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ABSTRACT

To predict the emotional impact and fear of movies, we
propose a framework which employs four audio-visual fea-
tures. In particular, we utilize the features extracted by the
methods of motion keypoint trajectory and convolutional
neural networks to depict the visual information, and extract
a global and a local audio features to describe the audio cues.
The early fusion strategy is employed to combine the vectors
of these features. Then, the linear support vector regression
and support vector machine are used to learn the affective
models. The experimental results show that the combination
of these features obtains promising performances.

1 INTRODUCTION

The 2017 emotional impact of movies task is a challenging
task, which contains two subtasks (i.e., valence-arousal
prediction and fear prediction). A brief introduction about
this challenge has been given in [3]. In this paper, we mainly
introduce the system architecture and algorithms used in our
framework, and discuss the evaluation results.

2 FRAMEWORK

The key components of the proposed framework is shown in
Fig. 1, and the highlights of our framework are introduced
below.
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Figure 1: An overview of the key components of the
proposed framework.
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2.1 Feature Extraction

In this framework, we evaluate four features, including E-
moBase10 feature [5], Mel-Frequency Cepstral Coefficients
(MFCC) feature [4], Motion Keypoint Trajectory (MKT)
feature [15], and Convolutional Networks (ConvNets) fea-
ture [12, 14].

2.1.1 MFCC Feature. In affective content analysis, audio
modality is essential. MFCC is a famous local audio feature.
The time window of MFCC is set to 32 ms, and set
50% overlap between two adjacent windows. In order to
promote the performance, we append delta and double-delta
of 20-dimensional vectors into the original MFCC vector.
Therefore, a 60-dimensional MFCC vector is generated. We
apply Principal Component Analysis (PCA) to reduce the
dimension of the local feature, and use the Fisher Vector
(FV) model [10] to represent a whole audio file via a
signature vector. The cluster number of Gaussian Mixture
Model (GMM) is set to 512, and the signed square root
and L2 norm are utilized to normalize the vectors. In our
experiments, we use the toolbox provided by [4] to calculate
the vectors of MFCC.

2.1.2 EmoBase10 Feature. To depict audio information,
we extract the EmoBase10 feature [5, 11], which is a glob-
al and high-level audio feature. As suggested by [5, 11],
the default parameters are utilized to extract the 1,582-
dimensional vector of EmoBase10. The 1,582-dimensional
vector results from: (1) 21 functionals applied to 34 Low-
Level Descriptors (LLD) and 34 corresponding delta coeffi-
cients, (2) 19 functionals applied to the 4 pitch-based LLD
and their 4 delta coefficient contours, (3) the number of pitch
onsets and the total duration of the input [5, 11]. Then, the
signed square root and L2 norm are utilized to normalize the
vectors. We calculate the EmoBase10 feature by using the
openSMILE1 toolkit.

2.1.3 MKT Feature. We utilize the MKT [15] Feature to
depict the motion information. Motion keypoints are tracked
by the approach of MKT at multiple spatial scales, and an
optical flow rectification algorithm that is based on vector
field consensus [9] is designed to reduce the influence of
camera motions. To depict trajectories in a video, we calcu-
late four local descriptors along trajectories, including His-
togram of Oriented Gradient (HOG) [1], Motion Boundary
Histogram (MBH) [2], Histogram of Optical Flow (HOF) [8]
and Trajectory-Based Covariance (TBC) [15]. In general,
MBH and HOF represent the local motion information, HOG

1http://audeering.com/technology/opensmile
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describes the local appearance, and TBC depicts the rela-
tionships between different motion variables. After calculat-
ing these local vectors, we individually apply the RootSIFT
normalization (i.e., square root on each dimension after L1
normalization) to normalize these vectors.

In order to reduce the dimension of descriptors, we apply
PCA to the four descriptors individually. Then, the FV
model [10] is used to encode these local vectors. In particular,
we apply GMM to construct a codebook of each descriptor,
and set the number of GMM to 128. Finally, the signed
square root and L2 normalization are applied to these
vectors. To combine the trajectory-based descriptors, we
concatenate the vectors of these four descriptors into a single
one.

2.1.4 ConvNets Feature. Convolutional Neural Network-
s (CNNs) have been successfully applied in many areas. The
two-stream Convolutional Networks (ConvNets) feature in-
clude two streams [12, 14], i.e., the spatial stream ConvNet
and temporal stream ConvNet. The spatial ConvNet oper-
ating on video frames indicates the information about scenes
and objects. Meanwhile, the temporal ConvNet stacking op-
tical flow fields conveys the motion information of videos.
The two-stream ConvNets feature is calculated according to
the processes in [12, 14] based on the network architecture
of BN-Inception [7].

In our experiments, the Caffe toolbox is used to calculate
the ConvNets feature. We utilize the models pretrained on
the UCF101 dataset [13], and calculate the feature vectors
from the ‘global pool’ layer. Let the sets of vectors extracted
from spatial and temporal nets be individually denoted as
S = {S1, · · · , Si, · · · , SN} and T = {T1, · · · , Ti, · · · , TN},
where N is the number of frames, and Si and Ti are
1,024-dimensional vectors. To depict a video via one vector,
we utilize two strategies, including Fisher Vector (FV)
and Mean Standard Deviation (MSD). The feature vectors
calculated by the two strategies are denoted as ConvNets-
FV and ConvNets-MSD separately. For the extraction of
ConvNets-FV, we follow the processes as suggested in [10,
15, 16], and set the cluster number of GMM to 64. For
the feature calculation of ConvNets-MSD, we calculate the
mean of the two sets respectively, which are denoted as µ(S)
and µ(T), and calculate their standard deviations denoted
as σ(S) and σ(T). Then, the four vectors (i.e., µ(S), µ(T),
σ(S), and σ(T)) are concatenated to produce a (1, 024× 4)-
dimensional vector.

2.2 Regression and Classification

In the two subtasks, we employ linear Support Vector
Regression (SVR) and Support Vector Machine (SVM) [6]
to learn the emotional models separately. For the fear
subtask, the number of positive samples is less than that
of the negative samples. To solve this problem, we weight
positive and negative samples in an inverse manner. The
regularization parameter C is set by cross-validation on

the training set. The LIBLINEAR toolbox2 is utilized to
implement the L2-regularized L2-loss SVM and SVR.

3 RESULTS AND DISCUSSIONS

In this task, we submit 5 runs, and the results are given in
Table 1 and Table 2. The main difference of these 5 runs is
the selection of features. We select MFCC, ConvNets-MSD
and EmoBase10 in Run 1, MFCC and ConvNets-MSD in
Run 2, MFCC, ConvNets-FV and EmoBase10 in Run 3,
MFCC, ConvNets-MSD, EmoBase10 and MKT in Run 4,
and MFCC, ConvNets-FV, EmoBase10 and MKT in Run
5. For the valence-arousal subtask, we report Mean Square
Error (MSE) and Pearson Correlation Coefficient (PCC) [3].
For the fear subtask, the performances of accuracy, precision,
recall and F1-score are considered as suggested in [3].
Regarding the learning processes of all runs, we utilize SVR
in the valence-arousal subtask, and use SVM in the fear
subtask.

Table 1: Results of the valence-arousal subtask.

Runs
Valence Arousal

MSE PCC MSE PCC

Run 1 0.21972 0.10818 0.15119 -0.02392
Run 2 0.21756 0.11622 0.15236 -0.03570
Run 3 0.21271 0.1533 0.13989 0.08182
Run 4 0.22661 0.09801 0.12812 -0.01139
Run 5 0.22090 0.07849 0.13472 0.05013

Table 2: Results of the fear subtask.

Runs Accuracy Precision Recall F1-score

Run 1 0.862307 0.375595 0.099091 0.142365
Run 2 0.848925 0.368764 0.072547 0.096831
Run 3 0.840726 0.114286 0.023183 0.038265
Run 4 0.845466 0.171429 0.029288 0.039684
Run 5 0.844685 0.214286 0.016592 0.029383

As shown in Table 1 and Table 2, Run 3 obtains the
best result in the valence-arousal subtask, and Run 1
achieves the top performance in the fear subtask. This
partly demonstrates that more features do not necessarily
achieve better result and different combinations of features
are suitable for different subtasks. By comparing the results
of Run 1 and Run 3, we can find that ConvNets-FV is
suitable for the valence-arousal subtask and ConvNets-MSD
is suitable to depict fear.
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