) [18] as
host language. This language is based on a stimulus-response model where the
interactions of conversational agents are described by prototypical stimuli as-
sociated to responses. Stimuli are written with a very simple pattern language
which allows a wild card called star that can match sequences of characters.
AIML has the definition of the status of the dialog (topic), the possibility of

45

defining paraphrases of prototypical stimuli with the so-called symbolic reduc-
tion (srai), the possibility of introducing variability in the output with a random
choice between alternative responses and, finally, the possibility of managing in-
ner variables, that is, storing (set), retrieving (get) and checking (condition)
values.

Although simple, AIML is enough versatile for hosting the first version of
the dialogware programming paradigm.

2.3 Programming Basic Modules

Reusable goal-based dialog modules aims to fill a set of variables by asking
questions. These modules based on FrameNet and on ontological resources are
extremely interesting when building a goal-based conversational agent. As these
modules are one of the key point of our model, we present a way to program
these modules in a simple stimulus-response hosting language.

In AIML, we realize these reusable goal-based dialog modules with three
main components: (1) a controlling backbone; (2) a set of interaction generators
to stimulate answers containing values for variables; and, (3) a set of answer
interpreters that capture values for variables.

The dialog module conversation backbone aims to fill all the variables of a
given frame. Then, the backbone controls which variable has still to be filled
and initiates the dialog for stimulating answers to fill missing variables. This
backbone is then called when the state is entered and at the end of each answer
interpretation. Given a frame with the variables v1, v2, . . ., vn, the backbone is
a stimulus-response pair with the following aspect in a pseudo-language:

stimulus: STARTPOINT
response:
cases:
v1=∅?: call: Request v1
v2=∅?: call: Request v2
...
vn=∅?: call: Request vn
default: call: FRAMEDONE

where ∅ is the empty value for a variable. This controlling backbone is called by
the stimulus STARTPOINT and calls Request vi for the first variable vi which
is still empty. Request vi is the set of interaction generators that stimulates
answers for filling variable vi. When all the variables are filled with values, the
backbone calls FRAMEDONE. For example, for the frame Travel, variables
are Traveller, Source, Goal and so on.

The set of interaction generators Request vi have the following form:

46

Fig. 2. Dialogware Frame Editing

stimulus: Request vi
response:
random choice:

“[Request vi interaction 1]”
“[Request vi interaction 2]”
...
“[Request vi interaction m]”

where “[Request vi interaction j]” is an actual utterance for asking to fill the spe-
cific variable vi. For example, for the variable Goal in the frame Travel, possible
interactions are “Where are you going?” or “What’s your final destination?”.

For each request Request vi, there is a set of answer interpreters that are in
charge of extracting variable fillers from answers given by users. These answer
interpreters have the following form:

stimulus:
[A possible answer
to Request vi with a
variable filler in *]

response:
set vi to : value that is filling *
call: STARTPOINT

Each answer interpreter captures a form of answer for a specific request Request vi,
extracts the value for the variable with a wildcard ∗, fills the variable vi and,
finally, call back the starting point of the dialog module. For example, a possible
answer to Request vi for the variable Goal is “I want to go to *”. Then, inter-
actions like “I want to go to New York” will be matched and the value of ∗ will
be New York. The value of ∗ will be used to fill the variable Goal.

3 Dialogware: the Programming Eco-system

The Dialogware programming eco-system consists of two main parts: the Dialog
Diagram Editor and the Frame Editing. This section describes these two main
components and the overall implementation details of the ecosystem.

47

3.1 Diagram Editor

The Dialogware Diagram Editor is the core of the programming ecosystem. It
offers a graphical interface for the definition of creating the control diagram of a
goal-oriented conversational agent. The diagram editor is composed of two main
section: the sidebar and the actual canvas (see Figure 1). The sidebar contains
the palette of elements that can be added in the control diagram: frames and
static values. When a user clicks on the Add Frame button, the selected frame
is imported into the canvas. Then, the application prompts the user to specify
the status of the dialogue block in the overall diagram. The main canvas allows
to define the diagram by creating transitions among blocks (blue solid arrows)
and declaring how variables are filled from one frame to the other (green thin
arrows).

3.2 Frame Editing

The Frame Editing section is used to add interactions associated with the ele-
ments of a frame, as well as to add the response pattern to them. The frame
editing allows to select the frame and to work on the interactions of the selected
frame. By selecting a frame and an element the Frame editor shows the list of all
questions associated with the selected frame element (see Figure 2 left panel).
Finally, by selecting the Answer’s Patterns button, the frame editor shows all the
response patterns associated to the selected question. The Frame editor allows
to write both novel questions and novel possible answers from different users
(see Figure 2 right panel).

4 Conclusion and Future Work

Conversational agents are a rapidly expanding market. We have presented an
approach to develop reusable dialog modules by introducing the dialogware as a
novel form of software. Splitting dialogware programming in blocks is undoubt-
edly an effective approach in terms of software development, as well as being an
effective method to reduce the overall complexity of building knowledge for con-
versational agents. As shown also for serious games [8], FrameNet [6, 4] is a very
important source for organizing programming in general and the production of
dialogware modules in particular.

The community of practitioners of conversational agents is rapidly increasing.
Our dialogware programming ecosystem wants to foster a revolution: transform-
ing artists, experts of communication and simple users of conversational agents
in developers of dialogware.

In the future, by leveraging on techniques of semantic textual similarity [1,
20], we will improve our dialogware programming ecosystem by introducing mod-
ules that expand interactions. This will speed up the manual and controlled
production of dialogware programs.

48

References

1. Agirre, E., Cer, D., Diab, M., Gonzalez-Agirre, A., Guo, W.: *sem 2013 shared
task: Semantic textual similarity. In: Second Joint Conference on Lexical and
Computational Semantics (*SEM), Volume 1: Proceedings of the Main Con-
ference and the Shared Task: Semantic Textual Similarity. pp. 32–43. Associa-
tion for Computational Linguistics, Atlanta, Georgia, USA (June 2013), http:

//www.aclweb.org/anthology/S13-1004

2. Allen, J., Byron, D., Dzikovska, M., Ferguson, G., Galescu, L., Stent, A.: An Ar-
chitecture for a Generic Dialogue Shell. Nat. Lang. Eng. 6(3-4), 213–228 (2000),
http://dx.doi.org/10.1017/S135132490000245X

3. Augello, A., Gentile, M., Weideveld, L., Dignum, F.: A Model of a Social Chatbot,
pp. 637–647. Springer International Publishing, Cham (2016), https://doi.org/
10.1007/978-3-319-39345-2_57

4. Baker, C.F., Fillmore, C.J., Lowe, J.B.: The berkeley framenet project. In: Pro-
ceedings of Proceedings of COLING-ACL. Montreal, Canada (1998)

5. Corrado, G.: Computer, respond to this email (2015), https://research.

googleblog.com/2015/11/computer-respond-to-this-email.html

6. Fillmore, C.J.: The case for case. In: Bach, Harms (eds.) Universals in Linguistic
Theory., pp. 1–88. New York: Holt, Rinehart, and Winston (1968)

7. Freedman, R.: Plan-based Dialogue Management in a Physics Tutor. In: Proceed-
ings of the Sixth Conference on Applied Natural Language Processing. pp. 52–59.
No. 9720359 in ANLC ’00, Association for Computational Linguistics, Stroudsburg,
PA, USA (2000), http://dx.doi.org/10.3115/974147.974155

8. Gentile, M., Città, G., Ottaviano, S., La Guardia, D., Dal Grande, V., Allegra, M.,
Jarvinen, A.: A Semantic Frame Approach to Support Serious Game Design, pp.
246–256. Springer International Publishing, Cham (2016), https://doi.org/10.
1007/978-3-319-50182-6_22

9. Goldman, D.: How Cortana got her corny jokes (2015), http://money.cnn.

com/2015/07/30/technology/windows10-microsoft-cortana/{\%}0Ahttps:

//chatbotconf.com/{\%}0A

10. Gray, J., Abelson, H., Wolber, D., Friend, M.: Teaching CS Principles with App
Inventor. In: Proceedings of the 50th Annual Southeast Regional Conference. pp.
405–406. ACM-SE ’12, ACM, New York, NY, USA (2012), http://doi.acm.org/
10.1145/2184512.2184628

11. Henderson, M., Thomson, B., Young, S.: Deep Neural Network Approach for the
Dialog State Tracking Challenge. In: Proceedings of the SIGDIAL 2013 Confer-
ence. p. 467{\textendash}471. Association for Computational Linguistics, Asso-
ciation for Computational Linguistics, Metz, France (2013), http://www.aclweb.
org/anthology/W13-4073

12. Larsson, S., Traum, D.: Information state and dialogue management in the TRINDI
Dialogue Move Engine Toolkit. Journal of Natural Language Engineering 6(3-4),
323–340 (2000)

13. Lison, P.: Structured Probabilistic Modelling for Dialogue Management Doctoral
Dissertation by. Ph.D. thesis, University of Oslo (2013)

14. Maloney, J., Burd, L., Kafai, Y., Rusk, N., Silverman, B., Resnick, M.: Scratch:
A Sneak Preview. In: Proceedings of the Second International Conference on Cre-
ating, Connecting and Collaborating Through Computing. pp. 104–109. C5 ’04,
IEEE Computer Society, Washington, DC, USA (2004), http://dx.doi.org/10.
1109/C5.2004.33

49

15. Roy, N., Pineau, J., Thrun, S.: Spoken Dialogue Management Using Probabilistic
Reasoning. In: 38th Annual Meeting of the Association for Computational Linguis-
tics. No. Acl, Hong Kong, China, http://www.aclweb.org/anthology/P00-1013

16. Rusk, N., Berg, R.: New Pathways into Robotics : Strategies for Broadening Par-
ticipation. Journal of Science Education and Technology 17(1), 59–69 (2008)

17. Seneff, S., Polifroni, J.: Dialogue Management in the Mercury Flight Reservation
System. In: Proceedings of the 2000 ANLP/NAACL Workshop on Conversational
Systems - Volume 3. pp. 11–16. ANLP/NAACL-ConvSyst ’00, Association for
Computational Linguistics, Stroudsburg, PA, USA (2000), http://dx.doi.org/

10.3115/1117562.1117565

18. Wallace, R.S.: The Anatomy of A.L.I.C.E., pp. 181–210. Springer Netherlands,
Dordrecht (2009), http://dx.doi.org/10.1007/978-1-4020-6710-5_13

19. Williams, J.D., Zweig, G.: End-to-end LSTM-based dialog control optimized with
supervised and reinforcement learning (2016)

20. Zanzotto, F., Dell’Arciprete, L.: Distributed tree kernels. In: Proceedings
of International Conference on Machine Learning. pp. 193–200 (2012),
http://www.scopus.com/inward/record.url?eid=2-s2.0-84867126965&

partnerID=40&md5=0d51c0ed7070baf730f887c818a8c177

50

