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ABSTRACT

In this paper, we describe our model designed for automatic
prediction of media interestingness. Specifically, a two-stage
learning framework is proposed. In the first stage, supervised
dimensionality reduction is employed to discover the key
discriminant information embedded in the original feature
space. We present a new algorithm dubbed biased discrimi-
nant embedding (BDE) to extract discriminant features with
discrete labels and use supervised manifold regression (SMR)
to extract discriminant features with continuous labels. In the
second stage, SVM is utilized for prediction. Experimental
results validate the effectiveness of our approaches.

1 INTRODUCTION

Predicting the interestingness of multimedia content has long
been studied in the psychology community [1, 6, 7]. More
recently, we witness an explosion of multimedia content due
to the accessibility of low cost multimedia creation tools, the
automatic prediction of media interestingness thus started
to attract attention in the computer science community be-
cause of its many useful applications to content providers,
marketing, and managerial decision-makers.

In this paper, we propose to use dimensionality reduction
to extract low-dimensional features for MediaEval 2017 Pre-
dicting Media Interestingness Task. Specifically, we propose a
new algorithm called biased discriminant embedding (BDE)
for discrete labels and utilize supervised manifold regression
(SMR) [4] for continuous labels.

2 DIMENSIONALITY REDUCTION

2.1 Biased Discriminant Embedding

Given the data matrix X = [x1,x2, ...,x𝑛], where x𝑖 ∈ R𝐷

denotes the feature vector of the 𝑖-th image or video, and
label vector l = [𝑙1, 𝑙2, ..., 𝑙𝑛], where 𝑙𝑖 ∈ {0, 1} denotes the
corresponding label of x𝑖, with 1 for interesting and 0 for
non-interesting, biased discriminant embedding (BDE) aims
to learn a 𝐷× 𝑑 transformation matrix W, which maximizes
the biased discriminant information in the reduced subspace.
The motivation for proposing the biased discrimination is that
in media interestingness prediction, we are probably more
interested in the interesting class than the non-interesting
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one. The objective function of BDE is given as follows:

W = argmax
W

𝑡𝑟

(︃
W𝑇S𝑏W

W𝑇S𝑤W

)︃
, (1)

where S𝑤 =
∑︀𝑛

𝑖,𝑗=1(𝑁𝑖𝑗 × 𝑙𝑖 × 𝑙𝑗)(x𝑖 − x𝑗)(x𝑖 − x𝑗)
𝑇 de-

notes the biased within-class scatter, S𝑏 =
∑︀𝑛

𝑖,𝑗=1(𝑁𝑖𝑗 ×
|𝑙𝑖 − 𝑙𝑗 |)(x𝑖 −x𝑗)(x𝑖 −x𝑗)

𝑇 denotes the biased between-class
scatter, and 𝑁𝑖𝑗 = 𝑒𝑥𝑝(−||x𝑖 − x𝑗 ||2/2𝜎) measures the close-
ness between two data samples x𝑖 and x𝑗 . The optimization
problem could be solved by generalized eigen-decomposition.

2.2 Supervised Manifold Regression

Supervised manifold regression (SMR) [4] aims to find the
latent subspace, where two data points should be close to
each other if they possess similar interestingness levels. The
objective function of SMR is given as follows:

W =argmin
W

𝑛∑︁
𝑖,𝑗=1

‖W𝑇 (x𝑖 − x𝑗)‖2 ·
(︀
𝛼𝑆𝑙

𝑖𝑗 + (1− 𝛼)𝑁𝑖𝑗

)︀
,

(2)

where 𝑆𝑙
𝑖𝑗 = |𝑙𝑖 − 𝑙𝑗 | measures the similarity between the

interestingness level of x𝑖 and that of x𝑗 .
For each high-dimensional data point x𝑖, we can obtain

its low-dimensional representation by y𝑖 = W𝑇x𝑖. Then we
apply SVM to y𝑖 for interestingness prediction.

3 EXPERIMENTS

For each image data sample, we construct a 1299-D feature
vector by selecting features from the feature set provided
by the task organizers, including 128-D color histogram fea-
tures, 300-D denseSIFT features, 512-D gist features, 300-D
hog2×2, and 59-D LBP features. For the video data, we treat
each frame as a separate image, and calculate the average
and standard deviation over all frames in this shot, and thus
we have a 2598-D feature set for each video. We normal-
ize each dimension of the training data to the range [0, 1]
by �̂� = 𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
before dimensionality reduction, where

𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥 denote the minimum and maximum values
in the corresponding dimension, respectively. Details about
the dataset description can be found in [3].

For Run 1 of image data, we use the normalized 1299-D
feature vector as the input of SVM. For Runs 2-5 of image
data, we reduce the original data to the 23-D, 25-D, 26-D,
27-D subspaces via BDE (for discrete labels) and SMR (for
continuous labels), respectively. For Run 1 of video data, we
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(a) BDE on image data (b) SMR on image data

(c) BDE on video data (d) SMR on video data

Figure 1: Contribution of each individual feature in image/video discrete/continuous prediction tasks.

Table 1: MAP@10 and MAP of the proposed model.

Images Videos
MAP@10 MAP MAP@10 MAP

Run 1 0.1184 0.2812 0.0556 0.1813

Run 2 0.132 0.2916 0.0468 0.1761

Run 3 0.1332 0.2898 0.0468 0.1761

Run 4 0.1315 0.2884 0.0463 0.1742

Run 5 0.1369 0.291 0.0445 0.1746

use the normalized 2598-D feature vector as the input of
SVM. For Runs 2-5 of video data, we reduce the original
data to the 23-D, 25-D, 26-D, 27-D subspaces via BDE (for
discrete labels) and SMR (for continuous labels), respectively.
To predict the binary interestingness labels, we use 𝜈-SVC [5]
with an RBF kernel. We set 𝜈 = 0.1 and 𝑔𝑎𝑚𝑚𝑎 = 100 (for
image data)/64 (for video data). To predict the continuous
interestingness level, we use 𝜖-SVR [2] with an RBF kernel.
We set 𝑐𝑜𝑠𝑡 = 1, 𝜖 = 0.01, and 𝛾 = 1/𝐷. Table 1 reports
the evaluation results of the proposed model provided by
the task organizers. For image data, the reduced features
perform better than the original ones, which indicates that
the subspaces learned by BDE and SMR capture important
information in terms of media interestingness. For video
data, the performance of reduced features is slightly worse
than that of the original ones. The reason might be that
video data are more complex than image data so that such a
low-dimensional representation cannot fully capture the key
discriminant information embedded in the original space.

We further analyze the contribution of each dimension
in the original feature space. The contribution of the 𝑖-th
dimension is defined as 𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑖 =

∑︀
𝑗 𝜆𝑗 |𝑤𝑖𝑗 |, where

𝜆𝑗 denotes the 𝑗-th eigenvalue, 𝑤𝑖𝑗 denotes the (𝑖, 𝑗)-th el-
ement of W, and | · | denotes the absolute value operator.
From Figures 1(a) and 1(c), we can observe that color his-
togram and LBP features contribute more than the others
while the GIST features contribute the least in the discrete
prediction task. In continuous prediction (Figures 1(b) and
1(d)), the color histogram and GIST features contribute the
most among the five feature sets.

4 DISCUSSION AND OUTLOOK

This paper introduces our model designed for media interest-
ingness prediction. For the future work, we aim to improve
the performance of video interestingness prediction by in-
corporating the video temporal information. Moreover, as
the ground truth (labels) of interestingness are provided by
human beings, they generally vary with each individual and
are somewhat subjective. We are therefore particularly inter-
ested in refining the human labeled ground truth (especially
for continuous case) via machine learning technologies.

ACKNOWLEDGMENTS

This work was supported in part by the National Natural
Science Foundation of China under Grant 61503317, and in
part by the Faculty Research Grant of Hong Kong Baptist
University (HKBU) under Project FRG2/16-17/032.



Predicting Media Interestingness Task MediaEval’17, 13-15 September 2017, Dublin, Ireland

REFERENCES
[1] Daniel E. Berlyne. 1960. Conflict, arousal and curiosity.

McGraw-Hill.
[2] Chih-Chung Chang and Chih-Jen Lin. 2011. LIBSVM: A

library for support vector machines. ACM Transactions

on Intelligent Systems and Technology 2 (2011), 27:1–27:27.
Issue 3.

[3] C.-H. Demarty, M. Sjoberg, B. Ionescu, T.-T. Do, M. Gygli,

and N. Q. K Duong. MediaEval 2017 Predicting Media Inter-
estingness Task. In Proc. of the MediaEval 2017 Workshop.

Dublin, Ireland, Sept. 13–15, 2017.

[4] Y. Liu, Z. Gu, and Y.-M. Cheung. Supervised Manifold
Learning for Media Interestingness Prediction. In Proc. of

the MediaEval 2016 Workshop. Hilversum, Netherlands, Oct.

20–21, 2016.
[5] Bernhard Schölkopf, Alex J. Smola, Robert C. Williamson,

and Peter L. Bartlett. 2000. New Support Vector Algorithms.
Neural Comput. 12, 5 (2000), 1207–1245.

[6] Paul J. Silvia. 2006. Exploring the psychology of interest.
Oxford University Press.

[7] Craig Smith and Phoebe Ellsworth. 1985. Patterns of cogni-

tive appraisal in emotion. Journal of Personality and Social
Psychology 48, 4 (1985), 813–838.


	Abstract
	1 Introduction
	2 Dimensionality Reduction
	2.1 Biased Discriminant Embedding
	2.2 Supervised Manifold Regression

	3 Experiments
	4 Discussion and Outlook
	Acknowledgments
	References

