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ABSTRACT 

In this paper, we describe the 2017 CLAS system as entered into 
the C@merata shared task.  This year, our aim was to use the 
challenge as a case study of how one manages natural language 
queries to structured data, and so we focused on the use of a 
NoSQL database for managing the retrieval of passages from 
musical scores.  We also extended the 2015 CLAS system to 
handle queries about harmonies between specific parts, repetition 
of sequences, and thematic queries about sequences and imitation.  
Given that the queries were quite diverse, we explored the use of 
paraphrase methods to transform queries into a canonical form, 
where possible, which might then be parsed using a feature-based 
CFG.  Our system achieved a measure precision and recall of 
0.122 and 0.26 respectively. 

1 INTRODUCTION 

In this paper, we describe the CLAS submission for the 2017 
C@merata shared task [1].  As in previous years, the task is one 
where a system must find portions of a musical score that match a 
natural language query.  For example, the query “two eighth 
notes, an eighth note rest, three eighth notes, an eighth note rest 
and three eighth notes in measures 68-80, all in the Violoncello” 
(example from the 2016 data set) might be used to identify a 
portion of the score, as specified by the starting and ending bar 
numbers as well as the beat offsets in a manner prescribed in [1], 
such as: 

 
Passage  

• end_bar="79"  
• end_beat_type="4"  
• end_beats="4"  
• end_divisions="1"  
• end_offset="1"  
• start_bar="78"  
• start_beat_type="4"  
• start_beats="4"  
• start_divisions="1"  
• start_offset="1" 

 
Our general approach in 2017 is consistent with the earlier 

CLAS submissions in 2014 [2] and 2015 [3], which viewed the 
task as a Q&A problem with natural language queries posed in a 
controlled language.  We view the task as a natural language 

query task to structured data, where the data has a temporal 
element and can be decomposed into multiple aligned streams of 
data.  In terms of music, these streams correspond to different 
musical instruments or parts, temporally aligned.  This year, 
however, we focused on using the shared task as a case study on 
natural language queries to structured data using database 
technologies. 

The 2017 submission builds on the 2015 CLAS entry, which 
uses a feature-based Context-Free Grammar (CFG) to specify the 
controlled language for C@merata music queries.  Parsing using 
NLTK [4] provides a feature structure corresponding to the key 
semantic elements of the query which is then used to retrieve 
results.  In the 2015 CLAS system, the feature structure was used 
to find the matching events in the musical score.  The Music21 [5] 
library was used to transform the XML version of a score into an 
array of music events, each represented with a set of attribute-
value features.  Events were then retrieved for a query, using 
feature unification between the query feature structure and the 
features of events. 

 
This year, we varied our approach in the following ways: 
 

1. Instead of making sequential passes through the 
music events for a piece of music, we used the nosql 
database (MongoDB) to store and retrieve musical 
events using mongoDB queries based on attribute-
value sets. 

 
2. We enhanced the 2015 feature-based CFG to 

recognise queries about: 
a. multiple parts 
b. repetition 
c. sequences and themes 

 
3. We used a paraphrase or near-paraphrase back-off 

stage if the original query could not be parsed 
 
Our system focuses on the queries based on music theory as 

opposed to those that would rely on music interpretation.  In 
preparation for the 2017 shared task, we used the gold standard 
data from 2014-2016 as software development regression tests.  
This year, our CLAS system was able to achieve a measure 
precision and recall of 0.122 and 0.26 respectively. 
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3 DATA STORAGE 

3.1 Indexing with MongoDB 

Instead of making a single pass of a music score (iterating through 
all possible notes) to find matching events using feature 
unification, we used a database to store and retrieve all music 
events.    

 
Specifically, we used four tables: 

1. Titles (and global score attributes) 
2. Musical Events, one table per musical score 
3. Sequences, one table per musical score 
4. Analysis, one table per musical score 

 
In the Titles (and global score attributes) database table, 

information mapping from the XML music score filename to an 
internal ID was kept, in addition to global information 
(determined using Music21 functions) such as the time signature, 
key signature, and the number parts.  Examples of such records 
are presented in Figure 1.  

 
{   

   "_id":ObjectId("598ddda11d41c896ba36332b"), 

   "name":"air_from_handels_water_music_suite.xml", 

   "time_signature":{   

      "1":[   

         4, 

         4 

      ] 

   }, 
   "key":"F major", 

   "parts":4 

} 

{   

   "_id":ObjectId("598dde0b1d41c896ba36364e"), 

   "name":"and_the_glory_of_the_lord_from_handels_mess

iah.xml", 

   "time_signature":{   

      "1":[   

         3, 

         4 

      ] 
   }, 

   "key":"E major", 

   "parts":18 

} 

Figure 1: Example JSON records from the Titles table. 

For each musical score, we dynamically created a Music 
Events table.  The table name is the unique identifier specified in 
the Titles table.  The table for a score stores music events which 
could either be of a note or a chord type.  Events contain offsets 
and other attributes. For note events, for a score consisting of 
multiple parts, the notes of each part were read sequentially to 
form the note events.  For chord events, each part was also 
transformed into a series of Music21 Chord objects using the 
corresponding function in the Music21 library.  Metadata for each 
chord was then stored in the table.  Finally, the same functionality 

for creating chords at each offset was performed on the entire 
score, and then this list of chord objects was indexed.  An 
example of a note record is presented in Figure 2 and a chord 
record in Figure 3. 

For some queries, chords (or harmonies) across specific parts 
were required.  To avoid computing every single permutation of 
parts, the specific combination was checked for at query time, and 
if it did not exist, the relevant parts were extracted from the XML, 
merged into a temporary score and then the entire score 
“chordified”, and the results indexed dynamically.  Querying then 
resumed as above.   

The Sequences table for a score stores passages or sequences 
detected in the music.  These were found by segmenting series of 
notes using rests, using a maximum sequence length of 8 bars.   

 
{   
   "_id":ObjectId("598ddda11d41c896ba36332c"), 
   "name":"A", 
   "letter":"A", 
   "accidental":"", 
   "pitch_class":9, 
   "octave":4, 
   "bar":1, 
   "offset":0, 
   "length":0.75, 
   "part":0, 
   "lyric":null, 
   "freq":440, 
   "articulation":[   
      "DOWNBOW","BOWING","TECHNICALINDICATION","ARTICULAT
ION","MUSIC21OBJECT","OBJECT" 
   ], 
   "expression":null, 
   "solfeg":"", 
   "type":"note", 
   "dynamic":"piano", 
   "tie":"", 
   "slur":"1", 
   "voice":"VIOLIN I", 
   "clef":"G", 
   "voice_num":"0", 
   "stream":"notes", 
   "ordering":0 
} 

Figure 2: Example of a note JSON record from the Music 

Events table for “air_from_handels_water_music_ 

suite.xml” which in this case was stored in table 

“db.T598ddda11d41c896ba36332b” (notice the identifier 

following the “T” is the same as in the first record of Figure 

1). 
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{   

   "_id":ObjectId("598ddda11d41c896ba36348a"), 

   "name":"C3-dominant seventh chord", 

   "bar":3, 

   "offset":2, 

   "length":0.75, 

   "key":"F major", 

   "chord_fn":"5", 

   "chord_match":3, 

   "inversion":0, 

   "bass":"C3", 

   "root":"C3", 

   "notes":[   

      "B-", 

      "E", 

      "G", 

      "C" 

   ], 

   "notes_with_octave":[   

      "B-4", 

      "E4", 

      "G3", 

      "C3" 

   ], 

   "ordered_pitch_classes":[   

      0, 

      4, 

      7, 

      10 

   ], 

   "root_fn":"5", 

   "function":"5", 

   "type":"dominant seventh chord", 

   "raw_type":"dominant seventh chord", 

   "ties":4, 

   "passing":true, 

   "dynamic":null, 

   "intervals":[   

      0, 

      2, 

      3, 

      4, 

      5, 

      6 

   ], 

   "interval_names":[   

      "Minor Tenth", 

      "Perfect Fifth", 

      "Major Sixth", 

      "Perfect Unison", 

      "Major Tenth", 

      "Diminished Fifth", 

      "Minor Fourteenth" 

   ], 

   "stream":"chords", 

   "ordering":19 

} 

Figure 3: A chord JSON record from the Music Events table 

for “air_from_handels_water_music_suite.xml”. 

{   
   "_id":ObjectId("598de46b1d41c896ba374f8f"), 
   "name":"ABS::++E-_3.0000_0.0000++D_1.0000_0.0000++ 
F_1.0000_1.0000++D_1.0000_2.0000++C_1.0000_0.0000++E-

_1.0000_1.0000++C_1.0000_2.0000++B-_1.0000_0.0000", 
   "key_type":"absolute", 
   "seen_parts":[   
      "FLUTE 1 2", 
      "BASSOON 1 2" 
   ], 
   "motif_length":8 
} 

{   
   "_id":ObjectId("598de46b1d41c896ba374f90"), 
   "name":"DIA::++-2_1.0000_0.0000++3_1.0000_1.0000++ 
-3_1.0000_2.0000++-2_1.0000_0.0000++3_1.0000_1.0000++ 

-3_1.0000_2.0000++-2_1.0000_0.0000", 
   "key_type":"diatonic", 
   "seen_parts":[   
      "FLUTE 1 2", 
      "BASSOON 1 2" 
   ], 
   "motif_length":8 
} 

Figure 4: A sequence in both its absolute note and diatonic 

interval forms that occurs in two parts, here Flute and 

Bassoon from “beethoven_symphony_3_movement_iii_muse. 

xml”. 

{   
   "_id":ObjectId("598de4691d41c896ba3748f2"), 
   "name":"ABS::++E-_3.0000_0.0000++D_1.0000_0.0000++ 
F_1.0000_1.0000++D_1.0000_2.0000++C_1.0000_0.0000++E-

_1.0000_1.0000++C_1.0000_2.0000++B-_1.0000_0.0000", 
   "voice":"FLUTE 1 2", 
   "clef":"G", 
   "voice_num":"0", 
   "key_type":"ABS", 
   "type":"motif", 
   "start_bar":26, 
   "start_offset":0, 
   "end_bar":29, 
   "end_offset":1, 
   "end_duration":2, 
   "note_length":8, 
   "duration":10 
} 

Figure 5: Metadata for the sequence with 

id=598de46b1d41c896ba374f8f in the score  “beethoven_ 

symphony_3_movement_iii_muse.xml”. 

Sequences were represented with unique identifiers 
representing the entirety of the passage, using each of three 
possible key generators: the unique names of the notes in the 



MediaEval’17, 13-15 September 2017, Dublin, Ireland S. Wan 
 

 

 

sequence and their lengths (but not their octaves offsets), a variant 
of this using relative displacement between notes in terms of 
semitones, and a diatonic variant using interval classes.  Each 
sequence had an associated start and end point (specified as bar 
and offset), which was stored in the table. 

The Analysis table for each score keeps track of which 
sequence unique identifiers occur in different parts of the score, 
allowing some representation of thematic sequences (those that 
appear in multiple parts). An example of a sequence from the 
Analysis table is presented in Figure 4 and the corresponding 
metadata from the Sequence table is presented in Figure 5. 

3.2 Querying the Database 

Each record in the table (aside from the Titles table) is an event 
represented as a set of attribute-value features.  Using the Python 
programming language and the PyMongo1 library which provides 
an interface to mongoDB2 , queries are essentially comparisons 
between dictionary objects.  In this way, the queries are very 
similar to the feature unification method in the 2015 CLAS 
system.  There is a subtle difference however.  Feature unification 
would allow under-specifications on either of the two structures 
being compared to unify as long as there were no direct 
contradictions.  This is not the case with mongoDB queries.  If a 
query is overly specific and includes attributes not present in the 
event, then a match is not possible.  Thus, each feature structure 
first had to be transformed into an equivalent NoSQL query to 
account for this. 

Querying for sequences of notes was performed by first using 
a query for the first note of the sequence and then performing an 
ordered series of queries, each checking if the event at the next 
timestep corresponded to the relevant sequence note.  This was 
handled through a recursive function that worked its way down a 
list of elements in the query. 

Using mongoDB to provide search facilities greatly increased 
the speed at which matches could be found, utilizing a database 
index for direct lookup instead of doing a sequentially pass of the 
score for each query.  

3.3 Forming NoSQL Queries 

If we are searching for a single note, then the query would be the 
set of attribute-value features for that note as represented by a 
Python dictionary.   Such queries were simple to implement with a 
NoSQL database like mongoDB.  Others, however were more 
complex.   

For melodic intervals, these are treated as sequences.  In this 
case, for every note in each part, we search for the absolute pitch 
and octave of a note that would correspond to the interval based 
on the current note.  Thus for melodic intervals, “search” becomes 
a single pass through the score. 

For harmonic intervals, we search through the chord events, 
which at the time of indexing is broken down into its component 

                                                                    
1 https://api.mongodb.com/python/current/ 
2 www.mongodb.com 

interval classes between all note pairs in the chord.  Each of these 
intervals is stored, at indexing time, as a list (with an equivalence 
encoded for augmented fourths, diminished fifths, and tritones).  
The mongoDB query is then a list membership test for the string 
name of the interval of interest.  We note that the analysis of the 
chord into its component intervals is provided by Music21 and the 
success of this method depends on that library’s ability to 
correctly analyse the chord.  For harmonic intervals and chords, 
we added search constraints like there needing to be at least 2 
notes in the chord event. 

For chord queries specifying the exact notes of the chord, this 
is implemented using tests for membership of the notes in the 
chord event. 

Cadences are treated as sequences of chord events.  Tests are 
based on the features of adjacent chords such as its chord function 
(as a roman numeral) and the notes one would expect to see 
(derived from the chord function). 

Whenever string matches are required in the mongoDB query, 
these are implemented as regular expressions to allow “fourth” to 
match to “perfect fourth”, or “Violin” to match to “Violin 1”. 

4 QUERY EXTENSIONS 

In this system, we extended the feature-based CFG and the query 
generation components to cater to three new types of queries: 

1. Harmonies between multiple parts 
2. repetition 
3. sequences and themes 

4.1 Harmonies between Multiple Parts 

The extension for queries indicating multiple parts specifically 
relates to harmonies, such as “minor third between Quintus and 
Tenor in bars 11-18”.  In this case, the part names “Quintus” and 
“Tenor” are mapped to a generic symbol “PART_NAME”, which 
can be resolved later to the original values.  Special grammar rules 
for part names in this configuration (“between part1 and part 2”) 
are used to keep track of semantic features that flag that 
processing of the query should use logic relating to a harmony 
between parts.  When such flags are encountered during resolution 
of the query, the system first checks to see if the required 
combination of parts has been indexed in the database.  If not, this 
then triggers the dynamic indexing of chords in the specified parts 
(as mentioned above). 

We note that queries such as “B4 in the left hand followed by 
C5 in the right hand in bars 7-8” are covered by a mechanism 
from the 2015 system in which the query is divided into two 
portions (split by the phrase “followed by”).  Each is an atomic 
query that could be found in different parts (here, left hand versus 
right hand, assuming a simple mapping from left to bass clef and 
right to treble clef).   

4.2 Repetition 

Queries like “six crotchet notes repeated twice” are treated as a 
sequence of “six crotchet notes” which is then copied a second 
time.  In this system, handling of repetition requires that the 
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number of copies be specified.  That is an unbounded repetition 
query, such as “alternating fourths and fifths in the Oboe in bars 
1-100” is not handled.  To allow such queries, the system 
arbitrarily transforms such as query to be equivalent to “repeated 
twice”.  This copying of sequences extends the 2015 system 
which allowed copies of single notes to be specified in the query. 

4.3 Sequences and Themes 

To make use of the sequence and analysis tables described above, 
we extend our grammar to accept relevant queries, focusing on 
repeated sequences or imitation between parts.  For such queries 
to be resolved, we search the sequence and analysis tables 
outlined in Section 3.  The analysis table shows when a sequence 
has been repeated verbatim, with the same note names (but 
allowing variation in the octave), or transposition with relative 
intervals between sequence notes, specified in both a diatonic and 
chromatic form. 

The analysis table shows when any of these sequences has 
been repeated between parts, and includes metadata that allows 
trivial sequences below a certain length to be filtered out.  Once 
repeated sequences are found, the start and end offsets are 
retrieved from the relevant sequence table. 

5 SIMPLE PARAPHRASE AND CONSTRAINT 

RELAXATION 

In this system, we introduced a new method to allow graceful 
degradation from the case where the grammar did not cover the 
input query.  In such a case, a prioritised set of paraphrase rules 
was used to see if the query could be transformed into a form that 
was covered by the grammar.   

These paraphrase rules included synonyms, such as the 
mapping from “Violin 1” and “Vln 1”, and phrasal equivalents, 
such as “from bars X-Y” and “in bars X-Y”. 

The rules also included “movement” of certain phrases such 
that occurred at set positions.  For example, constraints about the 
bars (“from bar X-Y”) was moved to the end, as was expected by 
the grammar.    

We can thus think of the grammar covering the canonical form 
of a query.  For example, constraints about multiple parts in 
queries such as “cello and viola playing dotted minims an octave 
apart in bars 40-70” was mapped to “dotted minim octave 
between cello and viola in bars 40-70”.  Similarly, for repetition 
in queries such as “repeated Bb4 whole note” was transformed 
into a canonical form like: <note noun phrase><repetition 
constraint>. 

Finally, we encoded near paraphrases to handle concepts that 
were similar to those already covered by the grammar.  For 
example, we used a mapping from “ascending in single steps” to 
“ascending”.   For some queries, the additional information was 
deemed to be of little value (given the default behaviour of the 
system) and was thus dropped.  For example, “in a row” was 
simply deleted given that most sequence queries require that the 
target notes occur in series. 

Ideally, these rules would be learnt from data.  We see this a 
future work.  Here we simply provide a way for paraphrase rules, 

once acquired, to be used however they are obtained (by manual 
inspection or machine learning). 

6 RESULTS AND ANALYSIS 

Our overall approach for preparing this year’s submission was to 
use the gold standard results as regression tests, specifically using 
the 2016 test set for the development of new features.  The recall 
and precision at the beat level for the three preceding years of data 
is shown in Table 1.  While, this is the result of development on 
the 2014-2016 test sets, the performance is based on generic 
mechanisms without memorisation of answers.  We note that 
these score for 2014 and 2015 are slightly under the official report 
performance of the CLAS system for those years.  This is due to 
system differences between the 2017 system and the earlier 
systems: the 2015 system was a blend of the 2014 system and the 
use of the feature-based CFG.  For the 2017 system, the earlier 
chunking system of 2014 has been dropped altogether.   

Table 1: Performance on data from prior years. 

 Recall Precision 
2016 0.387 0.350 
2015 0.565 0.541 
2014 0.786 0.720 
 
For the 2017 results, our system achieved the following scores: 
Beat Precision: 0.099 
Beat Recall: 0.212 
Measure Precision: 0.122 
Measure Recall: 0.260 
 
Table 2 reports the results by question type.  We note that the 

system is does best for harmony queries, followed by melodic 
queries, as shown by the recall scores.  This is unsurprising given 
then the 2017 was developed with a focus on queries related to 
music theory.  For the more complex texture and synch queries, 
the system does not do so well. 

Although a system for sequences and themes was included this 
year, we note that the method for segmenting sequences in this 
system is quite simplistic and may not correspond to analyses by a 
musicologist.  Furthermore, the grammar coverage for these 
queries was not exhaustive. 

Table 2:  2017 results per question type. 

 Measure 
Recall 

Measure 
Precision 

Beat 
Recall 

Beat 
Precision 

1 Melod 0.475 0.062 0.328 0.043 
N melod 0.213 0.176 0.167 0.137 
1 harm 0.156 0.636 0.156 0.636 
N harm 0.304 0.263 0.290 0.250 
Texture 0.103 0.176 0.103 0.176 
Follow 0.052 0.133 0.026 0.067 
Synch 0.000 0.000 0.000 0.000 
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7 DISCUSSION 

The 2017 system is based on the feature-based CFG system from 
2015.  We note that the queries have become more and more 
complex to the extent that one might question if treating the 
queries as coming from a controlled language is still viable.  This 
may be one reason why the performance of the system has 
degraded compared to previous year’s submissions.   

From software engineering point of view, we note that the 
grammar for the queries is increasingly difficult to manage with 
each subsequent year’s set of queries.  Whether the paraphrase 
component is an effective way to manage this diversity of queries 
remains to be tested. 

The move to the mongoDB search engine did introduce 
efficiencies in running large sets of queries from prior years as 
regression tests.  Previously, the 2015 system would have required 
hours to complete given that each query required a pass through 
the score.  Currently, each year’s queries take a few minutes to 
answer.  This would be faster if not for the passes needed through 
the scores for melodic queries.  We note that melodic intervals too 
could be annotated upfront at indexing time, an optimization 
which we simply did not have time to implement. 

However, some analyses require batch processing of the score 
to identify features of interest.  For these, the analysis, potentially 
time consuming, has to be performed first ahead of database 
indexing.   

8 FUTURE WORK 

In future work, we intend to further extend the system to answer 
musicology related queries as opposed to just music theory 
queries.  This will involve additional preprocessing of the scores 
in advance.  For example, currently thematic sequences are 
currently delimited using rests.  However, additional cues in the 
score, such as phrase boundaries and lyrics, could also help 
provide other possible segmentations.   

9 CONCLUSIONS 

We describe the CLAS system as entered into the 2017 C@merata 
shared task.  In this system, we focused on the use of a NoSQL 
database for managing the retrieval of passages from musical 
scores.  We also extended the 2015 CLAS system to handle 
queries about harmonies between specific parts, repetition of 
sequences, and thematic queries about sequences and imitation.  
We also explored the use of paraphrase methods to transform 
queries into a canonical form, where possible, which might then 
be parsed using a feature-based CFG. 
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