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ABSTRACT
This paper presents the method proposed by team UTAOS for the
Mediaeval 2017 challenge on Multi-media and Satellite. In the first
task, we mainly rely on different Convolutional Neural Network
(CNN) models combined with two different late fusion methods.
We also utilize the additional information available in the form
of meta-data. The average and mean over precision at different
cut-offs for our best runs are 84.94% and 95.11%, respectively. For
challenge two, we utilize a Generative Adversarial Network (GAN).
The mean Intersection-over-Union (IoU) for our best run is 0.8315.

1 INTRODUCTION
Linking social media information to remote sensed data holds large
possibilities for society and research [1–3]. The Multimedia and
Satellite task in Mediaeval 2017 [4] aims to integrate information
from both sources, sensed data and social media, to provide a better
overview of a disaster. This paper provides a detailed description
of the methods developed by the UTOS team for the Mediaeval
2017 Multimedia Satellite Task. The challenge consists of two sub
tasks, (i) Disaster Image Retrieval from Social Media (DIRSM) and
(ii) Flood Detection in Satellite Images (FDSI).

2 PROPOSED APPROACH
2.1 Methodology for DIRSM Task
To tackle challenge (i), we rely on Convolutional Neural Network
(CNN) features. In detail, we first extract CNN features for seven
different models from state-of-the-art architectures pre-trained on
the ImageNet [5] and places datasets [14]. These models include
AlexNet [8] (pre-trained on both ImageNet and places datasets),
GoogleNet [12] (pre-trained on ImageNet ), VGGNet 19 [10] (pre-
trained on both ImagNet and places datasets) and different con-
figurations of ResNet [7] with 50, 101 and 152 layers. For feature
extraction from Alexnet and VGGNet19 we use the Caffe toolbox1
while in the case of GoogleNet and Resnet we exploited Vlfeat
Matcovnet2.

All in all, we extract eight feature vectors through four differ-
ent network architectures from the same image. AlexNet and VG-
GNet16 provide a feature vector of size 4096 while GoogleNet and
Resnet provide feature vectors of 1024 and 2048, respectively. Sub-
sequently, the extracted features are fed into ensembles of Support
Vector Machines (SVMs), which provide classification scores in
1http://caffe.berkeleyvision.org/
2http://www.vlfeat.org/matconvnet/
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Figure 1: Block diagram of the proposed methodology for
DIRSM task.
terms of posterior classification probabilities. We also consider
user’s tags, date taken along with GPS information from the avail-
able meta-data. For the meta-data we rely on Random Tree classifier
provided by the WEKA toolbox [6]. Finally, the classification scores
obtained through Random Trees and SVM trained on meta-data
and visual features are fused using late fusion. For the late fusion
we propose two different methods, namely, (i) Induced Ordered
fusion scheme inspired by Induced Ordered Weighting Averaging
Operators (IOWA) by Yager et al. [13] and (ii) Particle Swarm Opti-
mization (PSO). Figure 1 provides a block diagram of the proposed
methodology for the Disaster Images Retrieval from Social Media
(DIRSM) task.

2.2 Methodology for FDSI Task
For the challenge (ii), we started from the visual analysis of the
provided development set. We observed that it is not possible to
use any already existing open-source framework due to the nature
of the provided satellite data. Furthermore, we observed that the
used four-channel 16-bit TIFF file format is too specific and cannot
be correctly processed and even viewed by existing libraries.

To perform the visual analysis we developed a conversion code
which provide a conversion from geo-TIFF to a pair of images:
RGB and infrared (IR). For the RGB images we used the per-three-
channels normalization which fits all the R, G and B pixel values of
the input geo-image into standard 0-255 RGB region. Normalization
coefficients are the same for all three channels to achieve real color
balance even in cases of low variations in one of the components.
The normalization of the IR component is performed separately.

rдbmin = min(min
i ∈R

ri ,min
i ∈G

дi ,min
i ∈B

bi )
rдbmax = max(max

i ∈R
ri ,max

i ∈G
дi ,max

i ∈B
bi )



MediaEval’17, 13-15 September 2017, Dublin, Ireland K. Ahmad et al.

irmin = min
k ∈I R

irk , irmax = max
k ∈I R

irk

∀i ∈ {R |G |B} {r |д |b}∗i =
({r |д |b}i − rдbmin ) ∗ 255

rдbmax − rдbmin

∀k ∈ IR ir∗i =
(irk − irmin ) ∗ 255
irmax − irmin

Moreover, we performed a human-expert-driven visual analy-
sis of the images and found them all to be non-contrast, blurry
and color-range-limited. From our previous experience [9] we de-
cided to use a generative adversarial network (GAN). GANs3 are
a class of artificial intelligence algorithms used in unsupervised
machine learning, implemented by a system of two neural networks
contesting with each other in a zero-sum game framework.

As the basis for our method we selected a neural network archi-
tecture used for retinal vessel segmentation in fundoscopic images
with generative adversarial networks (V-GAN) 4. The V-GAN archi-
tecture is designed [11] for processing of retinal images that have
comparable visual properties and provides the required output with
one-class image segmentation masks.

V-GAN is implemented in Python on top of Keras with Ten-
sorflow GPU-enabled back-end. We have modified the network
architecture by changing the top-layers configuration in order to
support four-channel floating-point geo-image-compatible input.
The final generator network output layer used for creation of prob-
abilistic output segmentation image was extended by the simple
threshold activation layer to generate the binary segmentation map.

First, we have performed experiments with the development set
only and found that the modified V-GAN is able to perform the
segmentation of the provided satellite images, but the estimated
performance metrics were below the expected level. Additional
visual analysis of the converted RGB and IR images showed that
sometimes IR component of the sourced geo-images was irrelevant
to the flooding areas that probably caused our GAN to bias during
training process and prevent it from the correct flooding areas prop-
erties extraction. Thus, we have decided to exclude IR component
from the model input and process only the RGB components of the
converted normalized geo-images. This resulted in the significant
performance improvement and correct segmentation most of the
developments set flooding areas except for the some images taken
in not-common lighting and cloudy conditions.

3 RESULTS AND ANALYSIS
3.1 Runs Description in DIRSM Task
For DIRSM, we submitted five different runs. Table 1 provides the
official results of our methods in terms of average precision at cut-
off 480 and mean over precision at different cutoff (50, 100, 250, 480).
Run 1 and run 4 are mainly based on visual information extracted
with seven different CNN models and jointly utilized in PSO and
IOWA based fusions, respectively. As it can be seen in Table 1, the
PSO based fusion method outperforms IOWA with a significant
gain of 3.79% and 5.34%. On the other hand, run 2 is based on meta-
data achieving the worst results among the all runs. Similarly, run
3 and run 5 represents two different variations of our method used
for combining meta-data and visual information. Run 3 is based on
IOWAwhile run 5 represents our PSO based fusion of meta-data and

3http://en.wikipedia.org/wiki/Generative_adversarial_networks
4https://bitbucket.org/woalsdnd/v-gan

Table 1: Evaluations of the proposed approach in terms of
precision at 480 andmeanover average precision at different
cutoffs (50, 100, 250 and 480).

Run Features Precision at 480 Mean precision
1 Visual only 84.94% 95.11%
2 Meta-data only 25.88% 31.45%
3 Meta-data and Visual 54.74% 68.12%
4 Visual only 81.15% 89.77%
5 Meta-data and Visual 73.83% 82.68%

Table 2: Evaluations of our approach for Flood Detection in
Satellite Images (FDSI) task

Run
(Thresh.)

Mean IoU per Location
01 02 03 04 05 06 Overall 07 (new )

1 (0.78) 0.79 0.81 0.88 0.78 0.75 0.80 0.82 0.73
2 (0.94) 0.77 0.78 0.86 0.74 0.72 0.78 0.80 0.70
3 (0.5) 0.79 0.82 0.88 0.79 0.76 0.81 0.83 0.74
4 (0.35) 0.79 0.82 0.87 0.79 0.77 0.80 0.83 0.74
5 (0.12) 0.78 0.80 0.86 0.78 0.77 0.78 0.81 0.73

visual information. Again, PSO based fusion performs better. One
of the main limitations of IOWA based fusion is its mechanism of
assigning more weight to a more confident model. In this particular
case, we noticed that our classifier trained on meta-data provides
more confident decisions with high probabilities causing significant
reduction in the performance. This can also be concluded from the
results on run 2 where the meta-data obtain worst results. The
degradation in the performance due to the inclusion of meta-data
shows that the additional information available are not much useful.

3.2 Runs Description in FDSI Task
Table 2 represents the experimental results of our method for FDSI
task. In total, we submitted 5 different runs for 7 different target
locations that are represented by image patches of satellite images
of different regions affected by flooding. We have used the different
binarization threshold level for the different runs with the same
model in order to find the optimum balance in the number of false-
positive and false-negative pixels in the segmented images. The
selection of used threshold values was performed based on the
visual analysis of the segmentation results in order to maximize the
variability of detected flooding area. The best results are reported
for location 03 (which have the best ground visibility without clouds
and proper lighting with strong light reflections from the water
surface in the flooded areas) in all runs. Overall better results are
obtained at runs 3 and 4 with mean IoU of 0.83. For the new location
(07) better results are obtained at runs 3 and 4.

4 CONCLUSION AND FUTUREWORK
This paper provides a detailed description of the methods proposed
by UTAOS for the Mediaeval 2017 challenge on Multimedia and
Satellite. During the experimental evaluation of sub-task 1 (DIRSM),
we noticed that visual information seems more useful compared to
meta-data for the retrieval of disaster images. For sub-task 2 (FDSI),
we rely on a Generative Adversarial Network where better results
are obtained in 3 and 4. Based on the experiments conducted in this
work we believe that a proper fusion of social media information
and satellite data can provide a better story of a natural disaster.

http://en.wikipedia.org/wiki/Generative_adversarial_networks
https://bitbucket.org/woalsdnd/v-gan
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