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ABSTRACT
This paper presents our approach for the 2017 Multimedia for
Medicine Medico Task of the MediaEval 2017 Benchmark. We pro-
pose a system based on global features and deep neural networks,
and preliminary results comparing the approaches are presented.

1 INTRODUCTION
Following the initiative to investigate how multimedia can improve
medical systems [15], the 2017 Multimedia for Medicine Medico
Task [18] addresses the challenge of detecting diseases based on
multimedia data collected in hospitals [13], i.e., the task focuses
on detecting abnormalities, diseases and anatomical landmarks
in images in the gastrointestinal (GI) tract. There do exist some
proposals in this area using various approaches [20, 21], and in this
paper, we describe our solutions, based on both our global-features-
based and neural-network-based EIR prototypes [12, 14, 16, 17].

2 CLASSIFICATION APPROACHES
The proposed approaches are based on the hypothesis that GI tract
diseases and findings can be recognized and classified based on
color, shape and texture properties. In this challenge, there is no
detailed ground truth ROIs provided for the training dataset, thus,
already existing and well performing approaches to objects recogni-
tion are not suitable for this particular task. Moreover, a relatively
low amount of training data is provided making it difficult to use
modern convolutional neural network (CNN) image segmentation
and region-based classification approaches. Furthermore, some ob-
jects like polyps and resection margins have a compact body and
can be easily differentiated from the surrounding tissue, but other
findings like ulcerative colitis have only tissue with a slightly differ-
ent color properties. To address these different detection challenges,
we present 17 different approaches that implement our idea of using
visual properties of images for performing multi-class classification
with the limited training set size. For the final classification step,
we use the WEKA machine learning support library [7] which is an
open source collection of algorithms for machine learning and data
mining. For all the approaches based on global features (GFs), we
use Lucene Image Retrieval (LIRE) [10], an open source implemen-
tation of global and local features extraction and comparison. For
all the deep-learning-based approaches, we use Keras [3], an open
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source high-level neural networks API with Google Tensorflow [1]
as a computational back-end.

2.1 Global-features-based
For the GF-based approaches, we use features that represent the
overall image visual properties, they are easy and fast to calculate,
and they can be used for image comparison, distance computing
and image collection search. Here, we use the indexes of visual
features extracted from training image set. A classifier is used to
search the index for the image that is most similar to a given in-
put image. The GFs we use are JCD, Tamura, Color Layout, Edge
Histogram, Auto Color Correlogram and Pyramid Histogram of
Oriented Gradients [10]. We decided for these combinations based
on our previous findings and experiments in [14, 16]. Multi-class
classification is implemented as an additional classification step
to determine the final image class based on the the ranked lists
of a search-based classifier for each class of findings. We use the
random tree (RT), random forest (RF) and logistic model tree (LMT)
classifiers [7] from WEKA.

2.2 Deep-features-based
For the deep-features-based approaches, we use a combined method
with deep residual networks for image recognition as features ex-
tractor and machine-learning classifier with the input of extracted
deep-features as a multi-class classifier.We use the Inception v3 [19]
and ResNet50 [8] models pre-trained on a set of general images.
The models were modified in order to produce numerical probabil-
ity output for all recognized object classes. Then, we use the class
(concept) probabilities (1000 values for both networks) directly in
the Concepts runs. For the Features runs, we have used the same
pre-trained models without including the fully-connected layer
at the top of the network, which give us an output of high-level
feature probabilities (16384 values for Inception v3 and 2048 for
ResNet50). Finally, we combine the probabilities by simple early
fusion in one big vector of floating point numbers and use it as an
input for the same classifiers we used in the GF-based approaches.

2.3 CNN-based
For the CNN-based approach, we created and trained a custom
CNN from scratch. Our CNN consist of six convolution layers. As
an activation function, we used the rectified linear unit (ReLU) [6]
and maxpooling for pooling. In all the layers, we also included a
0.5 dropout, and the final classification step was performed using
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two dense layers with first ReLU and then Sigmoid as activation
functions. Both networks were trained for 200 epochs using the
Adam optimizer [9].

2.4 Transfer-learning-based
For the transfer-learning-based (TFL) approach, we use the pre-
trained Inception v3 [19] model and transfer learning technique [2]
to train the network on our specific training set. We re-trained
the base model and fine-tuned the last layers on the training set
following the DeCAF approach [5]. We did not perform complex
data augmentation and only relied on transfer learning. We froze
all the basic convolutional layers of the network and only retrained
the two top dense layers. The dense layers were retrained using the
RMSprop [4] optimizer that allows an adaptive learning rate during
the training process. After 1,000 epochs, we stopped the retraining
of the dense layers and started fine tuning the convolutional layers.
For that step, we did the analysis of the Inception v3 model lay-
ers structure and decided to apply the fine-tuning on the top two
convolutional layers. For this training step, we used a stochastic
gradient descent method with a low learning rate to achieve the
best effect in terms of speed and accuracy [11].

3 EXPERIMENTAL RESULTS
First, we have performed an initial evaluation of the approaches
using the development dataset only randomly splitting it into new
training and test sets with the equal number of 2, 000 images in each.
We assessed 17 different methods executed in 17 internal runs using
the new sets generated. An overview of the conducted internal runs
can be found in table 1 where we provide themeasured performance
metrics [13]. We can see that not all our approaches can perform
efficiently on the given dataset. In general, we can conclude that for
all the machine-learning-based classification approaches, the LMT
classifier is performing the best, the RF classifier is slightly worse,
and the RT classifier performs the worst. The 6 Layers CNN and
Inception v3 TFL approaches performs with the comparable preci-
sion, but Inception v3 TFL have slightly better results. The Inception
v3 Concepts and ResNet50 Concepts approaches performs with the
comparable precision too, but all the ResNet50 Concepts approaches
perform slightly better. The Inception v3 Features approaches per-
form the worst compared to all other features-based approaches
even for the efficient LMT classifier, which can be caused by the
huge feature values vector generated by the Inception v3 network.
Finally, the best performing approach is the ResNet50 Features ap-
proach with the LMT classifier showing the performance of 0.828
for RK and 0.856 for F1 score.

Based on the initial evaluation, we have selected the five different
approaches for the official competition submission. The approaches
selected (see table 2) are the best performing in the internal runs
while keeping as much diversity of the methods as possible. The
official evaluation results provided by the organizers is presented in
table 2. The best performing approach is again the ResNet50 Features
approach with the LMT classifier (run #4) with the RK value of
0.802 and F1 score of 0.826. The confusion matrix of this run is
presented in table 3. The often miss-classified classes are Esophagitis
and Z-line that is caused by the nature of the used visual features.
Both of these classes consist of pictures of Z-Line, but Esophagitis

Table 1: Initial performance evaluation based on the random
split of the task development dataset.

Method PREC REC SPEC ACC F1 RK FPS
6 Layer CNN 0.659 0.642 0.947 0.900 0.640 0.600 43
Inception v3 TFL 0.700 0.695 0.961 0.925 0.704 0.661 53
Inception v3 Concepts RT 0.405 0.402 0.915 0.851 0.403 0.318 66
Inception v3 Concepts RF 0.704 0.701 0.957 0.925 0.699 0.659 50
Inception v3 Concepts LMT 0.771 0.763 0.970 0.940 0.745 0.721 37
Inception v3 Features RT 0.287 0.288 0.898 0.822 0.287 0.186 56
Inception v3 Features RF 0.436 0.447 0.921 0.862 0.436 0.362 43
Inception v3 Features LMT 0.444 0.438 0.920 0.859 0.438 0.360 30
ResNet50 Concepts RT 0.507 0.500 0.929 0.875 0.501 0.431 88
ResNet50 Concepts RF 0.762 0.753 0.965 0.938 0.751 0.720 78
ResNet50 Concepts LMT 0.781 0.799 0.983 0.970 0.797 0.750 53
ResNet50 Features RT 0.479 0.478 0.925 0.869 0.477 0.403 79
ResNet50 Features RF 0.790 0.782 0.980 0.928 0.769 0.763 70
ResNet50 Features LMT 0.841 0.839 0.985 0.972 0.856 0.828 46
6 Global Features RT 0.576 0.578 0.940 0.894 0.576 0.516 130
6 Global Features RF 0.744 0.734 0.981 0.951 0.784 0.705 105
6 Global Features LMT 0.800 0.785 0.980 0.964 0.781 0.748 80

Table 2: The official classification performance evaluation
results (provided by the organizers) of the submitted runs.

Run # Method PREC REC SPEC ACC F1 RK FPS
1 Inception v3 TFL 0.735 0.715 0.963 0.725 0.725 0.686 53
2 Inception v3 Concepts LMT 0.742 0.738 0.963 0.934 0.737 0.701 37
3 ResNet50 Concepts LMT 0.766 0.763 0.966 0.941 0.761 0.729 53
4 ResNet50 Features LMT 0.829 0.826 0.975 0.957 0.826 0.802 46
5 6 Global Features LMT 0.766 0.760 0.966 0.940 0.757 0.727 80

Table 3: Confusion matrix for the ResNet50 Features LMT run #4.
Detected class

A B C D E F G H

A
ct
ua

lc
la
ss

Esophagitis (A) 319 0 4 2 174 0 1 0
Dyed and Lifted Polyps (B) 0 385 0 6 0 59 47 3
Pylorus (C) 6 0 460 7 19 0 7 1
Ulcerative colitis (D) 5 0 1 460 0 2 14 18
Z-line (E) 104 0 8 0 385 0 3 0
Dyed Resection Margins (F) 0 84 1 5 0 403 5 2
Polyps (G) 1 3 1 19 1 1 441 33
Cecum (H) 0 1 0 29 0 0 18 452

is the inflammation of Z-Line area, thus local image characteristics
should be used to distinguish between these classes more precisely.
The same reason can explain some cases of miss-classification with
Dyed and Lifted Polyps, Dyed Resection Margins and Polyps classes.

4 CONCLUSION
In this paper, we presented 17 different combined approaches de-
signed for multi-class classification of medical imaging data with
the limited training dataset. We presented a novel comparison of
the performance of the various visual-features-based methods with
traditional custom CNN and Inception v3 with transfer-learning-
based approaches. We used modified Inception v3 and ResNet50
networks and the LIRE library for the features extraction, with
machine-learning classification algorithms from WEKA. Despite
the limited training dataset and a presence of visually similar image
classes, we achieved a good multi-class classification performance
with the RK value of 0.802 and a classification speed of 46 frames
per second. For our future research, we will investigate the com-
bined approach with the fusion of multiple deep-network-based
feature extractors for the initial coarse image classification together
with the fine-tuned local-feature-based sub-classification for the
efficient cross-class detection between visually similar images.
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