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Abstract

This paper describes a simple neural network sys-
tem for Semantic Textual Similarity (STS) task.
The basic type of the system took part in the STS
task of SemEval 2017 and ranked 3rd in the pri-
mary track. More variant neural network struc-
tures and experiments are explored in this paper.
Semantic similarity score between two sentences
is calculated by comparing their semantic vectors
in our system. Semantic vector of every sentence
is generated by max pooling over every dimen-
sion of their word vectors. There are mainly two
trick points in our system. One is that we trained
a convolutional neural network (CNN) to trans-
fer GloVe word vectors to a more proper form
for STS task before pooling. Another is that we
trained a fully-connected neural network (FCNN)
to transfer difference of two semantic vectors to
the probability distribution over similarity scores.
In spite of the simplicity of our neural network
system, the best variant neural network achieved a
Pearson correlation coefficient result of 0.7930 on
the STS benchmark test dataset and ranked 3rd1.

1 Introduction

Semantic Textual Similarity (STS) is a task of decid-
ing a score that estimating the degree of semantic sim-
ilarity between two sentences. STS task is a building
block of many Natural Language Processing (NLP) ap-
plications. Therefore, it has received a lot of attentions
in recent years. STS tasks in SemEval have been held
from 2012 to 2017 [Cer et al., 2017]. In order to provide
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a standard benchmark to compare among meaning repre-
sentation systems in future years, the organizers of STS
tasks created a benchmark dataset in 2017. STS Bench-
mark2 comprises a selection of the English datasets used
in the STS tasks organized in the context of SemEval be-
tween 2012 and 2017 [Agirre et al., 2012; 2013; 2014;
2015; 2016; Cer et al., 2017]. The selection of datasets
include text from image captions, news headlines and user
forums. Estimating the degree of semantic similarity of two
sentences requires a very deep understanding of both sen-
tences. Therefore, methods developed for STS tasks could
also be used for a lot of other natural language understand-
ing tasks, such as ”Paraphrasing” tasks, ”Entailment” tasks,
”Answer Sentence Selection” tasks, ”Hypothesis Evidenc-
ing” tasks, etc..

Measuring sentence similarity is challenging mainly be-
cause of two reasons. One is the variability of linguis-
tic expression and the other is the limited amount of an-
notated training data. Therefore, conventional NLP ap-
proaches, such as sparse, hand-crafted features are difficult
to use. However, neural network systems [He et al., 2015a;
He and Lin, 2016] can alleviate data sparseness with pre-
training and distributed representations. We propose a sim-
ple neural network system with 5 components:
1) Enhance GloVe word vectors in every sentence by

adding hand-crafted features.
2) Transfer the enhanced word vectors to a more proper

form by convolutional neural network (CNN).
3) Max pooling over every dimension of all word vectors

to generate semantic vector.
4) Generate semantic difference vector by concatenating

the element-wise absolute difference and the element-
wise multiplication of two semantic vectors.

5) Transfer the semantic difference vector to the probabil-
ity distribution over similarity scores by fully-connected
neural network (FCNN).

2 System Description

Figure 1 provides an overview of our system. The
two sentences to be semantically compared are first pre-

2http://ixa2.si.ehu.es/stswiki/index.php/STSbenchmark
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Figure 1: Overview of system

processed as described in subsection 2.1. Then the CNN
described in subsection 2.2 transfers the word vectors to a
more proper form for each sentence. After that, the pro-
cesses introduced in subsection 2.3 is adopted to calculate
semantic vector and semantic difference vector from the
transferred word vectors. Then, an FCNN described in
subsection 2.4 transfers the semantic difference vector to
a probability distribution over similarity scores. We imple-
mented our neural network system by using Keras3 [Chol-
let, 2015] and TensorFlow4 [Abadi et al., 2016].

2.1 Pre-process

Several text preprocessing operations were performed
before feature engineering:
1) All punctuations are removed.
2) All words are lower-cased.
3) All sentences are tokenized by Natural Language

Toolkit (NLTK) [Bird et al., 2009].
4) All words are replaced by pre-trained GloVe word vec-

tors (Common Crawl, 840B tokens) [Pennington et al.,
2014]. Words that do not exist in the pre-trained word
vectors are set to the zero vector.

5) All sentences are padded to a static length l = 30 with
zero vectors [He et al., 2015a].

One hand-crafted feature is added to enhance the GloVe
word vectors:
1) If a word appears in both sentences, add a TRUE flag to

the word vector, otherwise, add a FALSE flag.

2.2 Convolutional neural network (CNN)

The number of our CNN layers is l. Every layer con-
sists of kl one dimensional filters. The length of filters
are set to be same as the dimension of enhanced word vec-
tors. The activation function of convolutional neural is set
to be tanh. We did not use any regularization or drop out.
Early stopping triggered by model performance on valida-
tion data was used to avoid overfitting. We used the same
model weights to transfer each of the words in a sentence.

3http://github.com/fchollet/keras
4http://github.com/tensorflow/tensorflow

Table 1: Hyper parameters

Sentence pad length 30
Dimension of GloVe vectors 300
Number of CNN layers l 1
Number of CNN filters in layer1 k1 300
Activation function of CNN tanh

Initial function of CNN he uniform

Number of FCNN layers n 2
Dimension of input layer 600
Dimension of layer1 m1 300
Dimension of output layer 6
Activation of layers except output tanh

Activation of output layer softmax

Initial function of layers he uniform

Optimizer ADAM

Batch size 1500
Max epoch 25
Run times 8

2.3 Comparison of semantic vectors

The semantic vector of sentence is calculated by max
pooling [Scherer et al., 2010] over every dimension of the
CNN transferred word vector. To calculate the semantic
similarity score of two sentences, we generate a semantic
difference vector by concatenating the element-wise abso-
lute difference and the element-wise multiplication of two
semantic vectors. The calculation equation is

~

SDV = (| ~

SV 1� ~

SV 2|, ~

SV 1 � ~

SV 2) (1)

Here, ~

SDV is the semantic difference vector between two
sentences, ~

SV 1 and ~

SV 2 are the semantic vectors of
two sentences, � is Hadamard product which generate the
element-wise multiplication of two semantic vectors.

2.4 Fully-connected neural network (FCNN)

An FCNN is used to transfer the semantic difference
vector to a probability distribution over the six similarity
labels used by STS. The number of layers is n. The dimen-
sion of every layer is mn. The activation function of every
layer except the last one is tanh. The activation function
of the last layer is softmax. We train without using regu-
larization or drop out.

3 Experiments and Results

The basic type of our neural network system took part
in the STS task of SemEval 2017 and ranked 3rd in the
primary track [Shao, 2017]. The hyper parameters used
in our basic type system were empirically decided for the
STS task and shown in Table 1. Our objective function
is the Pearson correlation coefficient. ADAM

[P.Kingma
and Ba, 2015] was used as the gradient descent optimiza-
tion method. All parameters of the optimizer are set to be
followed with the original paper. The learning rate is 0.001,



Table 2: Increasing of dimensions of FCNN

Dimensions of Pearson correlation
FCNN layer1 m1 coefficient results

300 0.778679± 0.003508
600 0.776741± 0.002711
900 0.778596± 0.001876

1200 0.779059± 0.003414
1500 0.778852± 0.003400
1800 0.779247± 0.002261

Table 3: Increasing of filters of CNN

Number of CNN Pearson correlation
filters in layer1 k1 coefficient results

300 0.780586± 0.001843
600 0.785420± 0.002587
900 0.790137± 0.002325

1200 0.791042± 0.002557
1500 0.792357± 0.002256
1800 0.792580± 0.002613

�1 is 0.9, �2 is 0.999, ✏ is 1e-08. he uniform

[He et al.,
2015c] was used as the initial function of all layers. The ba-
sic model achieved a Pearson correlation coefficient result
of 0.778679± 0.003508 and ranked 4th on the STS bench-
mark5. We explore more variant neural network structures
and experiments in this section.

3.1 Increasing of dimensions of FCNN

We run the experiment using more FCNN dimensions
in this subsection. The hyper parameters used in this sub-
section are same with the basic type system in Table 1 ex-
cept the dimension of FCNN layer1 m1. The dimensions
of FCNN layer1m1 and the Pearson correlation coefficient
results are shown in Table 2. Figure 2 shows the average re-
sults in every epoch with standard deviation error bar. The
highest curve is the Pearson correlation coefficient results
on the training data. The curve in the middle is the results
on the validation data. The lowest curve is the results on
the test data.

3.2 Increasing of filters of CNN

We run the experiment using more CNN filters in this
subsection. The hyper parameters used in this subsection
are same with the basic type system in Table 1 except the
number of CNN filters in layer1 k1. The number of CNN
filters in layer1 k1 and the Pearson correlation coefficient
results are shown in Table 3. Figure 3 shows the average
results in every epoch with standard deviation error bar.

3.3 Increasing of layers of FCNN

We run the experiment using more FCNN layers in this
subsection. The hyper parameters used in this subsection
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are same with the basic type system in Table 1 except the
number of FCNN layers n and the dimension of FCNN lay-
ers mn. The number of FCNN layers n is set to be 3 in this
subsection. The dimensions of FCNN layern mn and the
Pearson correlation coefficient results are shown in Table
4. The number of filters in CNN layer1 k1 is set to be 1800
based on the previous experiments. Figure 4 shows the av-
erage results in every epoch with standard deviation error
bar.

3.4 Increasing of layers of CNN

We run the experiment using more CNN layers in this
subsection. The hyper parameters used in this subsection
are same with the basic type system in Table 1 except the
number of CNN layers l and the number of filters in CNN
layers kl. The number of CNN layers l is set to be 2 in
this subsection. The number of filters in CNN layerl kl
and the Pearson correlation coefficient results are shown in
Table 5. The dimensions of FCNN layer1 m1 is set to be
1800 based on the previous experiments. Figure 5 shows
the average results in every epoch with standard deviation
error bar.

3.5 2 CNN layers with shortcut

We run the experiment using 2 CNN layers in this sub-
section. We add a shortcut [He et al., 2015b] between input
layer and the second layer. The hyper parameters used in
this subsection are same with the basic type system in Ta-
ble 1 except the number of CNN layers l and the number
of CNN filters in layers kl. The number of CNN layers l is
set to be 2. The number of CNN filters in layer2 k2 is set to
be 301, same with the dimensions of expanded GloVe word
vectors. The number of filters in CNN layersl k1 and the
Pearson correlation coefficient results are shown in Table
6. The dimensions of FCNN layer1 m1 is set to be 1800
based on the previous experiments. Figure 6 shows the av-
erage results in every epoch with standard deviation error
bar.

3.6 3 CNN layers with shortcut

We run the experiment using 3 CNN layers in this sub-
section. We add a shortcut [He et al., 2015b] between the
first layer and the third layer. The hyper parameters used
in this subsection are same with the basic type system in
Table 1 except the number of CNN layers l and the number
of CNN filters in layers kl. The number of CNN layers l

is set to be 3. The number of filters in CNN layer3 k3 is
set to be same with the number of filters in CNN layer1
k1. The number of CNN filters in layers kl and the Pearson
correlation coefficient results are shown in Table 7. The di-
mensions of FCNN layer1m1 is set to be 1800 based on the
previous experiments. Figure 7 shows the average results
in every epoch with standard deviation error bar. For this
experiment, we also tried the model that without the hand-



Table 4: Increasing of layers of FCNN

Dimensions of Dimensions of Pearson correlation
FCNN layer1 FCNN layer2 coefficient results

300 300 0.788331± 0.004569
600 600 0.785838± 0.003565
900 900 0.789736± 0.002546
1200 1200 0.786109± 0.003820
1500 1500 0.789013± 0.001524
1800 1800 0.782995± 0.003396

Table 5: Increasing of layers of CNN

Number of Number of Pearson correlation
filters in layer1 filters in layer2 coefficient results

300 301 0.762369± 0.002277
600 301 0.765034± 0.002445
900 301 0.765966± 0.003641

1200 301 0.761183± 0.004322
1500 301 0.764604± 0.004969
1800 301 0.766178± 0.004455

crafted feature. The purely sentence representation system
achieved an accuracy of 0.788154± 0.003412.

4 Discussion

From the results of experiment 1, we can find that in-
creasing the dimensions of FCNN does not have remark-
able effect on the accuracy of evaluations. The curves in
Figure 2 are almost coincidental. From the results of exper-
iment 2, we can find that increasing the number of filters in
CNN layer can improve the accuracy of evaluations. Al-
though the size of training data (5749 records) is not very
large, abstracting more features still benefits the evalua-
tion results. By increasing the number of filters in CNN
layer, we achieved a Pearson correlation coefficient result
of 0.792580± 0.002613 and improve the rank from 4th to
3rd.

From the results of experiment 3, we can find that in-
creasing the layer of FCNN is harmful to the evaluation
results. But increasing the dimensions of FCNN layer has
little effect on the accuracy of evaluations. From the re-
sults of experiment 4, we can find that increasing the layer
of CNN could significantly pull down the accuracy of eval-
uations. However, changing the number of filters in CNN
layers only changes the learning speed, has little effect on
the final accuracy. The structure with smaller number of
filters can learn faster.

From the results of experiment 5, we can find that
adding a shortcut between input layer and the second CNN
layer can slightly improve the accuracy of evaluations.
From the results of experiment 6, we can find that adding
a shortcut between the first CNN layer and the third CNN
layer can get a result that close to the model that has only
one CNN layer. Smaller number of filters in the sec-
ond CNN layer can achieve better accuracy of evaluations.

Table 6: 2 CNN layers with shortcut

Number of Number of Pearson correlation
filters in layer1 filters in layer2 coefficient results

300 301 0.762030± 0.008716
600 301 0.768793± 0.003466
900 301 0.767369± 0.004021

1200 301 0.768415± 0.005799
1500 301 0.769528± 0.002299
1800 301 0.770214± 0.006707

Table 7: 3 CNN layers with shortcut

Number of Number of Pearson correlation
filters in layer1 filters in layer2 coefficient results

1800 300 0.793013± 0.002325
1800 600 0.791661± 0.002444
1800 900 0.787749± 0.003798
1800 1200 0.785493± 0.002761
1800 1500 0.785675± 0.003413
1800 1800 0.783370± 0.004499

Comparing with the structure that has only one CNN layer,
3 CNN layers with shortcut structure can learn faster. 3
CNN layers with shortcut structure achieved a Pearson cor-
relation coefficient result of 0.793013± 0.002325 and that
is the best result in all of the variant neural networks.

5 Conclusion

We investigated a simple neural network system for the
STS task. All variant models used convolutional neural
network to transfer hand-crafted feature enhanced GloVe
word vectors to a proper form. Then, the models calcu-
lated semantic vectors of sentences by max pooling over
every dimension of their transferred word vectors. After
that, semantic difference vector between two sentences is
generated by concatenating the element-wise absolute dif-
ference and element-wise multiplication of their semantic
vectors. At last, a fully-connected neural network was used
to transfer the semantic difference vector to the probability
distribution over similarity scores.

In spite of the simplicity of our neural network system,
the basic type ranked 3rd in the primary track of the STS
task of SemEval 2017. On the STS benchmark test dataset,
the basic model achieved a Pearson correlation coefficient
result of 0.778679± 0.003508 and ranked 4th. By investi-
gating several variant neural networks in this research, we
found that 3 CNN layers with shortcut between the first
layer and the third layer structure achieved the best result, a
result of 0.793013± 0.002325 improved our rank from 4th

to 3rd. We also tried purely sentence representation system
for this model and the result is 0.788154 ± 0.003412, also
ranked 3rd.



Figure 2: Increasing of dimensions of FCNN

Figure 3: Increasing of filters of CNN

Figure 4: Increasing of layers of FCNN

Figure 5: Increasing of layers of CNN

Figure 6: 2 CNN layers with shortcut

Figure 7: 3 CNN layers with shortcut
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